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Abstract 

Multivalent drugs targeting homo-oligomeric viral surface proteins, such as the SARS-CoV-2 trimeric spike (S) 
protein, have the potential to elicit more potent and broad-spectrum therapeutic responses than monovalent 
drugs by synergistically engaging multiple binding sites on viral targets. However, rational design and engineering 
of nanoscale multivalent protein drugs are still lacking. Here, we developed a computational approach to engineer 
self-assembling trivalent microproteins that simultaneously bind to the three receptor binding domains (RBDs) 
of the S protein. This approach involves four steps: structure-guided linker design, molecular simulation evaluation 
of self-assembly, experimental validation of self-assembly state, and functional testing. Using this approach, we first 
designed trivalent constructs of the microprotein miniACE2 (MP) with different trimerization scaffolds and linkers, 
and found that one of the constructs (MP-5ff ) showed high trimerization efficiency, good conformational 
homogeneity, and strong antiviral neutralizing activity. With its trimerization unit (5ff ), we then engineered 
a trivalent nanobody (Tr67) that exhibited potent and broad neutralizing activity against the dominant Omicron 
variants, including XBB.1 and XBB.1.5. Cryo-EM complex structure confirmed that Tr67 stably binds to all three RBDs 
of the Omicron S protein in a synergistic form, locking them in the “3-RBD-up” conformation that could block human 
receptor (ACE2) binding and potentially facilitate immune clearance. Therefore, our approach provides an effective 
strategy for engineering potent protein drugs against SARS-CoV-2 and other deadly coronaviruses.
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Graphical Abstract

Introduction
The COVID-19 pandemic in the past 3 years has posed 
an enormous threat to human health, and will continue 
to do so as SARS-CoV-2 evolves to evade the humoral 
immunity elicited by vaccination or prior infection 
[1, 2]. Therefore, the development of highly effective 
drugs to treat COVID-19 remains critical. However, the 
ongoing mutations in SARS-CoV-2 not only diminish 
the efficacy of existing drugs, but also reduce the 
number of conserved epitopes in drug targets, posing 
a significant challenge to drug design and development 
[3, 4]. For example, the Omicron (B.1.1.529) variant, 
which bears 37 amino acid mutations in its glycosylated 
spike (S) protein that overlap many antibody epitopes, 
can escape the immune system and has rapidly 
become the dominant strain worldwide since its first 
identification in South Africa in November 2021 [5]. 
It has been reported that 85% of the 247 antibodies 
that directly target the S protein fail to neutralize the 
Omicron variants [6]. Given this situation, there is an 
urgent need to develop novel therapeutic agents that 
can effectively combat emerging SARS-CoV-2 variants, 
such as broad-spectrum neutralizing antibodies or 
other protein drugs.

As mentioned, the S protein plays a critical role in viral 
infection by facilitating viral entry into host cells. This 
protein is a homotrimer on the viral membrane, and each 
monomer consists of the receptor-binding subunit S1 and 
the membrane-fusion subunit S2 [7]. During viral infec-
tion, the receptor-binding domains (RBDs) at the top of 
the S1 subunits interact directly with the host cell receptor 
angiotensin-converting enzyme 2 (ACE2) [8]. This inter-
action triggers a series of conformational changes in the S 
protein that lead to fusion of the viral and cellular mem-
branes, ultimately delivering the viral genome into the 
host cells [9]. Therefore, RBD is a major target for neutral-
izing antibodies that can block the binding of ACE2 to the 
S protein. The trimeric RBDs make the S protein an ideal 
target for the multivalent drugs. In principle, multivalent 
drugs can use their pharmacophores (e.g., an antibody to 
a single RBD) to synergistically bind to the three RBDs of 
the S protein, thereby enhancing therapeutic effectiveness 
against the viruses [10–13].

In the past, nanoscale multivalent proteins have been 
developed to target the S protein or other disease pro-
teins with homo-oligomeric binding sites. The most 
common method is to link monovalent binders, such as 
nanobodies, in a head-to-tail tandem fashion with fusion 
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linkers, resulting in enhanced binding affinities and neu-
tralizing activities compared to the monovalent counter-
parts [11, 14–17]. Because the tandem nanobodies might 
produce elongated structures that can reduce protein 
stability and increase susceptibility to degradation, other 
multivalent formats of the proteins have also been con-
structed. For instance, based on the trimeric structure 
of the S protein, previous studies have reported self-
assembling trivalent ACE2 that can effectively neutralize 
SARS-CoV-2 [18–20]. However, the large size (~ 615 aa) 
and poor solubility of ACE2 in engineered bacteria raise 
concerns about manufacture and steric hindrance that 
could lead to unwanted interactions with non-target pro-
teins and adverse side effects [21].

To address these issues, the use of new multivalent 
formats and soluble, easily produced nanoscale 
microproteins (less than 150–200 aa) [22] as the 
monovalent binders is helpful. Strauch et  al. have 
developed trimeric influenza-neutralizing proteins 
that target the three receptor binding sites of influenza 
hemagglutinin (HA) using a trimerization domain 
identified from the PDB [23]. Similarly, Cui et  al. 

constructed a potent TNF-α antagonist by fusing a 
soluble receptor TNFRII to a trimerization domain from 
human type III collagen [24]; Chen et  al. fused protein 
of gp41 NHR to the T4 fibritin trimerization domain to 
construct trimeric anti-HIV-1 therapeutics [25]. These 
results suggest that multivalent proteins with soluble 
microproteins and a self-assembling trimerization 
scaffold may also be suitable for targeting the homo-
trimeric binding sites of the S protein. However, except 
for the study by Strauch et  al. [23], many multivalent 
designs were tested by trial and error, and usually were 
time-consuming and resource-intensive. Therefore, it 
remains of great interest to develop effective rational 
design methods to construct nanoscale multivalent 
proteins targeting the S protein.

