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Abstract
Manmade nanoparticles range from the well-established multi-ton production of carbon black and
fumed silica for applications in plastic fillers and car tyres to microgram quantities of fluorescent
quantum dots used as markers in biological imaging. As nano-sciences are experiencing massive
investment worldwide, there will be a further rise in consumer products relying on
nanotechnology. While benefits of nanotechnology are widely publicised, the discussion of the
potential effects of their widespread use in the consumer and industrial products are just beginning
to emerge. This review provides comprehensive analysis of data available on health effects of
nanomaterials.

1. Introduction
Scientists world-wide are continuing to discover unique
properties of everyday materials at the sub micrometer
scale [1,2]. This size domain is better known as nano- (a
billionth) meter domain. These novel properties of com-
mon materials observable only at the nano-scale dimen-
sions have already found their first commercial
applications [3]. For example, nanomaterials are present
in some sunscreens, toothpastes, sanitary ware coatings
and even food products. Manmade nanoparticles ranges
from the well-established multi-ton production of carbon
black and fumed silica for applications in plastic fillers
and car tyres to microgram quantities of fluorescent quan-
tum dots used as markers in biological imaging. As nano-
sciences are experiencing massive investment worldwide
[4,5], there will be a further rise in consumer products
relying on nanotechnology [6].

While benefits of nanotechnology are widely publicised,
the discussion of the potential effects of their widespread

use in the consumer and industrial products are just
beginning to emerge [7,8]. Both pioneers of nanotechnol-
ogy [9] and its opponents [10] are finding it extremely
hard to argue their case as there is limited information
available to support one side or the other. It has been
shown that nanomaterials can enter the human body
through several ports. Accidental or involuntary contact
during production or use is most likely to happen via the
lungs from where a rapid translocation through the blood
stream is possible to other vital organs [11]. On the cellu-
lar level an ability to act as a gene vector has been demon-
strated for nanoparticles [12]. Carbon black nanoparticles
have been implicated in interfering with cell signalling
[13]. There is work that demonstrates uses of DNA for the
size separation of carbon nanotubes [14]. The DNA strand
just wraps around it if the tube diameter is right. While
excellent for the separation purposes it raises some con-
cerns over the consequences of carbon nanotubes enter-
ing the human body.
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In this review we summarise the known facts about nano-
material hazards, discuss the potential entry points of
nanoparticles into the human body, explore their likely
pathways inside the body and analyse published experi-
mental results on the bioactivity of nanomaterials.

2. General background
Human skin, intestinal tract and lungs are always in direct
contact with the environment. Whereas skin acts as a bar-
rier, lungs and intestinal tract also allow transport (passive
and/or active) of various substances like water, nutrients
or oxygen. Because of that fact they are likely to be a first
port of entry for nanomaterials journey into the human
body. Our knowledge in this field mainly comes from
drug delivery (pharmaceutical research) and toxicology
(xenobiotics) studies. Human skin functions as a strict
barrier and no essential elements are taken up through the
skin (except radiation necessary to build up vitamin D).
The lungs exchange oxygen and carbon dioxide with the
environment, and some water escapes with warm exhaled
air. The intestinal tract is in close contact with all the mate-
rials taken up orally; there all nutrients (except gasses) are
exchanged between the body and the environment.

The histology of the environmental contact sides of these
three organs is significantly different. The skin of an adult
human is roughly 1.5 m2 in area, and is at most places cov-
ered with a relatively thick first barrier (10 micron) which
is build of strongly keratinised dead cells (Fig 1). This first
barrier is difficult to pass for ionic compounds as well as
water soluble molecules.

The lung consists of two different parts, airways (trans-
porting the air in and out the lungs) and alveoli (gas
exchange areas). Human lungs contain about 2300 km of
airways and 300 million alveoli (gas exchange areas) (Fig
2). The surface area of the lungs is 140 m2 in adults, as big
as a tennis court. The airways are a relatively robust bar-
rier, an active epithelium protected with a viscous layer of
mucus. In the gas exchange area, the barrier between the
alveolar wall and the capillaries is very thin. The air in the
lumen of the alveoli is just 0.5 micron away from the
blood flow. The large surface area of the alveoli and the
intense air-blood contact in this region makes the alveoli
less well protected against environmental damage when
compared with airways.

The intestinal tract is a more complex barrier – exchange
side, it is the most important portal for macromolecules
to enter the body. From the stomach, only small mole-
cules can diffuse through the epithelium. The epithelium
of the small and large intestines is in close contact with
ingested material so that nutrients can be utilized. A mix-
ture of disaccharides, peptides, fatty acids, and monoglyc-
erides generated by digestion in small intestine are further
transformed and taken in the villi (Fig 3). Villi, in turn, are
covered with micro-villi, which bring overall surface avail-
able to nutrients to 200 square meters.

3. Lung
3.1 Inhalation and pulmonary clearing of insoluble solids
The pathogenic effects of inhaled solid material depend
primarily on achieving a sufficient lung burden [15]. The
lung burden is determined by the rates of deposition and
clearance. Logically, for any dust or fibre, a steady-state
dose level will be achieved when the rates come into bal-
ance. This is only true when the solid material does not
interfere with the clearance mechanisms. In respect to the
burden the chemical and physical properties of the mate-
rial itself are important insofar as they influence deposi-
tion and clearance rates. Spherical solid material can be
inhaled when its aerodynamic diameter is less than 10
micron. The smaller the particulates the deeper they can
travel into the lung, particles smaller than 2.5 micron will
even reach the alveoli. Ultrafine particles (nanoparticles
with an aerodynamic diameter of less than 100 nm) are
deposited mainly in the alveolar region. Fibres are defined
as solid materials with a length to diameter ratio of at least
3:1. Their penetration into the lung depends on the

schematic representation of human skin; Stratum corneum is the top of the five layers making epidermis, it is composed of keratinised dead cells glued by lipidsFigure 1
schematic representation of human skin; Stratum corneum is 
the top of the five layers making epidermis, it is composed of 
keratinised dead cells glued by lipids. It is shed off and 
replaced every two weeks. Depending on the part of the 
body its thickness varies from 0.05 mm to 1.5 mm.
Page 2 of 15
(page number not for citation purposes)



Journal of Nanobiotechnology 2004, 2:12 http://www.jnanobiotechnology.com/content/2/1/12
aerodynamic properties. Fibres with a small diameter will
penetrate deeper into the lungs, while very long fibres
(>>20 micron) are predominantly stuck in the higher air-
ways [16-21].

