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A xonotlite nanofiber bioactive 3D-printed 
hydrogel scaffold based on osteo-/angiogenesis 
and osteoimmune microenvironment 
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Abstract 

Background Coordination between osteo‑/angiogenesis and the osteoimmune microenvironment is essential 
for effective bone repair with biomaterials. As a highly personalized and precise biomaterial suitable for repairing 
complex bone defects in clinical practice, it is essential to endow 3D‑printed scaffold the above key capabilities.

Results Herein, by introducing xonotlite nanofiber  (Ca6(Si6O17) (OH)2, CS) into the 3D‑printed silk fibroin/gelatin 
basal scaffold, a novel bone repair system named SGC was fabricated. It was noted that the incorporation of CS could 
greatly enhance the chemical and mechanical properties of the scaffold to match the needs of bone regeneration. 
Besides, benefiting from the addition of CS, SGC scaffolds could accelerate osteo‑/angiogenic differentiation of bone 
mesenchymal stem cells (BMSCs) and meanwhile reprogram macrophages to establish a favorable osteoimmune 
microenvironment. In vivo experiments further demonstrated that SGC scaffolds could efficiently stimulate bone 
repair and create a regeneration‑friendly osteoimmune microenvironment. Mechanistically, we discovered that SGC 
scaffolds may achieve immune reprogramming in macrophages through a decrease in the expression of Smad6 
and Smad7, both of which participate in the transforming growth factor‑β (TGF‑β) signaling pathway.

Conclusion Overall, this study demonstrated the clinical potential of the SGC scaffold due to its favorable pro‑
osteo‑/angiogenic and osteoimmunomodulatory properties. In addition, it is a promising strategy to develop novel 
bone repair biomaterials by taking osteoinduction and osteoimmune microenvironment remodeling functions 
into account.
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Graphical Abstract

Introduction
Clinical intervention is needed to repair large bone 
defects resulting from high-energy trauma, bone tumor 
removal, and osteomyelitis debridement [1–3]. Despite 
traditional treatments such as autobone transplantation 
(the golden standard) and heterogeneous transplantation 
are widely applied in clinical at present, it could cause 
plenty of risks during and after the surgery [4]. Therefore, 
there is an urgent need for the development of biomateri-
als for better clinical treatment of bone defect.

In recent years, 3D printing technology has been 
widely adopted to produce printed biomaterials for bone 
repair due to its advantages of controllability, precision 
and personalization [5, 6]. In which, 3D-printed hydro-
gels have attracted much attention in the field of bone 
regeneration, considering their 3D network similar to 
the extracellular matrix (ECM) [7]. Like most biomate-
rial implants, printed hydrogels trigger a host immune 
response that either benefits or hinders bone regenera-
tion process [8–11]. Therefore, besides their pro-osteo-/
angiogenic effects on BMSCs, novel printed hydrogels 
should also be evaluated for their "osteoimmunomodula-
tion" ability, that is, whether they can regulate the local 
immune response to form an optimal osteoimmune 
microenvironment conducive to bone regeneration. In 
addition, the number of endogenous BMSCs present at 
the injury site is frequently inadequate, thereby reduc-
ing the effectiveness of the osteo-/angiogenic capabilities 

of the printed hydrogels. Thus, optimal printed hydro-
gels preferably include the ability to recruit endogenous 
BMSCs [12, 13].

Macrophages, a key player in the immunological 
response caused by foreign implants, are classified into 
two classical subtypes of M1 and M2 phenotypes [14]. 
The phenotype reprogramming of macrophages not only 
regulates local inflammatory response, but also remodels 
the osteoimmune microenvironment to further influ-
ence the osteo-/angiogenic differentiation of BMSCs [15]. 
As is known to all, the pro-inflammatory M1 phenotype 
could activate inflammation, promote fibrotic encap-
sulation, and construct a harmful osteoimmune micro-
environment, ultimately leading to implant failure and 
poor bone regeneration, whereas the M2 phenotype has 
the opposite effects [16–18]. Therefore, reprogramming 
macrophages to inhibit M1 polarization and promote 
M2 polarization as well as remodeling the osteoimmune 
microenvironment might be of great importance for 
printed hydrogel employed in bone regeneration.

Currently, the hydrogels commonly used for 3D print-
ing, such as silk fibroin (SF) and gelatin, have been 
reported to have limited capabilities for bone regenera-
tion including osteo-/angiogenesis and immune regula-
tion, while their combination has attractive mechanical 
strength and controllable degradation rate [12, 19–21]. 
CS, as a fibrous or needle-like inorganic material, could 
induce osteo-/angiogenic differentiation of BMSCs by 
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continuously releasing  Ca2+ and  Si4+ bioactive ions, 
which were contributed to promoting bone regeneration 
and vessel formation [1, 22–24]. In addition, research 
have shown that CS also could reprogram macrophages 
toward M2 phenotype [25]. As a result of the findings 
presented above, we hypothesized that incorporat-
ing CS into the base ink (SF and gelatin) would produce 
3D-printed scaffolds that combine the advantageous 
properties of these materials, which may be favorable for 
treating bone defect.