Here, we present a computational approach to design 
and engineer self-assembling trivalent microproteins 
targeting the S protein of SARS-CoV-2. As illustrated 
in Fig.  1, this approach involves four steps: structure-
guided linker design, molecular simulation evaluation 
of self-assembly, experimental validation of self-assem-
bly state, and functional testing. Using this approach, 

Fig. 1 Workflow for computational design of trivalent anti-SARS-CoV-2 microproteins. a Structure-guided computational design of trivalent 
microproteins to geometrically match the three binding sites of the trimeric S protein. The trimerization scaffold, linker, and monovalent binder 
are shown in blue, green, and gray, respectively. RosettaRemodel was used to design linkers connecting the C-terminus of the monovalent 
binder and the N-terminus of the trimerization scaffold. b Molecular dynamics (MD) evaluation of the trivalent constructs. Binding free energies 
of the monomers were estimated to assess trimerization tendency using the MM/GBSA method. Free energy landscapes were constructed to study 
the possible distributions of the trimer conformations. c Experimental verification of trivalent constructs using size-exclusion chromatography 
and Native-PAGE. d Functional tests of the top-ranked constructs. Binding affinity was measured by BLI, and pseudovirus neutralization assays were 
performed to determine the neutralizing activity against SARS-CoV-2
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we successfully engineered two trivalent proteins with 
high antiviral potency against SARS-CoV-2: MP-5ff and 
Tr67, using the microprotein miniACE2 and the nano-
body Nb67 as the monovalent binders, respectively. Both 
multivalent proteins exhibited efficient self-assembling 
trimerization and good conformational homogeneity. 
As expected, they showed significantly higher binding 
affinities and neutralizing activities than the monovalent 
counterparts. Moreover, Tr67 was shown to be effective 
against dominant Omicron variants, including XBB.1 and 
XBB.1.5. Cryo-electron microscopy (cryo-EM) analy-
sis confirmed that Tr67 indeed binds to the Omicron S 
protein in a trivalent mode and induces it into the unique 
“3-RBD-up” conformation.

Results
Structure‑guided linker design
To design a self-assembling trivalent protein with desired 
physiochemical properties and therapeutic efficacy, we 
carefully selected two essential components: the mono-
valent therapeutic agent and the trimerization scaffold. 
As mentioned above, microproteins are well suited to be 
engineered into multivalent formats due to their small size, 
stability, and ease of production. As a proof of concept, 
we first used the microprotein LCB3 [26] as a monovalent 
binder to the S protein of SARS-CoV-2. This microprotein 
(MP) is a mini-mimetic of the ACE2 protein with only 64 
aa (hereafter we refer to it as miniACE2) and has been 
reported to bind to the RBD of the S protein. To obtain 
optimal multivalent constructs, we then selected two well-
studied self-assembling domains as the test trimerization 
scaffolds, namely the β-propeller-like foldon domain of T4 
fibritin used in vaccines [27–29] and an α-helical coiled-
coil peptide [30], which will be referred to as F-scaffold 
and C-scaffold, respectively (Fig. 2a).

We hypothesized that a well-designed trivalent protein 
could simultaneously engage all three RBDs of the S pro-
tein, thereby blocking the ACE2 binding and enhancing 
its neutralizing activity against the SARS-CoV-2 vari-
ants. It has been shown that RBD can adopt two different 
conformations: standing-up conformation (RBD-up) for 
receptor binding and lying-down conformation (RBD-
down) for immune evasion [7, 31, 32]. The RBD-up state 
is essential for membrane fusion and virus entry [9, 31], 
and potentially facilitates immune clearance. Therefore, 
our designed goal was to trap the active RBD-up confor-
mation by fully occupying all three RBDs with a designed 
trivalent protein. To achieve this, we superimposed the 
miniACE2-RBD complex (PDB ID: 7JZM) onto the S 
protein with the 3-RBD-up state (PDB ID: 7CT5). Based 
on the superimposed structure, we calculated the mini-
mum distance required for a linker to connect miniACE2 
and the given trimerization scaffold using the Lagrange 

multiplier method, and found that the minimum dis-
tances for the F- and C-scaffolds are 19.37 Å and 17.98 Å, 
respectively.

Based on the minimum distances, we then designed 
linkers to connect the monovalent binder and the 
trimerization scaffold, ensuring an appropriate geometry 
to match the homo-trimeric target sites. We selected 
two widely used penta-peptide fragments, the flexible 
GGGGS and the rigid EAAAK [33], as the building 
fragment for the candidate linkers, and then determined 
the repeat number (n) of the given fragment in the 
linker according to the minimum distances and the 
folding conformations of each linker. Considering the 
maximum length of the extended conformation of a 
penta-peptide (GGGGS or EAAAK), at least two copies 
of the fragments (i.e., 10-aa length) are needed for a 
linker to connect the binder to the scaffold. To determine 
the optimal repeat number n, we used RosettaRemodel 
to sample a large number of the lowest-energy folding 
conformations for the linkers of (GGGGS)n or (EAAAK)n 
(n = 2, 3, 4, or 5) (see Materials and methods). For each 
n, the folding conformations of the given linker were 
predicted with the binder at its N-terminus and the 
scaffold at the C-terminus; and in the calculations, both 
the binder and the scaffold were treated as rigid bodies. 
After the conformational sampling, the 1000 top-ranking 
lowest-energy conformations were used to calculate the 
distributions of the distances between the C-terminus of 
the binder and the N-terminus of the scaffold (Fig. 2).