The mucociliary escalator dominates the clearance from
the upper airways; clearance from the deep lung (alveoli)
is predominantly by macrophage phagocytosis. The
mucociliary escalator is an efficient transport system
pushing the mucus, which covers the airways, together
with the trapped solid materials towards the mouth. The
phagocytosis of particles and fibres results in activation of
macrophages and induces the release of chemokines,

cytokines, reactive oxygen species, and other mediators;
this can result in sustained inflammation and eventually
fibrotic changes. The phagocytosis efficiency can be
affected by the (physical-chemical) characteristics of the
solid material (see below); moreover, fibres too long to be
phagocytized (fibres longer than the diameter of the alve-
olar macrophage) will only be cleared very slowly.

Laboratory exposure studies have shown that if the
inhaled concentrations are low, such that the deposition
rate of the inhaled particles is less than the mechanical
alveolar macrophage-mediated clearance rate in the lung,
then the retention half time is about 70 days (steady-state

Cross-section of alveoli; Schematic cross-section of alveoli showing a very thin (500 nm) separation between blood and airFigure 2
Cross-section of alveoli; Schematic cross-section of alveoli showing a very thin (500 nm) separation between blood and air. An 
SEM image of the alveoli is shown in the inset.
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lung burden during continuous exposure). If the deposi-
tion rate of the inhaled particles exceeds this clearance
rate, the retention half time is significantly increased,
reflecting an impaired or prolonged alveolar macrophage-
mediated clearance function with continued accumula-
tion of lung burden (overload). Inhaled fibres, which are
persistent in the alveoli, can interact with the pulmonary
epithelial cells or even penetrate the alveolar wall and
enter the lung tissue. These fibres are often described as
being in the "interstitial" where they may lie between or
within the cells making up the alveolar walls. Bio-persist-
ent solid materials, certainly those particles containing
mutagenic substances or asbestos fibres or silica, which
remain for years in the lungs, increase the risk of develop-
ing cancer.

3.2 Deposition and clearing of solid nanomaterials
It has been reported recently that nanotubes show a sign
of toxicity [22], confirmed in two independent publica-
tions by Warheit et al [23] and Lam et al [24], which dem-
onstrated the pulmonary effects of single walled cabon
nanotubes in vivo after intratracheal instillation, in both
rats and mice. Both groups reported granuloma forma-
tion, and some interstitial inflammation. The research

group of Warheit et al [23] concluded that these findings
(multifocal granulomas) may not have physiological rele-
vance, and may be related to the instillation of a bolus of
agglomerated nanotubes. But for the authors of [24] their
results indicate that if carbon nanotubes reach the lungs,
they are much more toxic than carbon black and can be
more toxic than quartz. These studies have to be read with
some caution because a study by the National Institute for
Occupational Safety and Health (NIOSH) showed that
none or only a small fraction of the nanotubes present in
the air can be inhaled [25].

Clearance from the lung depends not only on the total
mass of particles inhaled but also on the particle size and,
by implication, on particle surface, as shown in the fol-
lowing studies. A sub-chronic 3 months inhalation expo-
sure of rats to ultrafine (~20 nm) and fine (~200 nm)
titanium dioxide (TiO2) particles demonstrated that the
ultrafine particles cleared significantly slower, showed
more translocation to interstitial sites and to regional
lymph nodes when compared to the fine TiO2 particles
[26]. By comparing carbon black particles of similar size
and composition but with significant specific surface area
difference (300 versus 37 m2/g), it was found that the bio-
logical effects (inflammation, genotoxicity, and histol-
ogy) were dependent on specific surface area and not
particle mass. Similar findings were reported in earlier
studies on tumorigenic effects of inhaled particles. It was
shown that tumour incidence correlated better with spe-
cific surface area than with particle mass [27,28].

Comparing the health effects of chronically inhaled TiO2
particles with distinctly different sizes, it is remarkable
that the low exposure (10 mg/m3) study [29] resulted in a
greater lung tumour incidence than the high exposure
(250 mg/m3) study [30]. The inhaled particles in both
studies consisted of aggregated primary particles, with an
aerodynamic diameter that was probably not very differ-
ent. The primary particle size of the low dose study was 20
nm, while it was approximately 300 nm in the latter
study.

In summary, most nano-sized spherical solid materials
will easily enter the lungs and reach the alveoli. These par-
ticles can be cleared from the lungs, as long as the clear-
ance mechanisms are not affected by the particles
themselves or any other cause. Nano-sized particles are
more likely to hamper the clearance resulting in a higher
burden, possibly amplifying any possible chronic effects
caused by these particles. It is also important to note that
specific particle surface area is probably a better indication
for maximum tolerated exposure level than total mass.
Inhaled nano-fibres (diameter smaller than 100 nm) also
can enter the alveoli and their clearing would, in addition,
depend on the length of the specific fibre. Recent

Villi in small intestine; A surface structure of villi covered with micro-villi is dramatically multiplies the area of gastero-intestine tract to 200 m2Figure 3
Villi in small intestine; A surface structure of villi covered 
with micro-villi is dramatically multiplies the area of gastero-
intestine tract to 200 m2. Inset shows an SEM image of villi.
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publications on the pulmonary effects of carbon nano-
tubes confirm the intuitive fear that nano-sized fibre can
induce a rather general non-specific pulmonary response.