Inspired by above biological knowledge, a 3D-printed 
composite hydrogel scaffold incorporated with CS was 
fabricated to achieve vascularized bone regeneration 
in situ. First, we synthesized CS by hydrothermal method 
and then added it to the base ink (SF and gelatin). There-
after, based on 3D printing technology, the composite 
ink was extruded and then cross-linked with genipin 
and ethanol to obtain the 3D-printed composite porous 
hydrogel scaffold. Benefiting from the addition of CS, the 
SGC scaffold as a novel bone repair system has the fol-
lowing advantages: (1) the SGC scaffold possessed sat-
isfactory chemical and mechanical properties for bone 
repair purposes; (2) the SGC scaffold could stimulate 
the osteo-/angiogenesis of BMSCs and reprogram mac-
rophages towards M2 phenotype; (3) the SGC scaffold 
could strength the recruitment and osteo-/angiogenesis 
of BMSCs via remodeling osteoimmune microenviron-
ment. To sum up, the above work not only proposed a 
novel bone repair scaffold called SGC, which could effec-
tively achieve bone regeneration in  situ, but also high-
lighted the need to consider the coordination of osteo-/
angiogenesis and osteoimmune microenvironment dur-
ing the design of biomaterials.

Results and discussion
Characterization of CS nanowires
From Additional file  1: Fig. S1A, the X-ray diffraction 
(XRD) spectra showed that the obtained powders had 
the characteristic peaks of xonotlite (JCPDS card: No. 
23-0125). The transmission electron microscope (TEM) 
images (Additional file  1: Fig. S1B) further confirmed 
that the synthesized powders had smooth surface and the 
shape of ultra-long wire as reported before [1, 26].

Rheological evaluation
To determine the optimal amount of CS addition, three 
SGC scaffolds with varying concentration gradients 
were prepared based on SF/gelatin (SG) scaffold for 
subsequent experiments, referred to as  SGCL (w/w/w, 
CS:SF:gelatin = 6.25:100:100) scaffold,  SGCM (w/w/w, 
CS:SF:gelatin = 12.5:100:100) scaffold and  SGCH (w/w/w, 
CS:SF:gelatin = 25:100:100) scaffold. Prior to printing, we 
examined the printability and rheological properties of 

the four inks (Additional file  1: Fig. S1C). The viscosity 
of these ink all showed shear thinning behavior at 25℃, 
which afforded their extrudable property and good print-
ability as suitable 3D-printing ink [27]. The obtained ink 
was utilized to further prepare the xonotlite nanofiber 
bioactive 3D-printed hydrogel scaffold, as illustrated in 
Fig. 1A.

Characterization of the 3D‑printed scaffolds
Microscopic morphology
Macroscopic photographs and scanning electron micros-
copy (SEM) micrographs revealed that all four scaffolds 
exhibited a rough surface morphology with an average 
pore size of approximately 600 μm. This pore size facili-
tates bone ingrowth and vascularization [28–31].

The element mapping showed that Ca and Si (rep-
resenting CS) were uniformly distributed in the SGC 
scaffolds, indicating the successful incorporation of CS. 
Additionally, quantitative analysis of energy disper-
sive spectrometer (EDS) spectra showed that the peak 
intensities of the Ca and Si components were directly 
proportional to the quantity of CS present in the scaf-
folds, reinforcing the success of the CS blending process 
(Fig. 1B).

Fourier‑transform infrared spectroscopy (FTIR)
The dominant crystalline structures of SF can be divided 
into two types: (i) the type Silk I molecular chains are 
formed from an alternate accumulation of the α-helix 
and the β-parallel fold conformation; (ii) the type Silk II 
molecular chains are layered structures of the anti-paral-
lel β-sheet, which favors structural stabilization [21, 32]. 
Thus, transforming random coil or helical conformation 
into β-sheet structure favors the structural stability of SF 
products. As shown in Fig.  1C, the scaffolds displayed 
intense absorption peaks around 1632  cm−1, 1530  cm−1, 
and 1235  cm−1, which characterized the Silk II structure. 
Consistent with previous reports, genipin and CS signifi-
cantly contributed to the formation of β-sheet structure 
in SF [23, 33]. Additionally, the broad peak from 1000 to 
1100   cm−1 corresponded to the Si–O stretch and was a 
characteristic peak of CS, which strengthened in propor-
tion to the CS content [34].