As shown in Fig.  2b, most of the sampling distances 
for the linkers (GGGGS)2 and (EAAAK)2 fell short of the 
above-mentioned minimum distances required for the 
geometric matching of the binder and the trimerization 
scaffold, indicating that linkers designed with n = 2 
may not be suitable. In contrast, most distances for the 
linkers (GGGGS)n and (EAAAK)n, with n = 3, 4, or 5, 
exceeded the minimum distances, indicating that n ≥ 3 
is required. Among these, the distance distributions for 
n = 3 were relatively narrow, while those for n = 4 or 5 
were wider, indicating that more conformations were 
energetically possible for these linkers and thus that the 
binders connected to the trimerization unit could bind 
to more positions in space, allowing them to adapt their 
conformations to different epitopes on the target protein. 
However, the distance distributions for n = 4 were 
irregular, neither as narrow as n = 3 nor as broad as n = 5; 
furthermore, those for n = 3 and 5 have covered most of 
the range seen in n = 4, making n = 4 less preferable. Also, 
given that n = 5 already covered the possible distances, 
we no longer explored the situation of n > 5.

Finally, we chose four test linkers, the flexible 
(GGGGS)3 and (GGGGS)5, and the rigid (EAAAK)3 
and (EAAAK)5, to construct the trivalent proteins for 
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miniACE2, resulting in eight trivalent proteins tai-
lored for the two trimerization scaffolds. We desig-
nated the two proteins using flexible (GGGGS)n and 
C-scaffold as MP-3fc, MP-5fc, respectively; those 
using (GGGGS)n and F-scaffold as MP-3ff, MP-5ff, 
respectively; those using rigid (EAAAK)n and C-scaf-
fold as MP-3rc, MP-5c, respectively; and those using 
(EAAAK)n and F-scaffold as MP-3rf, MP-5rf, respec-
tively (Additional file 1: Table S1).

Molecular simulation evaluation of trivalent constructs
Biomedical and therapeutic applications of 
multivalent proteins usually require them to have 
good physicochemical properties such as efficient self-
assembly and good conformational homogeneity. To 
identify the best candidate among the eight constructs, 
we evaluated these properties of the eight constructs 
using molecular dynamics (MD) simulations. For 
each construct, three independent simulations were 

Fig. 2 Structure-guided linker design. a Two trimerization scaffolds used in this study. b The left panel: The trivalent construct designed to match 
the geometry of the three binding sites on RBDs (orange) of the S protein (silver). The monovalent binder and the trimerization scaffold are 
shown in blue and green, respectively. The right panel: The calculated minimum distances required between the binder and scaffold. c Schematic 
of linker models generated by RosettaRemodel. For each model, the distance from the C-terminus of the binder to the N-terminus of the scaffold 
was determined. d Distributions of the mentioned distances of the designed linkers of different lengths. The dotted black lines indicate 
the minimum distances required for the constructs
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performed, each with a simulation time of 300 ns. Then, 
we calculated the root mean square deviation (RMSD) of 
the protein backbone heavy atoms across the simulation 
trajectories, using their initial structures as the reference 
conformations (Additional file 1: Fig. S1). As can be seen 
in (Additional file  1: Fig. S1, the RMSD results showed 
that all the systems reached equilibrium after about 
150-ns simulations. Therefore, we used the post-150  ns 
trajectories for the following analyses.

To assess the self-assembly abilities, we first used the 
Molecular Mechanics/Generalized Born Surface Area 
(MM/GBSA) method to estimate the binding free ener-
gies between the three monomers of the trivalent con-
structs, as illustrated in Fig.  3a and (Additional file  1: 
Table. S2). Although MM/GBSA has limitations in pre-
dicting absolute values of binding free energy, it excels 
in ranking the relative binding affinities of different mol-
ecules [34]. Similarly, the relative binding free energies of 
different constructs could also rank their self-assembly 
abilities. The MM/GBSA calculations showed that the 
binding free energies of the F-scaffold constructs are 
typically lower than those of the C-scaffold constructs, 
except for that of MP-5rc (Additional file  1: Table  S2). 
This suggests that the self-assembly abilities of F-scaf-
fold constructs are relatively better than those of the 

C-scaffold constructs. Among the F-scaffold constructs, 
the binding free energy of MP-5rf is the highest; as 
shown in Fig. 3b, the relative binding free energies of the 
other three constructs are negative, indicating that their 
self-assembly abilities are stronger than MP-5rf. Of them, 
MP-5ff has the lowest relative binding free energy, imply-
ing the strongest self-assembly tendency. For the C-scaf-
fold constructs, MP-5rc has the lowest relative binding 
free energy, indicating a stronger self-assembly ability, 
especially compared with the higher relative energy val-
ues of MP-3fc and MP-3rc.

To investigate the conformational homogeneity, we 
first performed principal component analysis (PCA) on 
the simulation trajectories and then mapped the simu-
lated conformations of the proteins onto the resulting 
principal components to generate their free energy land-
scapes (FELs) (see Methods and materials). As an exam-
ple, the PCA results for a trajectory of MP-5ff are shown 
in (Additional file 1: Fig. S2). As seen, the first two prin-
cipal components contributed to over 80% of the cumu-
lative variance and were thus considered PC1 and PC2 
(Additional file 1: Figs. S2A, D). By projecting the simu-
lated conformations onto the two-dimensional space of 
PC1 and PC2, the resulting FELs showed the distribution 
patterns of the simulated constructs and their possible 

Fig. 3 Molecular simulation assessment of the trimerization tendency of trivalent constructs. a Schematic diagram for the binding process 
to calculate the binding free energy of a given trivalent construct. b Relative binding free energies of the trivalent constructs calculated 
by MM/GBSA. For F-scaffold trimers, MP-5rf was used as the reference to calculate the relative values of other constructs. For C-scaffold trimers, 
the reference is MP-3rc. Please see the MM/GBSA raw data in (Additional file 1: Table S2
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numbers of dominant trimer-like conformations in the 
simulations (Fig. 4).