3.3 Particle surface and biocompatibility
Reports on the surface properties of nanoparticles, both
physical and chemical, stress that nanoparticles differ
from bulk materials. Their properties depend heavily on
the particle size. Therefore, nanoparticles are not merely
small crystals but an intermediate state of matter placed
between bulk and molecular material. Independently of
the particle size, two parameters play dominant role. The
charges carried by the particle in contact with the cell
membranes and the chemical reactivity of the particle
[31].

3.3.1 Surface charges
Polycationic macromolecules show a strong interaction
with cell membranes in vitro. A good example can be
found in the Acramin F textile paint system. Three poly-
cationic paint components exhibited considerable cyto-
toxicity (LD50 generally below 100 mg/ml for an incuba-
tion of 20–24 hours) in diverse cell cultures, such as
primary cultures of rat and human type II pneumocytes,
and alveolar macrophages and human erythrocytes. The
authors argued that the multiple positive charges play an
important role in the toxic mechanism [32,33]. Biocom-
patibility studies [34] revealed that the cytotoxicity of
polycationic materials such as DEAE-dextran and poly-L-
lysine (PLL) [35,36], dendrimers [37] and polyethylen-
imine (PEI) [38] increases with the increase in their
molecular weight. However, these findings apply only to
polymers having same chemical structure, but not for dif-
ferent types of polycations. Consequently, to explain the
toxicity of polymers with different structures further
parameters have to be taken into account.

Dekie et al [39] concluded that the presence of a primary
amine group on poly L-glutamic acid derivatives has a sig-
nificant toxic effect on red blood cells causing them to
agglutinate. Not only the type of amino function but also
the charge density resulting from the number and special
arrangement of the cationic residues is an important fac-
tor for cytotoxicity. Ryser [40] suggested that a three-point
attachment is necessary for eliciting a biological response
on cell membranes, and argued that the activity of a poly-
mer will decrease when the space between reactive amine
groups is increased. The arrangement of cationic charges
depends on the three-dimensional structure and flexibil-
ity of the macromolecules and determines the accessibility
of their charges to the cell surface. For example, branched
molecules were found to be more efficient in neutralising
the cell surface charge than polymers with linear or glob-
ular structure, as rigid molecules have more difficulties to
attach to the membranes than flexible molecules [41].

Therefore, high cationic charge densities and highly flexi-
ble polymers should cause higher cytotoxic effects than
those with low cationic charge densities. Globular polyca-
tionic macromolecules (cationised Human Serum Albu-
mine (cHSA), ethylenediamine-core poly(amidoamine)
dendrimers (PAMAM) were found to be polymers with a
good biocompatibility (low cytotoxicity), whereas poly-
mers with a more linear or branched and flexible structure
(e.g. polydiallyldimethylammonium chloride (DAD-
MAC), PLL, PEI) showed higher cell damaging effects.

3.3.2 The surfactant interaction and surface chemistry
Geiser et al [42] studied the influence of the particle sur-
face chemistry on its interaction with the lung's surface-
lining layer. They found that, regardless of the nature of
their surfaces, particles will be submersed into the lining
layer after their deposition in small airways and alveoli.
This displacement is promoted by the surfactant film
itself, whose surface tension falls temporarily to relatively
low values [42,43]. On the other hand, reactive groups on
a particle surface will certainly modify the biological
effects. For silica, it has been shown that surface modifica-
tion of quartz affects its cytotoxicity, inflammogenicity
and fibrogenicity. These differences are mainly due to par-
ticle surface characteristics [44]. Specific cytotoxicity of sil-
ica is strongly correlated with the appearance of surface
radicals and reactive oxygen species (ROS), which is con-
sidered to be the key event in the development of fibrosis
and lung cancer by this compound [45].

Although the type of particle does not seem to play an
important role in whether it is embedded in the surfactant
lining of the alveoli, the embedding process itself is cru-
cial. Particle-cell interaction is possible only after the
immersion of the particulates in the lining fluid and
research is needed to study this phenomenon in detail in
relation to inhaled nanoparticles. Logically, as described
in the report for silica [45], the reactive groups on nano-
particles influence their interaction with the lung (or
more general with biological material). In some instances
it might be possible to predict the reactivity of the nano-
surface. However, considering the scarcity of data, it
would be sensible to verify these predictions by some lab-
oratory testing.

3.4 Systemic translocation of inhaled particles
The impact of inhaled particles on other organs has only
recently been recognised. Most research has concentrated
on the possible consequences of particle related malfunc-
tion of the cardio-vascular system, such as arrhythmia,
coagulation [46] etc. However, recent data support the
concept that the autonomic nervous system may also be a
target for the adverse effects of inhaled particulates
[47,48,11]. Two complementary hypotheses explain the
cardiovascular malfunctions after inhalation of ultra-fine
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particles. The first hypothesis explains the observed effects
by the occurrence of strong (and persistent) pulmonary
inflammatory reactions in the lungs, leading to the release
of mediators (see above), which may influence the heart,
coagulation, or other cardiovascular endpoints. The sec-
ond hypothesis is that the particles translocate from the
lungs into the systemic circulation and thus, directly or
indirectly, influence haemostasis or cardiovascular
integrity.

In the evaluation of the health effects of inhaled nanopar-
ticles the translocation to the systemic circulation is an
important issue. Conhaim and co-workers [49] found that
the lung epithelial barrier was best fitted by a three-pore-
sized model, including a small number (2%) of large-
sized pores (400-nm pore radius), an intermediate
number (30%) of medium-sized pores (40-nm pore
radius), and a very large number (68%) of small-sized

pores (1.3-nm pore radius). The exact anatomical location
of this structure, however, remains to be established (see
the review by Hermans and Bernard [50]). Until recently,
the possible passage of xenobiotic particles has not been
attracting much attention, although, the concept is now
gaining acceptance in pharmacology for the administra-
tion of macromolecular drugs by inhalation [51]. Nem-
mar et al [11] studied the particle-translocation of inhaled
ultrafine technetium (99mTc) labelled carbon particles to
the blood. These particles, which are very similar to the
ultrafine fraction of actual pollutant particles, diffused
rapidly – within 5 minutes – into the systemic circulation
(Fig 4). The authors concluded that phagocytosis by mac-
rophages and/or endocytosis by epithelial and endothe-
lial cells are responsible for particle-translocation to the
blood but other roots must also exist.