XRD
XRD spectra (Fig.  1D) showed that CS had diffraction 
peaks around 2θ = 26°, 27°, 29° and 33°. As the CS content 
increased, these peaks became more prominent, indicat-
ing that more CS was incorporated into our 3D-printed 
scaffolds. These results were consistent with the EDS and 
FTIR spectra above.
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Fig. 1 Characteristic of the 3D‑printed scaffolds. A Schematic illustration of the manufacturing process of the xonotlite nanofiber bioactive 
3D‑printed hydrogel scaffold. B Macroscopic photographs, SEM images, element mapping and EDS of four scaffolds. C FTIR spectra, D XRD (black 
diamond marks the specific peaks of CS), E swelling ratio, F water absorption, G porosity, H stress–strain curve, I compressive modulus and J 
degradation ratio of SG,  SGCL,  SGCM and  SGCH samples. *P < 0.05, **P < 0.01 or.***P < 0.001



Page 5 of 17Yang et al. Journal of Nanobiotechnology           (2024) 22:59  

Swelling ratio, water absorption and porosity
Figure  1E, F presented the swelling ratios and water 
absorption of 3D-printed scaffolds. Compared with 
the SG group, the addition of CS reduced the swell-
ing ratio and water absorption of the hydrogel scaffolds. 
This reduction may be due to the incorporation of the 
low-swelling material (CS) into the SF and gelatin net-
work. However, even with the addition of CS, the swell-
ing ratio and water absorption of the scaffolds were still 
high enough to ensure infiltration of cells and transport 
of nutrients [35].

The porosity of the composite scaffolds with or without 
CS had no significant differences and was all higher than 
65% (Fig. 1G). This level of porosity was high enough to 
allow for the exchange of multiple nutrients required 
for bone formation [36]. Therefore, the porosity of these 
scaffolds prepared in this study was appropriate for bone 
regeneration.

Mechanical properties
As illustrated in Fig.  1H–I, the stress–strain curve and 
the compression modulus of scaffolds under compres-
sive process were analyzed. Compared to SG scaf-
folds (3.377 ± 0.6536  kPa), the compressive modulus 
of the scaffolds increased from 14.78 ± 0.6108  kPa to 
57.09 ± 5.556  kPa with the increase of CS content from 
the  SGCL group to the  SGCH group, while there were 
no significant differences between the  SGCL group and 
the  SGCM group. Previous studies have shown that 
mesenchymal stem cells (MSCs) tend to differentiate 
towards osteogenic lineage in a microenvironment with 
11–30  kPa stiffness [37]. Therefore, the compressive 
modulus of the  SGCL group and the  SGCM group were 
14.78 ± 0.6108  kPa and 18.2 ± 2.339  kPa, respectively, 
which were suitable for the osteogenic differentiation of 
MSCs.

Weight loss
Figure  1J and Additional file  1: Fig. S2 illustrated the 
weight loss of the scaffolds after immersion in simulated 
body fluid (SBF) for 21 days. We could observe that there 
was no noteworthy variation in the rate of deterioration 
among the four groups during the initial 7 days. By day 
14, the degradation rate of the SG group accelerated, 
while the  SGCM group exhibited the slowest degradation 
among the four groups. By the 21st day, the SG group 
continued to display the quickest degradation rate, and 
there were notable variations in the degradation rates 
among the three CS-added scaffolds. Specifically, the 
 SGCL group exhibited faster degradation rate compared 
to the  SGCH group, while the  SGCM group exhibited the 
slowest degradation rate, probably due to its appropriate 
powder-to-liquid ratio. In addition, we also performed 

SEM examination on the samples after 7 days of immer-
sion and found that none of the four groups had signifi-
cant collapse in their general morphology, as shown in 
Additional file  1: Fig. S3. Meanwhile, we could clearly 
see that the surface of the SG group became the most 
porous, followed by the  SGCL and  SGCH groups, while 
the surface morphology of the  SGCM group did not 
change much, which was consistent with the subsequent 
degradation ratio of the SG and  SGCM groups (which are 
the fastest and slowest among the four groups).

It is well known that bone repair takes a long time, so 
biomaterials applied in this field need a suitable degra-
dation ratio to match the rate of bone regeneration [38]. 
Hence, the addition of CS enabled the 3D-printed hydro-
gel scaffold to degrade at a rate more similar to bone 
regeneration, which may enhance the healing process.

In vitro biomineralization
Currently, the hydroxyapatite (HA) deposition rate on 
the surfaces of samples soaked in SBF is considered a 
valid in vitro method for assessing the biomineralization 
capacity of biomaterials [39]. Following a 7-day immer-
sion of the scaffolds in SBF, HA precipitation was noted 
on all groups’ surfaces, except for the SG group. It is 
worth noting that the apatite spherulites deposition was 
promoted by the increase in CS content. The EDS spec-
tra indicated Ca/P ratios of approximately 5.60, 2.16, and 
1.76 in the  SGCL,  SGCM, and  SGCH groups, respectively 
(Additional file  1: Fig. S4). These results demonstrated 
that elevated CS content resulted in improved HA depo-
sition, as confirmed by SEM photographs. As previously 
reported, the presence of CS may be able to encouraged 
the deposition of HA due to its interaction with SBF [40, 
41].