As shown in Fig.  4a, the FEL patterns of the eight 
constructs are not identical, with about 1–3 low-energy 
wells (in blue) indicating different numbers of domi-
nant trimer-like conformations in the simulations. Sig-
nificantly, except for MP-5ff, other constructs had a 

wider or more than one low-energy well, such as MP-
5rc with a wider low-energy well, MP-3rf, MP-5rf with 
2 low-energy wells, and MP-3ff, MP-3fc, MP-5fc with 
3 low-energy wells. Thus, only MP-5ff showed only a 
low-energy trimer conformation in the simulations, 
suggesting that the conformational homogeneity of this 
protein is the best.

Fig. 4 Free energy landscapes (FELs) for the MD conformations of the trivalent constructs. a FELs of conformational projections onto the first 
and the second principal components (PC1 and PC2). b FELs of conformational projections onto two alternative reaction coordinates: root mean 
square deviation (RMSD) and radius of gyration (Rg)
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To further confirm the FEL results, we also construct 
FELs by mapping the simulated conformations onto 
the two-dimensional space defined by two alternative 
reaction coordinates: root mean square deviation 
(RMSD) and radius of gyration (Rg) (Fig. 4b). Consistent 
with the results of Fig.  4a, except MP-5ff the FELs 
of all constructs had multiple low-energy wells (in 
blue), suggesting that multiple low-energy trimer-like 
conformations coexist in the simulations. Taken together, 
the results in Fig.  4 suggested that MP-5ff likely has 
a single stable trimer conformation and thus the best 
conformational homogeneity.

Experimental validation and functional test
To validate the computational results, we expressed the 
8 designed constructs in E. coli Rosetta (DE3) cells and 
purified the proteins using Ni–NTA affinity chroma-
tography. We then characterized their oligomeric states 
in solution by size-exclusion chromatography (SEC). As 
shown in Fig. 5a, the SEC profiles revealed that the four 
F-scaffold proteins had narrower and sharper trimer 
peaks than the C-scaffold proteins, indicating a higher 
trimer ratio in the F-scaffold constructs. Among the 
F-scaffolds, the peak of MP-5ff appears to be the sharp-
est and the most concentrated one, indicating that it is 
the most efficient trivalent construct, in good agreement 
with the computational evaluation. In contrast, MP-5rf 
displayed two distinct peaks, probably corresponding 
to the desired trimerization conformation and another 
oligomeric state. Indeed, the binding free energy cal-
culations in Fig. 3b have already indicated that the MP-
5rf trivalent construct is less stable than the other three 
F-scaffold constructs. As for the C-scaffold constructs, 
only MP-5rc had a sharp, single peak indicating a trimer; 
however, besides the trimer peak, the other three con-
structs had detectable monomer or dimer peaks, espe-
cially MP-3rc and MP-3fc, suggesting that they had a 
lower trimer ratio. Obviously, these results confirmed the 
MM/GBSA calculations (Fig. 3b) and showed that those 
constructs with the lower binding free energies have 
higher trimerization efficiencies.

The FEL analyses in the last subsection have suggested 
that even in the trimer state, the investigated trivalent 
constructs are likely to contain several different trimer-
like conformations (Fig. 4). To further investigate the pos-
sible distributions of trimerization conformations, we 
performed Native-PAGE analysis on the protein samples 
collected from the SEC trimer peaks, because this tech-
nique can separate two or more trimer-like conforma-
tions of the trivalent proteins. As shown in Fig. 5b, among 
the eight constructs, only MP-5ff presented a single pro-
tein band, indicating a single stable trimer conformation, 
which is consistent with the computational prediction 

showing only a single energy well in the FELs (Figs. 4a, b). 
In contrast, MP-3ff and MP-3rf showed multiple distinct 
bands, indicating that they can adopt several coexisting 
conformations. For MP-5rf, we observed two dominant 
bands with several fainter ones at various positions; the 
upper one may suggest the formation of larger oligomers 
that fail to maintain a stable trimer. Similarly, MP-5fc also 
displayed such a pattern. For the other three C-scaffold 
constructs, we also observed more than one band: MP-
3fc exhibited two clear bands, while MP-3rc and MP-5rc 
showed a clear one and several fainter bands. These find-
ings validate the computational predictions that several 
low-energy trimer-like conformations may coexist for 
these constructs (Figs. 4a, b). As a result, MP-5ff was found 
to be the best construct with the highest trimerization effi-
ciency and conformational homogeneity.