Translocation of inhaled ultrafine particlesFigure 4
Translocation of inhaled ultrafine particles. Time-activity curve over liver and bladder expressed as percent of initial lung radio-
activity. Insert, Whole body gamma camera image of 1 representative volunteer recorded at 60 minutes. The radioactivity over 
the organs is expressed as counts per minute (CPM) per pixel within each region of interest (ROI). The values recorded over 
the stomach were not included because this radioactivity may also come partly from swallowing of particles deposited in the 
mouth. Reproduced with permission from Nemmar et al, "Passage of inhaled particles into the blood circulation in humans", 
Circulation 2002;105(4):411-41.
Page 6 of 15
(page number not for citation purposes)



Journal of Nanobiotechnology 2004, 2:12 http://www.jnanobiotechnology.com/content/2/1/12
The literature on the translocation of very small particles
from the lungs into the blood circulation is limited and
often conflicting. A recent study has reported deposition
and clearance over 2 h of an ultrafine (60 nm) 99mTc
labelled aerosol in human volunteers. No significant radi-
oactivity was found in the liver (1–2 % of the inhaled radi-
oactivity) but, unfortunately, no radioactivity
measurements with blood were reported [52]. In agree-
ment with findings of Nemmar et al [11], Kawakami et al.
[53] have reported the presence of radioactivity in blood
immediately after inhalation of 99mTc-technegas in
human volunteers. It is also known [54] that aerosolised
insulin gives a rapid therapeutic effect although the path-
ways for this translocation are still unclear. In addition to
human studies, in experimental animal studies, we [11]
and others [55,16,56,57] have reported extra-pulmonary
translocation of ultrafine particles after intra-tracheal
instillation or inhalation. However, the amount of
ultrafine particles that translocate into blood and extra-
pulmonary organs differed among these studies. It has
also been shown that, following intranasal delivery, poly-
styrene microparticles (1.1 micron) can translocate to tis-
sues in the systemic compartment [58]. A recent study
[59] has provided, for the first time, morphological data
showing that inhaled polystyrene particles are transported
into the pulmonary capillary space, presumably by trans-
cytosis. Another alley of translocation from the lungs
towards other organs has been undertaken by Oberdörster
et al [19]. In inhalation experiments with rats, using 13C-
labelled particles, they found that nano-sized particles (25
nm) were present in several organs 24 hours after expo-
sure. The most extraordinary finding was the discovery of
particles in the central nervous system (CNS). The authors
examined this phenomenon further and found that parti-
cles, after being taken up by the nerve cells, can be trans-
ported via nerves (in this experiment via the olfactory
nerves) at a speed of 2.5 mm per hour [56].

Passage of solid material from the pulmonary epithelium
to the circulation seems to be restricted to nanoparticles.
The issue of particle translocation still need to be clarified:
both the trans-epithelial transport in the alveoli and the
transport via nerve cells. Thus, the role of factors govern-
ing particle translocation such as the way of exposure,
dose, size, surface chemistry and time course should be
investigated. For instance, it would be also very important
to know how and to what extent lung inflammation mod-
ulates the extra-pulmonary translocation of particles.

3.5 Fibre bio-persistence
Long non-phagocytizable fibres (in humans longer than
20 micron) will not be effectively cleared from the respi-
ratory tract. The main determinants of fibre bio-persist-
ence are species specific physiological clearance and fibre
specific bio-durability (physical-chemical processes). In

the alveoli the rate at which fibres are physically cleared
depends on the ability of alveolar macrophages to phago-
cytose them. Macrophages containing fibres longer than
their own diameter may not be mobile and be unable to
clear the fibres from the lung. The bio-durability of a fibre
depends on dissolution and leaching as well as mechani-
cal breaking and splitting. Long fibres in the lung can dis-
integrate, leading to shorter fibres that can be removed by
the macrophages. Bio-persistent types of asbestos, where
breakage occurs longitudinally, result in more fibres of the
same length but smaller diameter. Amorphous fibres
break perpendicular to their long axis [60,61], resulting in
fibres that can be engulfed by the macrophages.

It is self-evident that the slower the fibres are cleared (high
bio-persistence), the higher is the tissue burden and the
longer the fibres reside in a tissue the higher is the proba-
bility of an adverse response. A milestone was set by Stan-
ton et al [62,63] who undertook a series of experiments
with 17 samples of carefully sized fibrous glass. They
found that for mesothelioma induction in rats, the peak
activity was in the fibres greater than 8 micron in length
and less than 1.3 micron in diameter. These findings are
known as the "Stanton hypothesis". However these results
do not strictly indicate that all fibres longer than the lower
threshold are equally active or that shorter fibres are not,
although fibres less than 5 micron in length did not
appear to contribute to lung cancer risk in exposed rats
[64]. Risk appears to increase with length, with fibres
more than 40 micron in length imposing the highest risk.
For the recent review see Schins [65].

The bio-durability of fibres with a diameter < 100 nm will
probably not differ from larger inhalable fibres. Therefore,
great caution must be taken in case of the contact with
nano-fibres, Bio-durability tests must be performed
before releasing any products containing them. Carbon
nanotubes, which are of high technical interest, are one of
the materials which need to be tested in depth concerning
bio-persistence and cancer risk. The first toxicological
studies indicated that carbon nanotubes can be a risk for
human health [22-24], while exposure assessment did
indicate that these materials are probably not inhaled
[25].