Cell viability and adhesion
Prior to determining the efficacy of using scaffolds for 
bone repair, it was necessary to confirm their impact on 
cell viability. To evaluate hydrogel cell viability, we uti-
lized two previously reported cell-hydrogel co-culture 
models- ”co-culture on” and “co-culture with” hydrogels 
[42]. Cell viability was assessed using the calcein-AM/
propidium iodide (PI) double staining kit and cell count-
ing kit-8 (CCK-8). The results indicated that there was no 
significant decrease in cell viability for either BMSCs or 
macrophages after 1 day of incubation. However, on days 
4 and 7 of BMSCs culture and day 3 of macrophage cul-
ture, the  SGCH group resulted in inhibited cell viability, 
while the other groups exhibited excellent biocompat-
ibility for BMSCs and macrophages at these time periods 
(Fig. 2A–J).

Cell adhesion has been found to play a crucial role 
in the differentiation of MSCs, while a spreading 
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morphology has been observed to facilitate osteo-
genesis [43, 44]. Confocal laser scanning microscope 
(CLSM) demonstrated that BMSCs co-cultured on scaf-
folds extended polygon shape with obvious pseudopodia 
on the SG,  SGCL and  SGCM groups after cultured for 4 
and 7 days. Nevertheless, the  SGCH group had a signifi-
cant inhibitory effect on cell spreading and proliferation 
of BMSCs (Additional file 1: Fig. S5A). Additionally, the 
trend observed in the F-actin/DAPI staining of BMSCs 
co-cultured with scaffolds was consistent with the results 
of the “co-culture on” method (Additional file  1: Fig. 
S5B,C). Based on the above findings, the  SGCH scaffold 
was excluded due to its obvious cytotoxicity on BMSCs 
and macrophages, and SG,  SGCL and  SGCM scaffolds 
were selected for further experiments.

BMSCs osteo‑/angiogenic differentiation
As vascularization plays a crucial role in the healing of 
bone defects, the assessment of biomaterials for bone 
repair should take into account not only their osteoin-
ductive function but also their pro-angiogenic func-
tion [45, 46]. To evaluate the above key indicators, we 
employed quantitative real-time polymerase chain reac-
tion (qRT-PCR) technology to examine the osteogenic 
genes such as bone morphogenetic protein-2 (BMP-2), 
collagen type-1 (COL-1), osteocalcin (OCN), osteopon-
tin (OPN), osteonectin and runt-related transcription 
factor-2 (RUNX-2), as well as angiogenic genes such 
as basic fibroblast growth factor (bFGF) and vascular 
endothelial growth factor (VEGF) of BMSCs.

The results presented in Fig. 3A–H demonstrated that 
BMSCs cultured with CS-containing scaffolds effec-
tively promoted their osteo-/angiogenic capacity in com-
parison to the SG group. The production of COL-1 (day 
10), osteonectin (day 7 and 10) and bFGF (day 10) was 
promoted by CS-containing groups, whereas no sig-
nificant differences were observed between the  SGCL 
and  SGCM groups. Additionally, the mRNA expression 
of RUNX-2 (day 10) did not differ significantly among 
the three groups. Apart from the genes mentioned at 
the corresponding time points above, the  SGCM group 
exhibited the strongest promotion of osteo-/angiogenic 
gene expression. CS has been shown to be efficacious in 
improving BMSCs osteo-/angiogenic differentiation by 
virtue of the bioactive ions it releases, which is consistent 

with our study [1]. In addition, we identified OPN expres-
sion of osteogenesis-related proteins by immunofluo-
rescence staining, and its trend was consistent with the 
previous results of gene expression (Additional file 1: Fig. 
S6A, B).

Macrophage reprogramming
Macrophages are among the initial cells to infiltrate the 
regions where bone defects have occurred, and their con-
tribution is essential for successful bone rejuvenation. 
Researches have demonstrated that the constant pres-
ence of M1phenotype macrophages prolonged the local 
pro-inflammatory microenvironment, leading to bioma-
terial implantation failure and impaired bone healing. In 
contrast, M2 phenotype macrophages promoted an anti-
inflammatory microenvironment that was conducive to 
osteo-/angiogenesis [47]. Therefore, the implanted bio-
materials that induce macrophage polarization towards 
M2 phenotype are essential for the local bone repair [48].