We next examined the target binding affinity of the opti-
mal construct, MP-5ff, to RBD of the S protein using Bio-
layer interferometry (BLI). Since miniACE2 was originally 
designed to specifically target the SARS-CoV-2 Wuhan-
Hu-1 strain [26], here we focused our functional evalua-
tion on miniACE2 and MP-5ff against this specific strain. 
As shown in Fig. 5c, MP-5ff exhibited a much slower dis-
sociation rate (koff < 1.0 ×  10–7   s−1) compared to that of 
miniACE2 (koff = 9.86 ×  10–4   s−1); thus, the resulting equi-
librium dissociation constant  (KD) is less than 1 pM, while 
that of miniACE2 is 1.03 nM. Thus, the binding affinity of 
MP-5ff for RBD is 1000-fold greater than that of its mono-
valent counterpart miniACE2, clearly demonstrating that 
protein multivalency could substantially enhance the tar-
get binding affinity. Then, we evaluated the neutralizing 
activities of miniACE2 and MP-5ff against SARS-CoV-2 
pseudovirus (Wuhan-Hu-1). As indicated in Fig.  5d, the 
monovalent miniACE2 was already able to inhibit the 
virus with an  IC50 of 682  pM; nonetheless, the trivalent 
MP-5ff still significantly enhanced the neutralizing activ-
ity  (IC50 = 29  pM), exhibiting a 23-fold increase. Taken 
together, the trivalent MP-5ff designed by our rational 
approach has excellent physicochemical properties and 
potent antiviral activity.

Engineering of a broad‑spectrum trivalent nanobody
To further demonstrate the effectiveness of our approach, 
we applied the 5ff trimerization unit to engineer a trivalent 
nanobody targeting the dominant circulating Omicron 
variants, because nanobodies represent another widely 
used category of microproteins well suited for multivalent 
construction. For this purpose, we selected Nb67, a nan-
obody identified by Xiang et al. [35] from serially immu-
nized camelid sera, which was reported to neutralize 
Omicron BA.1. By fusing Nb67 with the 5ff trimerization 
unit, we created a trivalent nanobody Tr67 (Fig. 6a, (Addi-
tional file 1: Table S1). Following the same computational 
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and experimental procedures successfully employed for 
MP-5ff, we assessed the trimerization efficiency and con-
formational homogeneity of the engineered Tr67 using 
MD simulations ((Additional file  1: Fig. S3), SEC and 

native-PAGE analyses (Fig.  6b). These obtained results 
demonstrated that Tr67 has a trimerization efficiency 
and conformational homogeneity very similar to that of 
MP-5ff.

Fig. 5 Experimental verifications of the trivalent constructs of miniACE2. a SEC profiles of the purified proteins of the constructs. b Native-PAGE 
analysis of the protein trimer fractions isolated from SEC. c BLI measurements of the binding kinetics of the monovalent miniACE2 and the trivalent 
construct, MP-5ff, to the immobilized RBD of SARS-CoV-2 (Wuhan-Hu-1). Red traces represent the raw data and the kinetic fits are shown in gray. d 
Neutralizing activity of miniACE2 and MP-5ff against SARS-CoV-2 pseudovirus (Wuhan-Hu-1)
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We then measured the binding affinity of Tr67 to the 
target RBD of the S protein using BLI and its neutralizing 
activity against SARS-CoV-2 pseudoviruses. As shown in 
Fig. 6c, Tr67 exhibited a higher association rate  (kon) and 
a lower dissociation rate  (koff) compared to its monova-
lent counterpart Nb67. The resulting  KD was 0.746  nM, 
which is an about 20-fold increase in affinity compared 
to that of the monovalent Nb67  (KD = 15.2 nM). Similarly, 
Tr67 showed much stronger inhibitory activity against 
the SARS-CoV-2 Omicron BA.1 pseudovirus than Nb67, 
with an  IC50 of 55 pM versus 492 pM for Nb67 (Fig. 6d). 
These results demonstrated that the trivalent nanobody 
has an enhanced potency and thus greater potential to 
combat viral infections compared to its monovalent 
counterpart.

To further investigate the broad-spectrum neutral-
izing potential of Tr67, we evaluated its neutraliza-
tion activities against the dominant Omicron variants 

(Fig.  7). For Omicron BA.2, Tr67 exhibited an  IC50 of 
0.022 nM and that of Nb67 is 0.331 nM, so the neutral-
izing activity was greatly enhanced by about 15 folds 
(Fig. 7a). Similar enhancements were observed for Omi-
cron BA.2.75, BA.2.12.1, and BA.3: the corresponding 
 IC50 values of Tr67 were 0.055, 0.045, and 0.098  nM, 
respectively, and those of Nb67 were 0.735, 0.937, and 
1.534 nM, respectively (Figs. 7b–d). Unexpectedly, Tr67 
also neutralized the variants that are more likely to 
evade humoral immunity. For Omicron BA.5, BF.7, and 
BQ.1.1, Nb67 failed to achieve any detectable neutrali-
zation; however, Tr67 neutralized them with  IC50 values 
of 0.087, 0.084, and 0.089  nM, respectively (Figs.7e–
g). Even for the most immune-evasive Omicron XBB 
family, Tr67 still maintained neutralizing activity, but 
Nb67 did not (Figs.7h, i). Specifically, the  IC50 val-
ues of Tr67 against XBB.1 and XBB.1.5 were 9.98 and 

Fig. 6 Design and experimental characterization of Tr67. a Schematic diagram illustrating the trimerization of Nb67 nanobody fused 
with the optimal trimerization unit 5ff (see its amino-acid sequence of the fusion monomer of Nb67 with 5ff in (Additional file 1: Table S1). b SEC 
and Native-PAGE analysis of Tr67, showing high trimerization tendency and conformational homogeneity. c BLI measurement of the binding 
kinetics of the monovalent Nb67 and Tr67 to the immobilized RBD of SARS-CoV-2 pseudovirus (Omicron BA.1). d Neutralizing activities of Nb67 
and Tr67 against SARS-CoV-2 pseudovirus (Omicron BA.1). Three independent experiments were performed
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14.6  nM, respectively. Thus, compared with its mono-
valent counterpart, Tr67 has a significant increase in 
the neutralizing activity against all the tested Omicron 
variants, suggesting that multivalent proteins have the 
potential to be developed into broad-spectrum drugs 
against the emerging SARS-CoV-2 variants.