4. Intestinal tract
Already in 1926 it was recognised by Kumagai [66] that
particles could translocate from the lumen of the intesti-
nal tract via aggregations of intestinal lymphatic tissue
(Peyer's patches (PP)), containing M-cells (specialised
phagocytic enterocytes). Particulate uptake happens not
only via the M-cells in the PP and the isolated follicles of
the gut-associated lymphoid tissue, but also via the
normal intestinal enterocytes. There have been a number
of excellent reviews on the subject of intestinal uptake of
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particles [51,66]. Uptake of inert particles has been shown
to occur trans-cellularly through normal enterocytes and
PP via M-cells, and to a lesser extent across para-cellular
pathways [67]. Initially it was assumed that the PP did not
discriminate strongly in the type and size of the absorb
particles. Later it has been shown that modified character-
istics, such as particle size [68] the surface charge of parti-
cles [69], attachment of ligands [70,71] or coating with
surfactants [72], offers possibilities of site-specific target-
ing to different regions of the gastro intestine tract (GIT),
including the PP [73].

The kinetics of particle translocation in the intestine
depends on diffusion and accessibility through mucus,
initial contact with enterocyte or M-cell, cellular traffick-
ing, and post-translocation events. Charged particles, such
as carboxylated polystyrene nanoparticles [69] or those
composed of positively charged polymers exhibit poor
oral bioavailability through electrostatic repulsion and
mucus entrapment. Szentkuti [74] determined the rate of
particle diffusion across the mucus layer to the enterocyte
surface with respect to both size and surface charge of the
particles. In brief, Szentkuti [74] observed that cationic
nanometer-sized latex particles became entrapped in the
negatively charged mucus, whereas repulsive carboxylated
fluorescent latex nanoparticles were able to diffuse across
this layer. The smaller the particle diameter the faster they
could permutate the mucus to reach the colonic entero-
cytes; 14 nm diameter permeated within 2 min, 415 nm
particles took 30 min, while 1000-nm particles were una-
ble to translocate this barrier. Within, the time of the
experiment (30 min) none of the particles was endocy-
tosed by the enterocytes despite the fact that the latex nan-
oparticles preferentially bound the cell surface more
strongly than the mucus. After a longer time window (oral
gavage for several days) a sparse accumulation of charged
particulates in the lamina propria (connective tissue
under the epithelia) was found compared to uncharged
latex nanoparticles in the same size range [69].

Particulates, once in the sub-mucosal tissue, are able to
enter both lymphatic and capillaries. Particles entering the
lymphatic are probably important in the induction of
secretory immune responses while those which enter the
capillaries become systemic and can reach different
organs. In one study [75], the body distribution after
translocation of polystyrene particles was examined in
some detail. Polystyrene spheres (ranging from 50 nm to
3 micron) were fed by gavage to female Sprague Dawley
rats daily for 10 days at a dose of 1.25 mg/kg. As much as
34 % and 26% of the 50 and 100 nm particles were
absorbed respectively. Those larger than 300 nm were
absent from blood. No particles were detected in heart or
lung tissue.

4.1 Intestinal Translocation and Disease
Crohn's disease is characterised by transmural inflamma-
tion of the gastrointestinal tract. It is of unknown aetiol-
ogy, but it is suggested that a combination of genetic
predisposition and environmental factors play a role. Par-
ticles (0.1–1.0 micron) are associated with the disease and
indicated as potent adjuvants in model antigen-mediated
immune responses. In a double-blind randomised study,
it has been shown that a particle low diet (low in calcium
and exogenous microparticles) alleviates the symptoms of
Crohn's disease [76]. Although there is a clear association
between particle exposure and uptake and Crohn's dis-
ease, little is known of the exact role of the phagocytosing
cells in the intestinal epithelium. It has been suggested
that the disruption of the epithelial barrier function by
apoptosis of enterocytes is a possible trigger mechanism
for mucosal inflammation. The patho-physiological role
of M cells is unclear; e.g., it has been found that in Crohn's
disease M cells are lost from the epithelium. Other studies
found that material uptake (endocytose) capacity of M
cells is induced under various immunological conditions,
e.g. a greater uptake of particles (0.1 micron, 1 micron and
10 micron diameter) has been demonstrated in the
inflamed colonic mucosa of rats compared to non-ulcer-
ated tissue [77,78] and inflamed oesophagus [79].

Diseases other than of gut origin also have marked effects
on the ability of GIT to translocate particles. The absorp-
tion of 2-micron polystyrene particles from the PP of rats
with experimentally induced diabetes is increased up to
100-fold (10% of the administered dose) compared to
normal rats [80]. However, the diabetic rat displayed a
30% decrease in the systemic distribution of the particles.
One possible explanation for this discrepancy is the
increased density of the basal lamina underlying the GI
mucosa of diabetic rats that may impede particle translo-
cation into deeper villous regions. This uncoupling
between enhanced intestinal absorption and reduced sys-
temic dissemination has also been observed in dexameth-
asone treated rats [81].

From the literature cited above it is clear that engineered
nanoparticles can be taken up via the intestinal tract. In
general the intestinal uptake of particles is better under-
stood and studied in more detail than pulmonary and
skin uptake. Because of this advantage it is maybe possible
to predict the behaviour of some particles in the intestines
but precaution should be taken. For those nanoparticles
designed to stabilise food or to deliver drug via intestinal
uptake other, more demanding, rules exist and should be
followed before marketing these compounds.

5. Skin
Skin is an important barrier, protecting against insult
from the environment. The skin is structured in three
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layers: the epidermis, the dermis and the subcutaneous
layer. The outer layer of the epidermis, the stratum cor-
neum (SC), covers the entire outside of the body and only
contains dead cells, which are strongly keratinized. For
most chemicals the SC is the rate-limiting barrier to percu-
taneous absorption (penetration). The skin of most mam-
malian species is, on most parts of the body, covered with
hair. At the sites, where hair follicles grow, the barrier
capacity of the skin differs slightly from the "normal"
stratified squamous epidermis. Most studies concerning
penetration of materials into the skin have focussed on
whether or not drugs penetrate through the skin using dif-
ferent formulations containing chemicals and/or particu-
late materials as a vehicle. The main types of particulate
materials commonly used are: liposomes; solid poorly
soluble materials such as TiO2 and polymer particulates
and submicron emulsion particles such as solid lipid nan-
oparticles. The penetration of these particulate carriers has
not been studied in detail.