The qRT-PCR results presented in Fig.  3I–L demon-
strated that RAW264.7 macrophages underwent repro-
gramming after 1 or 3  days of culture when exposed to 
scaffolds with CS. The CS supplementation significantly 
reduced the expression of M1 phenotype macrophage 
markers (IL-1β and IL-6) compared to the SG group (day 
10), with the strongest inhibition in the  SGCM group. In 
addition, compared to the SG group, the  SGCL group 
containing a minimal amount of CS did not significantly 
affect the expression level of M2 macrophage markers, 
while the  SGCM group containing a higher amount of CS 
increased the expression level of M2 macrophage mark-
ers including IL-10 (day 1) and TGF-β (day 3) signifi-
cantly. These data suggested that CS incorporation not 
only effectively inhibited macrophages’ M1 polarization 
but also promoted their conversion to the M2 pheno-
type at a suitable addition level. The immunomodulatory 
function of CS may be due to the release of biologically 
active Si ions, as previously reported to have anti-inflam-
matory properties [25].

Taken together, the addition of CS provided excellent 
osteo-/angiogenic and immunomodulatory properties 
to the SG scaffold (Fig. 3M). And the optimal addition of 
CS was observed in the  SGCM group due to its promi-
nent ability to induce osteo-/angiogenesis and reprogram 

(See figure on next page.)
Fig. 2 Cell viability of the 3D‑printed scaffolds on BMSCs and macrophages. A, C Schematic illustration of the co‑culture models‑ "co‑culture 
on" hydrogels. B, D The Calcein‑AM/PI staining of BMSCs and macrophages co‑cultured on SG,  SGCL,  SGCM and  SGCH scaffolds. E, G Schematic 
illustration of the co‑culture models‑ "co‑culture with" hydrogels. F, H The Calcein‑AM/PI staining of BMSCs and macrophages co‑cultured with SG, 
 SGCL,  SGCM and  SGCH scaffolds. I CCK‑8 assay of BMSCs after cultured for 1, 4, and 7 days. J CCK‑8 assay of macrophages after cultured for 1 
and 3 days. *P < 0.05, **P < 0.01 or.***P < 0.001
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Fig. 2 (See legend on previous page.)
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macrophage towards M2 polarization. Thus, we selected 
the  SGCM group to conduct the follow-up study.

The influence of macrophage‑derived conditioned 
mediums (CMs) on the migration and the osteo‑/
angiogenic differentiation of BMSCs
Successful bone regeneration requires enough recruit-
ment and robust osteo-/angiogenic differentiation of 
BMSCs, which are not only regulated by the surface 
properties of the implant biomaterials but also by the 
surrounding osteoimmune microenvironment [49]. 

Therefore, we conducted further investigation into the 
effects of the  SGCM-influenced osteoimmune microen-
vironment on the regulation of in vitro recruitment and 
osteo-/angiogenic differentiation of BMSCs using mac-
rophage-derived CMs. Figure  4A depicted the prepara-
tion process and the specific grouping of the CMs.

Migration of BMSCs with CMs
Initially, it was necessary to determine whether the CMs 
had any adverse effects on the cell viability of BMSCs. On 
the 1st and 4th day, the cell viability showed no notable 

Fig. 3 The effect of the 3D‑printed scaffolds on BMSCs osteo‑/angiogenesis and macrophage reprogramming, A–H qRT‑PCR analysis in BMSCs 
of osteogenesis‑related genes (BMP‑2, COL‑1, OCN, OPN, Osteonectin and RUNX‑2) and angiogenesis‑related genes (bFGF and VEGF) after cultured 
for 4, 7, and 10 days. I–L qRT‑PCR analysis in macrophages of pro‑inflammatory genes (IL‑1β and IL‑6) and anti‑inflammatory genes (IL‑10 
and TGF‑β) after cultured for 1 and 3 days. M Schematic illustration of the effects of SGC scaffold on osteo‑/angiogenesis of BMSCs and polarization 
of macrophages. *P < 0.05, **P < 0.01 or.***P < 0.001
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differences among all groups. Moreover, on the 7th day, 
BMSCs co-cultured with CMs derived from macrophages 
exhibited a notable increase in comparison to the control, 
SG, and  SGCM groups, while there was no comparability 
among MΦ, MSG and  MSGCM groups (Fig.  4B). These 
data indicated that BMSCs survived well in all CMs’ 
groups.

Since host MSCs’ infiltration and recruitment to the 
impairment site are crucial factors for bone repair, we 
used the transwell assay and the scratch assay in vitro to 
assess BMSCs’ migratory ability [13]. According to the 
images from the transwell assay, the number of BMSCs 
that vertically migrated to the lower chambers signifi-
cantly increased in all groups except the control group 
(Fig.  4C). Moreover, quantitative analysis further indi-
cated that macrophage-derived CMs attracted more 
BMSCs to the lower surface than control, SG and  SGCM 
groups, while the number of BMSCs migrating to the 
lower chambers in the MSG and  MSGCM groups was 
∼1.6- and ∼2.4-fold higher than that in the MΦ group.