Cryo‑EM analysis of Tr67‑spike complex
Finally, to confirm whether the binding mode of Tr67 
to the spike protein is consistent with our design, we 
determined the complex structure of Tr67 with the 
Omicron BA.1 spike protein using cryo-EM ((Addi-
tional file  1: Figs. S4, Table  S3 and Fig.  8). As seen in 
Fig.  8A, the cryo-EM density map obtained by the 

Fig. 7 Broad-spectrum neutralization potential of Tr67 against the dominant SARS-CoV-2 Omicron variants. a—i Neutralizing activities 
against SARS-CoV-2 pseudoviruses Omicron BA.2, BA.2.75, BA.2.12.1, BA.3, BA.5, BF.7, BQ.1.1, XBB.1, and XBB.1.5 variants, respectively. Three 
independent experiments were performed for each variant
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single-particle 3D reconstruction method clearly shows 
that the complex structure is a triple-symmetric homo-
trimer; moreover, the density of Tr67 bound to the 
RBDs at the top of the S-protein is very well defined 
(Fig.  8a, side view), and the density of the three Nb67 
nanobodies and the trimerization unit 5ff (Fig. 8a, top 
view) can also be distinguished. Therefore, the cryo-EM 
structure provided experimental evidence that Tr67 is 
indeed bound to the epitopes specified by the compu-
tational design.

To obtain the atomic model of the cryo-EM structure, 
we used the MD flexible fitting method to fit the atomic 
model of the Tr67-spike complex constructed in the 
computational design into the density map (Fig. 8b). As 
can be seen, the atomic model of the whole complex 
fitted well into the map; and this became clearer by the 
illustration of the central alpha-helical regions in the 
S protein stem (Fig.  8c). More specifically, the designed 
Tr67 matches well with corresponding densities, showing 
that Tr67 exactly binds to the desired positions on the S 
protein (Fig. 8b, top view).

Significantly, we found that the complex structure 
is one in which all 3 RBDs of the S protein are in the 
standing-up state (3-RBD-up). Due to its amino acid 
mutations and RBD-RBD interactions, the Omicron spike 
is usually stabilized in the “2-RBD-down, 1-RBD-up” 
conformation; this conformational state was considered 
to facilitate the up-RBD to approach ACE2 and then to 
promote membrane fusion [36–38]. Unlike the spikes of 
early variants such as Wuhan-Hu-1, the Omicron spike 
rarely occurs in the 3-RBD-up conformation, which 
may need to be induced by a combination of distinct 
antibodies [39, 40]. Thus, the cryo-EM structure did 
confirm that Tr67 can induce the Omicron spike into the 
3-RBD-up conformation. Note that, unlike the common 
3-RBD-up conformation (Wuhan-Hu-1) induced by 
monovalent nanobodies, in which the three RBDs are 
in an open-like, unassociated state (Fig.  8d), Tr67 has 
an additional trimerization unit that covalently links the 
three binders and thereby firmly locks the three RBDs in 
an inactive state (Fig.  8b, top view). Unsurprisingly, the 
S protein in such a Tr67-bound state cannot bind ACE2 
anymore and therefore its membrane fusion function is 
completely inhibited.

To understand the molecular basis of the increased 
binding affinity of Tr67 for the S protein, we analyzed 
the binding interfaces of monovalent Nb67 and Tr67 
with the RBDs using the Nb67-spike structure and the 
atomic model of the Tr67-spike complex. We identified 
the interface (contact) residues by a 4-Å distance cutoff 
between the atoms of Nb67 and those of the RBD, as 
shown in Fig. 8e and listed in (Additional file 1: Table S4. 
As can be seen, the binding sites of Nb67 and Tr67 on the 
RBDs are identical to those of ACE2. However, the Nb67 
binder in Tr67 has a larger contact area with the Omicron 
RBD, and the interface contains 21 residues from Nb67 
and 25 residues from the Omicron RBD. In contrast, the 
monovalent Nb67 and the Wuhan Hu-1 RBD have only 
14 and 16 interfacial residues, respectively. In addition, 
the Nb67 binder in Tr67 forms more hydrogen bonds 
and salt bridges (Additional file  1: Table  S4), suggesting 
stronger binding interactions. Consistent with the BLI 
results in Fig. 6c, the number of interfacial residues also 
supports that Tr67 could establish a more extensive 
network of interactions, contributing to stronger binding 
to the Omicron BA.1 and thus enhancing its neutralizing 
activity.

To explain why Tr67 also binds to other Omicron 
variants (Additional file  1: Fig. S5), we built structural 
models for their RBDs based on the atomic models in 
Fig.  8b, and then analyzed their binding interfaces with 
the monovalent Nb67 and Tr67 by docking simulation 
using PyDock [41]. The best-scoring binding poses 
from the simulations were used as the representatives 
of the Nb67-spike and Tr67-spike complexes, as shown 
in (Additional file  1: Figs. S6 and S7, respectively. As 
illustrated in (Additional file 1: Fig. S6a, for the variants 
BA.1, BA.2, BA.2.75, BA.2.12.1, and BA.3 (cluster 1), 
Nb67 was successfully docked into the expected epitope 
on RBD; however, for variants BA.5, BF.7, BQ.1.1, 
XBB.1, and XBB.1.5 variants (cluster 2), Nb67 in the 
best-scoring poses was not located at the expected sites, 
but at other sites that are sterically unfavorable in the 
1-RBD-up conformation of the S protein (Additional 
file  1: Fig. S6b). Consistent with this, Nb67 was able to 
neutralize the Omicron variants in cluster 1 but not those 
in cluster 2 (Fig. 7). Obviously, the amino-acid mutations 
of the cluster 2 variants weaken the interactions of the 