TiO2 particles are often used in sunscreens to absorb UV
light and therefore to protect skin against sunburn or
genetic damage. It has been reported by Lademann et al in
[82] that micrometer-sized particles of TiO2 get through
the human stratum corneum and even into some hair fol-
licles – including their deeper parts. However, the authors
did not interpret this observation as penetration into liv-
ing layers of the skin, since this part of the follicular chan-
nel (the acroinfundibulum) is covered with a horny layer
barrier too [82]. A different interpretation has been sug-
gested in a recent review by Kreilgaard [83], who argued
that "very small titanium dioxide particles (e. g. 5–20 nm)
penetrate into the skin and can interact with the immune
system". Tinkle et al [84] demonstrated that 0.5- and 1.0
micron particles, in conjunction with motion, penetrate
the stratum corneum of human skin and reach the epider-
mis and, occasionally, the dermis. The authors hypothe-
sised that the lipid layers within the cells of the stratum
corneum form a pathway by which the particles can move
[85] into the skin and be phagocytized by the Langerhans
cells. In this study the penetration of particles is limited to
particle diameter of 1 micron or less. Nevertheless, other
studies reported penetration through the skin using parti-
cles with diameters of 3–8 micron [86,87,82] but only
limited penetration was found often clustered at the hair
follicle (see above).

Penetration of non-metallic solid materials such as biode-
gradable poly(D,L-lactic-co-glycolic acid (PLGA) micro-
particles, 1 to 10 micron with a mean diameter of 4.61 ±
0.8 micron was studied after application on to porcine
skin. The number of microparticles in the skin decreased
with the depth (measured from the airside towards the
subcutaneous layer). At 120 micron depth (where viable
dermis present) a relatively high number of particles was

found, at 400 micron (dermis) some micro-particles were
still seen. At a depth of 500 micron no microparticles were
found [88]. In the skin of individuals, who had an
impaired lymphatic drainage of the lower legs, soil micro-
particles, frequently 0.4–0.5 micron but as larger particles
of 25 micron diameter, were found in the in the dermis of
the foot in a patient with endemic elephantiasis. The par-
ticles are seen to be in the phagosomes of macrophages or
in the cytoplasm of other cells. The failure to conduct
lymph to the node produces a permanent deposit of silica
in the dermal tissues (a parallel is drawn with similar
deposits in the lung in pneumoconiosis). This indicates
that soil particles penetrate through (damaged) skin, most
probably in every individual, and normally are removed
via the lymphatic system [89,90]. Liposomes penetrate
the skin in a size dependent manner. Micro-sized, and
even submicron sized, liposomes do not easily penetrate
into the viable epidermis, while liposomes with an aver-
age diameter of 272 nm can reach into the viable epider-
mis and some are found in the dermis. Smaller sized
liposomes of 116 and 71 nm were found in higher con-
centration in the dermis.

Emzaloid™ particles, a type of submicron emulsion parti-
cle such as liposomes and nonionic surfactant vesicles
(niosomes), with a diameter of 50 nm to 1 micron, were
detected in the epidermis in association with the cell
membranes after application to human skin [91]. The
authors suggested that single molecules, which make up
the particles, may penetrate the intercellular spaces and, at
certain regions in the stratum corneum, are able to accu-
mulate and reform into micro spheres. In a subsequent
experiment, it was shown that the used formulation
allowed penetration of the spheres into melanoma cells,
even to the nucleus [92].

A recent review by Hostynek [93] stated that the uptake of
metals through the skin is complex, because of both exog-
enous factors (e.g. dose, vehicle, protein reactivity,
valence) and endogenous factors (e.g. age of skin, ana-
tomical site, homeostatic control). Attempts to define
rules governing skin penetration to give predictive quanti-
tative structure-diffusion relationships for metallic ele-
ments for risk assessment purposes have been
unsuccessful, and penetration of the skin still needs to be
determined separately for each metal species, either by in
vitro or in vivo assays.

Only limited literature on nanoparticles penetrating the
skin is available, but some conclusions can already be
drawn. Firstly, penetration of the skin barrier is size
dependent, nano-sized particles are more likely to enter
more deeply into the skin than larger ones. Secondly, dif-
ferent types of particles are found in the deeper layers of
the skin and at present it is impossible to predict the
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behaviour of a particle in the skin. And finally, materials,
which can dissolve or leach from a particle (e.g. metals),
or break into smaller parts (e.g. Emzaloid™ particles), can
possibly penetrate the skin. We did not find any direct
indication that particles, that had penetrated the skin, also
entered the systemic circulation. The observation that par-
ticles in the skin can be phagositized by macrophages,
Langerhans cells or other cells is a possible road towards
skin sensitisation. Tinkle et al [84] have shown that topi-
cal application of beryllium, to C3H mice, generated
beryllium-specific sensitisation. These data are consistent
with the development of a hapten-specific, cell-mediated
immune response.

5.1 Mechanical irritation of skin
Glass fibres and Rockwool fibres are widely distributed
man-made mineral fibres because of their multiple appli-
cations, mainly as insulation materials, which have
become important for replacing asbestos fibres. In contact
with the skin, these fibres can induce dermatitis through
the mechanical irritation. Why these fibres are such strong
irritant has not been examined in detail. In occlusion irri-
tant patch tests in humans it was found that Rockwool
fibres with a diameter of 4.20 ± 1.96 micron were more
irritating than those with a mean diameter of 3.20 ± 1.50
micron. The fact that "small" fibres can cause strong skin
irritation has been known for a long time, e.g. itching
powder. It is also commonly accepted that some types of
man made fibres can easily induce non-allergic dermatitis.
Although this is common knowledge, it is not clear what
makes these fibres irritants. In search for reports on skin
irritation caused by fibres with a diameter of < 100 nm no
information could be found, indicating that more
research is needed.