Figure  4E, F displayed the horizontal migratory 
ability of the cells in all groups. The  MSGCM group 

demonstrated the greatest efficiency in enhancing the 
horizontal migration of BMSCs, followed by the MSG 
group, and then the  SGCM and MΦ groups. Among 
them, there was no statistically significant difference 
between the  SGCM group and MΦ groups, both of which 
were stronger than the control and SG groups.

The above findings suggested that the incorporation 
of CS not only enhanced the direct pro-migration abil-
ity of BMSCs slightly more in the  SGCM group than 
in the SG group, but also indirectly contributed to 
an evident increased BMSCs’ recruitment ability via 
mediation of the macrophage-regulated osteoimmune 
microenvironment.

Osteo‑/angiogenic differentiation of BMSCs with CMs
The results of alkaline phosphatase (ALP) staining and 
ALP activity assay, conducted after 7 days of cultivation 
of BMSCs in various CMs, demonstrated that the groups 
cultured with macrophage-derived CMs had significantly 
higher ALP levels than other groups, while there was no 
notable difference between the MΦ, MSG and  MSGCM 
groups (Fig.  5A, B). Alizarin red S (ARS) staining was 

Fig. 4 The influence of CMs on the migration of BMSCs. A Schematic illustration of the preparation process and the specific grouping 
of the macrophage derived CMs. B Effect of CMs on viability of BMSCs. C, D The crystal violet staining and quantitative analysis of transwell assay 
for BMSCs cultured in CMs. E, F The wound healing assay and its quantitative assay for BMSCs cultured in CMs. *P < 0.05, **P < 0.01 or.***P < 0.001
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used to demonstrate the BMSCs’ mineralization capac-
ity on days 14 and 21 (Fig.  5C). Among all groups, the 
 MSGCM group presented the most demonstrable min-
eralization. Quantitative analysis of ARS staining fur-
ther indicated that the mineralization effect of  MSGCM 
group outperformed other groups in terms of promoting 
calcium deposition (Fig. 5D). To sum up,  MSGCM group 
possessed strongest capacity for promoting calcium 
deposition. In addition, qRT-PCR analysis showed that 
after 7 days of culture, BMSCs in the MSG and  MSGCM 
groups had stronger promotion of osteo-/angiogenic 
gene expression compared to BMSCs in other groups 
(Fig.  5E–G). In particular, the  MSGCM group resulted 
in higher expression of BMP-2 than the MSG group, 
although there was no significant difference in OPN and 
VEGF expression between the two groups. Western blot 
analysis further indicated that that  MSGCM group had 
the strongest effect on promoting the OPN and VEGF 
protein expression (Fig.  5H). Also, immunofluorescence 
staining and its quantitative results (Fig.  5I–L) showed 
that OPN and VEGF protein expression in the MΦ, 
MSG and  MSGCM groups was higher than those in other 
groups.

As known to all, macrophages were pivotal in bone 
repair by secreting multiple cytokines [50]. IL-10 and 
TGF-β secreted by M2 macrophages have been helpful in 
cell migration, bone reconstruction and vascularization 
[51, 52]. Furthermore, CS to some extent as a bio-ceramic 
could promote the attachment, proliferation and osteo-/
angiogenic differentiation of BMSCs [53]. Therefore, the 
upregulated migratory capability and osteo-/angiogenic 
differentiation capacity of BMSCs incubated in  MSGCM 
may be related to the increased expression of IL-10 and 
TGF-β as well as the release of Ca and Si ions of CS.

In vivo study
The above in  vitro studies have demonstrated that the 
 SGCM group could directly promote BMSCs’ osteo-/
angiogenesis and reprogram macrophages towards 
M2 polarization, as well as also indirectly drive remod-
eling of the optimal osteoimmune microenvironment to 
stimulate bone regeneration. These positive results have 
inspired us to conduct further research on their capacity 
to trigger bone formation and restructure the osteoim-
mune microenvironment in vivo.

Micro‑CT analysis
The bone repair capability of 3D-printed scaffolds was 
evaluated through implantation in the rabbit calva-
rial defect model as depicted in Fig.  6A. The Micro-CT 
3D-reconstructed models of the calvarial defects illus-
trated that the  SGCM group had the strongest ability for 
new bone formation among the three groups (Fig.  6B). 
Moreover, the result of bone volume/total volume ratio 
(BV/TV) value analysis was consistent with the result 
shown in Fig. 6C.