(See figure on next page.)
Fig. 8 Cryo-EM structures of Tr67 in complex with the SARS-CoV-2 (Omicron BA.1) spike protein. a EM density map of Tr67-spike complex 
in “3-RBD-up” conformation at the overall resolution of 9 Å. b Fitting of the atomic model of the designed Tr67-spike complex into the EM density 
map. The EM density is shown as a transparent gray surface and the spike protein is rendered in blue. c Cross-section view of the stem region 
of the spike protein. d An open-like, “3-RBD-up” conformation with the SARS-CoV-2 (Wuhan-Hu-1) spike protein induced by three separated Nb67. e 
The binding interfaces of trivalent (left panel) and monovalent (right panel) Nb67 binding with the RBDs (shown as gray surface) are shown in pink, 
and the contact residues on Nb67 are shown as sticks
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Fig. 8 (See legend on previous page.)
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monovalent Nb67 with the variant RBD sites in Fig.  8e 
and thus abolish the neutralization. Particularly, similar 
to a previous study [35], we found that the mutation at 
486 plays a key role in this process (Additional file 1: Fig. 
S5 and Table S5). In contrast, for all variants, Tr67 of the 
best-scoring poses binds to the same epitopes as that of 
BA.1. The binding interfaces are also larger than those 
of Nb67 (Additional file 1: Table S6). It appears that the 
synergistic binding of the three Nb67s in Tr67 increases 
the binding interface and then leads to higher binding 
affinities that could resist the mutations such as that at 
486 to some extent. As a result, Tr67 is still able to bind 
to the same epitopes of the Omicron BA.1 S protein 
and neutralize the other variants tested. Clearly, further 
structural studies are needed to elucidate the detailed 
molecular mechanisms involved.

Discussion
In this study, we developed a computational approach 
for engineering nanoscale multivalent protein drugs 
and successfully designed two highly potent anti-SARS-
CoV-2 trivalent microproteins: MP-5ff and Tr67. The 
trimerization unit designed by our method enabled these 
two proteins to efficiently self-assemble and achieve good 
conformational homogeneity. Clearly, the multivalency 
of the proteins increased their binding affinities and thus 
enhanced their virus-neutralizing ability. In particular, 
Tr67 was able to neutralize dominant Omicron variants, 
including the extensively drug-resistant XBB.1 and 
XBB.1.5, and thus has the potential to be developed as a 
broad-spectrum anti-SARS-CoV-2 drug. Moreover, the 
cryo-EM structure confirmed that Tr67 stably binds to 
all three RBDs of the S protein in a synergistic manner, 
consistent with the designed binding mode.

As confirmed by the cryo-EM structure, our 
computational approach enabled a precise design 
and rational engineering of multivalent proteins 
that geometrically match the binding sites of a given 
target protein. Different from many previous studies 
of engineering multivalent proteins, our approach 
incorporates structure-guided modeling and MD 
evaluation to predict the potential effects of various 
fusion formats of trimerization scaffolds and linkers 
on the binding geometry and self-assembly properties. 
Compared with experimental screening that may require 
more resources and time to identify suitable trimerization 
scaffolds or fusion linkers [18, 42, 43], our rational 
approach can narrow the design space and reduce 
randomness in screening potential multivalent proteins 
against SARS-CoV-2. No doubt, this is important for 
accelerating the development of multivalent therapeutics 
and providing a timely response to the rapidly evolving 
SARS-CoV-2.

Very interestingly, we captured the structure of 
the Omicron BA.1 spike protein in the 3-RBD-up 
conformation, and thus provided mechanistic insights 
into the antiviral activity of the trivalent nanobody 
Tr67. As reported, the Omicron spikes exclusively 
adopt a “1-RBD-up, 2-RBD-down” conformation [44, 
45]; even in the presence of ACE2 or neutralizing 
antibodies, the transition to a “3-RBD-up” 
conformation was rarely observed for the Omicron 
variants [38, 46]. Previous studies have showed that this 
conformation could be induced via the combination of 
two antibodies targeting distinct epitopes on a single 
RBD [39, 40]. Interestingly, Tr67 achieved this by 
synergistically interacting with the same epitope on the 
three RBDs. In this sense, the induced mechanism of 
the 3-RBD-up conformation by Tr67 is different from 
the previous one. To the best of our knowledge, our 
cryo-EM structure is the first 3-RBD-up conformation 
induced by such a mechanism. Also, the “1-RBD-up, 
2-RBD-down” conformation was considered to give 
the Omicron variants an advantage in evading the 
immune system, because many antibodies fail to bind 
their epitopes when two of the RBDs are in the “down” 
state [38, 45]. Instead, the “3-RBD-up” conformation 
exposes those epitopes and thereby facilitates more 
effective immune recognition and clearance. Therefore, 
by inducing the 3-RBD-up conformation, Tr67 not only 
blocks the ACE2 binding to any RBD of the S protein, 
but also leads the S protein to a conformational state 
more susceptible to immune clearance.