6. Body distribution and systemic effects of 
particulates
The body distribution of particles is strongly dependent
on their surface characteristics. For example, coating
poly(methyl methacrylate) nanoparticles with different
types and concentrations of surfactants significantly
changes their body distribution [116]. Coating these nan-
oparticles with ≥ 0.1 % poloxamine 908 reduces their liver
concentration significantly (from 75 to 13 % of total
amount of particles administrated) 30 min after intrave-
nous injection. Another surfactant, polysorbate 80, was
effective above 0.5%. A different report [94] shows that
modification of the nanoparticle surface with a cationic
compound, didodecyldimethylammonium bromide
(DMAB), facilitates the arterial uptake 7–10-fold. The
authors noted that the DMAB surface modified nanopar-
ticles had a zeta potential of +22.1 +/- 3.2 mV (mean +/-
sem, n = 5) which is significant different from the original
nanoparticles which had a zeta potential of -27.8 +/- 0.5
mV (mean +/- sem, n = 5). The mechanism for the altered

biological behaviour is rather unclear, but surface modifi-
cations have potential applications for intra-arterial drug
delivery.

Oral uptake (gavage) of polystyrene spheres of different
sizes (50 nm to 3 micron) in female Sprague Dawley rats
(for 10 days at a dose of 1.25 mg/kg/day) resulted in sys-
temic distribution of the nanoparticles. About 7% (50
nm) and 4% (100 nm), was found in the liver, spleen,
blood and bone marrow. Particles larger than 100 nm did
not reach the bone marrow and those larger than 300 nm
were absent from blood. No particles were detected in
heart or lung tissue [75].

Irrespective of the uptake route, the body distribution of
particles, is most dependent on the surface characteristics
and the size of the particles. It is an important issue in
drug-design in order to help to deliver medication to the
right target. In unintentional uptake of nanoparticles
these characteristics can strongly influence the accumula-
tion of a specific type of particle in the particular body site.

6.1 Nanoparticles, thrombosis and lung inflammation
Epidemiological studies have reported a close association
between particulate air pollution and cardiovascular
adverse effects such as myocardial infarction [95]. The lat-
ter results from rupture of an atherosclerotic plaque in the
coronary artery, followed by rapid thrombus growth
caused by exposure of highly reactive subendothelial
structures to circulating blood, thus leading to additional
or complete obstruction of the blood vessel. Nemmar et al
[96] studied the possible effects of particles on haemosta-
sis, focusing on thrombus formation as a relevant end-
point. Polystyrene particles of 60 nm diameter (surface
modifications: neutral, negative or positive charged) have
a direct effect on haemostasis by the intravenous injec-
tion. Positively charged amine-particles led to a marked
increase in prothrombotic tendency, resulting from plate-
let activation. A similar effect could be obtained after the
intratracheal administration of these positively charged
polystyrene particles, which also caused lung inflamma-
tion [97]. It is important to indicate that the pulmonary
instillation of larger (400 nm) positive particles caused a
definite pulmonary inflammation (of similar intensity to
60 nm particles), but they did not lead to a peripheral
thrombosis within the first hour of exposure. This lack of
effect of the larger particles on thrombosis, despite their
marked effect on pulmonary inflammation, suggests that
pulmonary inflammation by itself was insufficient to
influence peripheral thrombosis. Consequently, the effect
found with the smaller, ultrafine particles is most
probably due, at least in part, to their systemic transloca-
tion from the lung into the blood.
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Pollutant particles such as diesel exhaust particles (DEP),
may cause a marked pulmonary inflammation within an
hour after their deposition in the lungs. Moreover, intrat-
racheal instillation of DEP promotes femoral venous and
arterial thrombosis in a dose-dependent manner, already
starting at a dose of 5 µg per hamster (appr. 50 µg/kg).
Subsequent experiments showed that prothrombotic
effects persisted at 6 h and 24 h after instillation (50 µg/
animal) and confirmed that peripheral thrombosis and
pulmonary inflammation are not always associated [97].
Solid inhaled particles are a risk for those who suffer from
cardiovascular disease. Experimental data indicate that
many inhaled particles can affect cardiovascular parame-
ters, via pulmonary inflammation. Nano-sized particles,
after passage in the circulation, can also play a direct role
in e.g. thrombogenisis.

Epidemiologic studies have provided valuable informa-
tion on the adverse health effects of particulate air pollu-
tion in the community, indicating that nanoparticles act
as an important environmental risk factor for cardiopul-
monary mortality. Particle-induced pulmonary and sys-
temic inflammation, accelerated atherosclerosis, and
altered cardiac autonomic function may be part of the
patho-physiological pathways, linking particulate air pol-
lution with cardiovascular mortality. Also, it has been
shown that particles deposited in the alveoli lead to acti-
vation of cytokine production by alveolar macrophages
and epithelial cells and to recruitment of inflammatory
cells. An increase in plasma viscosity, fibrinogen and C-
reactive protein has been observed in samples of ran-
domly selected healthy adults in association with particu-
late air pollution [95,98,99].

6.2 Nanoparticles and cellular uptake
A number of reports on cellular uptake of micro- and
nano- sized particles has been published. Reports on par-
ticle uptake by endothelial cells [100,101], pulmonary
epithelium [102,79,103,59], intestinal epithelium
[51,79] alveolar macrophages [104-107,57], other macro-
phages [89,108,76,109], nerve cells [110] and other
cells[111] are available. This is an expected phenomenon
for phagocytic cells (macrophages) and cells that function
as a barrier and/or transport for (large) compounds.
Except for macrophages, the health effects of cellular
uptake of nanoparticles have not been studied in depth.