Sequential fluorescent labeling
Figure  6D, E displayed sequential fluorescence labeling 
images and their quantitative analysis at week 4 (Tetra-
cycline hydrochloride (TE), yellow), 8 (alizarin red (AL), 
red), and 12 (calcitonin (CA), green) post-modeling. New 
bone formation mainly took place during the late stage in 
all three groups, with little to no occurrence during the 
early stage. The  SGCM group showed the highest fluo-
rescence regions of AL and CA among the three groups, 
whereas the TE fluorescence region did not show any 
significant difference among three groups. The above 
results suggested that the  SGCM group with added CS 
had a more effective ability to promote new bone forma-
tion in  vivo compared to the SG group, and its efficacy 
primarily took place during the middle and late stages of 
osteogenesis.

Van gieson (VG) staining and masson’s trichrome staining
Figure 6F, G demonstrated that the  SGCM group exhib-
ited a significant increase in the area of newly formed 
bone in comparison to the blank and SG group. Analy-
sis of the VG staining and masson’s trichrome staining 
results of undecalcified samples indicated consistent 
results with the those of Micro-CT analysis and sequen-
tial fluorescent labeling.

Haematoxylin and eosin (H & E) staining
Tissue specimens were decalcified and sectioned for H&E 
staining at 16  weeks postoperatively. The H&E images 
revealed small areas of new bone formation and neovas-
cularization at the edge of the defect in the blank group, 
causing the overlying fibrous tissue to collapse into the 
defect. Furthermore, bone regeneration was stronger 
in both the SG and  SGCM groups when compared to 

Fig. 5 The influence of CMs on the osteo‑/angiogenic differentiation of BMSCs. A, B The ALP staining images and its quantitative assay of BMSCs 
cultured on CMs for 7 days. C, D The ARS staining and its quantitative assay of BMSCs cultured on CMs for 14 and 21 days. E–G qRT‑PCR analysis 
of BMP‑2, OPN and VEGF mRNA expression in BMSCs cultured on CMs for 7 days. H The western blot of the OPN and VEGF e protein expression 
in BMSCs cultured on CMs for 7 days. I–L The immunofluorescence staining and quantitative assay of the OPN and VEGF protein in BMSCs cultured 
on CMs for 14 days. *P < 0.05, **P < 0.01 or.***P < 0.001

(See figure on next page.)
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Fig. 5 (See legend on previous page.)
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the blank group, suggesting that the transplantation of 
biomaterials promoted tissue reparation. Of the three 
groups, the  SGCM group presented the richest structures 
of bone trabeculae and capillaries (Fig. 6I).

Immunohistochemical staining
Immunohistochemical staining and its semi-quantitative 
analysis of decalcified skulls for the inflammatory marker 
(IL-1β), anti-inflammatory marker (TGF-β), osteogenic 
marker (OPN) and angiogenic marker (VEGF) were used 

to investigate the in vivo situation regarding osteo-/angi-
ogenesis and macrophage polarization (Fig.  7A–E). The 
 SGCM group induced higher productions of TGF-β, OPN 
and VEGF than SG group, while these productions were 
weakest in the blank group (Fig. 7A, C–E). However, the 
expression level of IL-1β was notably downregulated in 
the  SGCM group (Fig. 7A, B).

In recent years, growing evidence showed that suit-
able biomaterials contributing to bone regeneration 
should not only aid in bone repair, but also modulate 

Fig. 6 In vivo evaluation of the 3D‑printed scaffolds on vascularized bone regeneration. A Schematic illustration of the surgery procedure. B 
Micro‑CT 3D‑reconstructed images of the calvarial defects. C Measurement of BV/TV. D Sequence fluorescence staining images of the calvarial 
defects. E Percentage of fluorescence labeled regions in D. F Representative photographs of the VG and Masson staining in the calvarial defect 
areas. G Quantification of the new bone area in F. H H&E staining the calvarial defect areas (the red* denotes the newly formed bone, the yellow 
▲ marks the residual biomaterial, and the green arrow marks the capillaries). I The number of newly formed blood vessels in H. *P < 0.05, **P < 0.01 
or.***P < 0.001
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the immune response to remodel suitable osteoimmune 
microenvironment [54]. Results from the above experi-
ment demonstrated that the incorporation of CS can 
notably improve bone regeneration and blood vessel 
formation as well as effectively manage osteoimmune 
microenvironment in vivo.

Analysis of immune regulation mechanism of SGCM based 
on RNA sequencing
To identify the potential immunomodulatory mecha-
nisms in the  SGCM hydrogel, RNA sequencing was per-
formed to determine the differentially expressed genes 
(DGEs) in RAW264.7 cultured in control and  SGCM 
groups for 3 days.