6.3 Nanoparticles and the blood-brain barrier
One of the promising alleys of nanotechnology is organ-
or cell- specific drug delivery mediated by nanoparticles
[112-114]. It is expected that transport of nanoparticles
across the blood-brain barrier (BBB) is possible by either
passive diffusion or by carrier-mediated endocytosis.
Coating of particles with polysorbates (e.g. polysorbate-
80) results in anchoring of apolipoprotein E (apo E) or

other blood components. Surface modified particles seem
to mimic LDL particles and can interact with the LDL
receptor leading to uptake by endothelial cells. Hereafter,
the drug (which was loaded in the particle) may be
released in these cells and diffuse into the brain interior or
the particles may be trans-cytosed.

Also, other processes such as tight junction modulation or
P-glycoprotein (Pgp) inhibition also may occur [115].
Oberdörster et al 2002 reported the translocation of
inhaled nanoparticles via the olfactory nerves [56]. Drug
delivery systems crossing the BBB are certainly welcome,
but this also implicates that unintended passage through
the BBB is possible; therefore good safety evaluations are
needed.

6.4. Nanoparticles and oxidative stress
It has been shown that nanoparticles, that enter the liver,
can induce oxidative stress locally. A single (one day; 20
and 100 mg/kg) and repeated (14 days) intravenous
administration of poly-isobutyl cyanoacrylate (PIBCA, a
biodegradable particle) or polystyrene (PS, not biode-
gradable) nanoparticles induced a depletion of reduced
glutathione (GSH) and oxidised glutathione (GSSG) lev-
els in the liver, as well as inhibition of superoxide dis-
mutase (SOD) activity and a slight increase in catalase
activity. The nanoparticles did not distribute in the hepa-
tocytes, implicating that the oxidative species most prob-
ably were produced by activated hepatic macrophages,
after nanoparticle phagocytosis.

Uptake of polymeric nanoparticles by Kupffer cells in the
liver induces modifications in hepatocyte antioxidant sys-
tems, probably due to the production of radical oxygen
species [108]. We have discussed above that nano-sized
particles in the lung can induce, via the pulmonary
inflammatory response as well as via spontaneously sur-
face related reactions, oxidative stress. Besides pulmonary
studies, not many have studied particle-induced oxidative
stress in tissues. However, the authors [108] reported that
the depletion in glutathione was not sufficient enough to
initiate significant hepatocytic damage (no lipid peroxida-
tion). It needs to be stressed that long-term studies are
needed to prove the safe use of these nanoparticles
because chronic depletion of the anti-oxidant defence can
lead to severe health problems.

7. Differences in conditions between the lung 
and intestinal tract
Although the contact with nanomaterials in the lungs and
intestinal tract shows many similarities important differ-
ences between inhalation and ingestion of nanomaterials
exist from the toxicological point of view. In the intestinal
tract a complex mix of compounds – such as secreted
enzymes, ingested food, bacteria of the gut flora, etc – is
Page 11 of 15
(page number not for citation purposes)



Journal of Nanobiotechnology 2004, 2:12 http://www.jnanobiotechnology.com/content/2/1/12
present, which can interact with the ingested nanomate-
rial. Non-specific interaction often reduces the toxicity of
the ingested material. It has been described that in vitro
particles are less cytotoxic when dosed in a medium with
high protein content. In the lungs, mucus or surfactant is
present, in which antioxidants are present, but these can
be easily neutralised when a high number of oxidative
compounds is inhaled.

The transit through the intestinal tract is a relatively fast
process, the continuous decay and renewal of the epithe-
lium makes sure that nanomaterials will not remain long
in the intestinal tract. The presence of solid material in the
lumen of the intestines will not automatically induce an
inflammatory response. Inhaled materials < 10 micron
and > 5 micron will not enter the alveolar spaces of the
lungs, and therefore these will be cleared easily in healthy
persons via the muco-ciliary escalator. Particles that are
smaller than 5 micron will deposit in the alveolar space
via Brownian movement. In the alveoli, water insoluble
materials can only be removed via phagocytosis by mac-
rophages or other cells, or via transportation through the
epithelium to the interstitium or systemic circulation.
These processes are often accompanied by the onset of
(persistent) inflammation. The particles themselves can –
depending on the physical-chemical characteristics of the
material – remain for a long period in the alveoli.

In the intestinal tract, the ingested materials are stressed
from acidic (stomach) to basic conditions. The shift in pH
markedly changes the solubility and the ionic state of the
material via changing the surface characteristics. In the
lungs, the milieu of the lumen is more constant.

8. Conclusions
Particles in the nano-size range can certainly enter the
human body via the lungs and the intestines; penetration
via the skin is less evident. It is possible that some particles
can penetrate deep into the dermis. The chances of pene-
tration depend on the size and surface properties of the
particles and also on the point of contact in the lung,
intestines or skin. After the penetration, the distribution
of the particles in the body is a strong function of the sur-
face characteristics of the particles. A critical size might
exist beyond which the movement of the nanoparticles in
parts of the body is restricted. The pharmaco-kinetic
behaviour of different types of nanoparticles requires
detailed investigation and a database of health risks asso-
ciated with different nanoparticles (e.g. target organs, tis-
sue or cells) should be created. The presence of the
contaminates, such as metal catalysts present in nano-
tubes, and their role in the observed health effects should
be considered along with the health effect of the
nanomaterials.

The increased risk of cardiopulmonary diseases requires
specific measures to be taken for every newly produced
nanoparticle. There is no universal "nanoparticle" to fit all
the cases, each nanomaterial should be treated individu-
ally when health risks are expected. The tests currently
used to test the safety of materials should be applicable to
identify hazardous nanoparticles. Proven otherwise, it
would be a challenge for industry, legislators and risk
assessors to construct a set of high throughput and low
cost tests for nanoparticles without reducing the efficiency
and reliability of the risk assessment. Nanoparticles
designed for drug delivery or as food components need
special attention.
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