Figure 8A, B shows the volcano and heat maps created 
to depict the DEGs between control and  SGCM groups 
in RAW264.7. There were 52 upregulated genes and 257 

downregulated genes. In the gene ontology (GO) biologi-
cal process (BP) category, the immune-related processes 
(immune system process, inflammatory response, regula-
tion of response to stimulus and immune response) and 
migration-related processes (regulation of cell motility, 
regulation of cell migration, positive regulation of cell 
motility, positive regulation of cell migration, cell motility 
and cell migration) were clearly enriched (Fig.  8C). The 
function mentioned above helped to make  SGCM scaffold 
exercise its anti-inflammatory and pro-migratory effects.

Based on the results of the BP of GO analysis, we 
selected the genes related to inflammation and immune 
processes to draw the heatmap and found the anti-
inflammatory genes such as Il1RN [55–57] and Tmigd3 
[58] were significantly upregulated in group  SGCM, 
while the pro-inflammatory genes such as cxcr2 [59], 
Il1a [57], Notch1 [60], Tnfrsf14 [61] and etc. [62] 

Fig. 7 In vivo immunohistochemistry evaluation of the 3D‑printed scaffolds on vascularized bone regeneration. A Immunohistochemistry staining 
of IL‑1β, TGF‑β, OPN and VEGF. B–E Semi‑quantitative evaluation of the relative expression of IL‑1β, TGF‑β, OPN and VEGF in the three groups 
according to A. *P < 0.05, **P < 0.01 or.***P < 0.001
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were evidently downregulated in the  SGCM group 
(Fig. 8D). The findings above confirm our previous con-
clusion on the  SGCM hydrogel’s macrophage repro-
gramming function towards M2 polarization. Kyoto 
Encyclopedia of Genes and Genomes (KEGG) analysis 
shown in Fig.  8E present 20 notably enriched pathways 

related to immunomodulation, including the Rap1 sign-
aling pathway (mmu04015), PI3K-Akt signaling pathway 
(mmu04151), Ras signaling pathway (mmu04014), Rheu-
matoid arthritis (mmu05323) and TGF-β signaling path-
way (mmu04350). Combined with the DEGs, Smad6 and 
Smad7 as important inhibitory molecules in the TGF-β 

Fig. 8 The mechanism of the 3D‑printed scaffolds on macrophage reprogramming. A, B The volcano map and hot map of RAW264.7 cultured 
in control and  SGCM groups showing the different gene expression. C GO enrichment between control and  SGCM groups (red circles represent 
immune‑related processes green circles represent migration‑related processes). D Hot map of DEGs about immune and inflammation. E KEGG 
pathway gene enrichment analysis. F, G mRNA expression of Smad 6 and Smad 7 which involved in TGF‑β pathway. H Schematic illustration 
of the mechanisms of  SGCM on macrophage reprogramming. *P < 0.05, **P < 0.01 or.***P < 0.001
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cascade have already been proved to be able to regulate 
the inflammatory response in macrophage [63]. Activa-
tion of the TGF-β/Smad signaling pathway has been 
reported to promote M2 polarization of macrophages 
[64]. However, the overexpression of Smad6 and Smad7 
also recruits Smad ubiquitination regulatory factor 
1(Smurf1) and Smurf2 as well as inhibits receptor-associ-
ated Smads (R-Smads) binding to receptors, phosphoryl-
ation, and polymerization with Smad4 [65].Therefore, we 
used qRT-PCR to verify the mechanism of TGF-β sign-
aling pathway in anti-inflammatory function of  SGCM 
scaffold. From Fig. 8F–G, Smad6 and Smad7 were clearly 
decreased in  SGCM group, which further demonstrated 
that  SGCM hydrogel may exert its anti-inflammatory 
effects through decreasing Smad6 and Smad7. Collec-
tively, the mechanism of macrophage reprogramming by 
the 3D-printed  SGCM composite hydrogel scaffold was 
shown in Fig.  8H below, which may be achieved by the 
surface of the material or by the CS released from the 
material.

Conclusion
Our study focused on the development of a 3D-printed 
composite hydrogel scaffold (SGC) that coordinated with 
both osteo-/angiogenesis and osteoimmune microen-
vironment. The CS released from this 3D-printed com-
posite scaffold endowed the SGC scaffold with various 
functions, such as promoting osteo-/angiogenic differ-
entiation of BMSCs, reprogramming macrophages into 
M2 phenotype via inhibiting Smad6 and Smad7, and 
remodeling a favorable osteoimmune microenviron-
ment conducive to osteo-/angiogenesis. Furthermore, by 
using a rabbit calvarial defect model, we demonstrated 
that the SGC scaffold promoted in situ vascularized bone 
regeneration through osteoinduction and osteoimmune 
modulation. Overall, the SGC scaffold-mediated robust 
osteoinductivity and favorable osteoimmunomodulatory 
properties are considered a promising strategy for the 
treatment of complicated bone defects.
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