Again, our study clearly shows that multivalent micro-
proteins like Tr67 are ideal candidates for antiviral drugs. 
These proteins are well suited for large-scale production in 
E. coli due to their small size, structural stability, and solu-
bility. They have higher target-binding affinity and better 
virus-neutralizing activity than their monovalent counter-
parts, and are also more resistant to viral escape. Indeed, 
Tr67 effectively neutralized a range of Omicron variants, 
including XBB.1 and XBB.1.5, unlike most neutraliz-
ing antibodies, which lose potency against these variants 
[5, 47, 48]. As shown in Fig.  8a, the neutralizing activity 
Tr67 can be attributed to its unique multivalent structure, 
which allows synergistic engagement of all three RBDs, 
thereby inducing the spike 3-RBD-up conformation. Such 
multivalent binding results in the so-called binding avid-
ity [49] − the accumulated binding strength derived from 
the three binders − is much greater than that of a single, 
monovalent Nb67 binding to S by inducing the “1-RBD-
up, 2-RBD-down” conformation. This not only results in 
wider binding interfaces (e.g., in Fig. 8e), but also ensures 
that all three bound binders (Nb67s) in Tr67 remain tightly 
associated with the RBDs. For example, even if one bound 
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binder temporarily dissociates from RBD, the other two 
binders will bring it back into the bound state.

In addition to the designed protein assemblies in this 
study, some recent studies have also explored various 
nanomaterials as vaccines and drugs against SARS-CoV-2, 
including the RBD-conjugated lung-derived exosome 
vaccine [50], liposomal-based nanotraps with ACE2 or 
neutralizing antibodies on the surface [51], cell mem-
brane-derived ACE2-containing nanocatchers [52], lung 
spheroid cell (LSC)-mimicking nanodecoys displaying 
ACE2 [53], nanosponges made of human-cell-derived 
membranes with receptors (e.g., ACE2) [54], and 2D 
nanosheets of graphene oxide (GO) [55] and  CuInP2S6 
[56]. Together with ours, these studies demonstrated that 
the design and use of nanoscale biomolecular/matter 
assemblies is a very effective way to combat SARS-CoV-2 
infection. Similar to the ACE2 protein on nanotraps, nano-
cathers, LSC-nanodecoys, and nanosponges, our multiva-
lent proteins are also specific binders to the spike RBDs of 
SARS-CoV-2 S, and thus might serve as the neutralizing 
antibodies on the surfaces of these nanomaterials, such 
as on nanotraps and nanocatchers. As a proof of concept, 
our study mainly focused on the computational design of 
a series of self-assembling multivalent microproteins and 
the in  vitro validation of their physicochemical proper-
ties, improved binding affinity, and neutralizing activity 
by comparison with the monovalent counterparts. In the 
future, further research is needed to investigate the in vivo 
therapeutic efficacy, pharmacokinetics, immunogenicity, 
and biosafety of Tr67 consisting of the foldon domain, GS-
linker and nanobody. In the past, the foldon domain has 
been used in several protein vaccines [28, 29, 57]. Mean-
while, at least three nanobody drugs have been approved 
for clinical use, namely Caplacizumab [58], Ozoralizumab 
[59, 60], and Envafolimab [61]. Among them, Ozorali-
zumab also used a similar GS-linker to connect its three 
nanobodies in a tandem format. Anyway, comprehensive 
in vivo evaluations of all these components are crucial for 
the translation of Tr67 into clinical applications.

In summary, our study has successfully established 
a computational approach for designing multivalent 
antiviral microproteins. Using this method, we have 
engineered nanoscale trivalent microproteins with 
therapeutic potential against SARS-CoV-2. Especially, 
the trivalent nanobody Tr67 displayed favorable phys-
icochemical properties and showed strong neutralizing 
activity against the dominant Omicron variants, demon-
strating its potential for further development as a broad-
spectrum anti-SARS-CoV-2 drug. Furthermore, this 
study provides an effective strategy applicable for design-
ing and engineering nanoscale multivalent drugs target-
ing other disease proteins, such as S in MERS-CoV, HA 

in influenza, Env in HIV, F protein in RSV, and TNF-α in 
cancer.

Materials and methods
Structure‑guided design of linkers
RosettaRemodel [62] was used to design linkers 
connecting the C-terminus of miniACE2 and the 
N-terminus of the trimerization scaffold. This program 
samples backbone conformations by incorporating 
fragments randomly selected from a database of known 
protein structures. Fragment insertion was guided 
by Ramachandran restraints and clash avoidance. 
A blueprint file was prepared to specify the desired 
connectivity, secondary structure, and sequence of the 
linker regions, and the “0 × L” entries in the blueprint file 
allowed backbone flexibility for fragment insertion. The 
linker sequence was also specified in the blueprint file 
and fragment sampling was restricted to match it. We 
tested (GGGGS)n and (EAAAK)n linkers with n = 2, 3, 4, 
and 5, respectively; and, the “-no_jumps” flag was used 
to control the folding process within the linker, enabling 
sampling of degrees of freedom in the connecting region 
and determining the optimal structures. For each linker 
candidate, 1000 independent trajectories were sampled, 
and the lowest-energy models from these trajectories 
were then saved as PDB files. All the molecular graphics 
were generated by UCSF ChimeraX [63].

All‑atom MD simulation
The initial three-dimensional (3D) structures of the tri-
valent constructs were modeled using SWISS-MODEL 
[64]. All-atom MD simulations were performed using 
GROMACS software with AMBER 99SB-ILDN force 
field [65, 66]. The proteins were solvated in a cubic box 
with the SPC water model and neutralized with  Na+ and 
 Cl− ions. Energy minimization was performed using 
the steepest descent algorithm for 5000 steps to remove 
atomic clashes. The Particle-Mesh-Ewald (PME) [67] 
algorithm was used to calculate long-range electrostatic 
interactions; a cut-off of 1.4 nm was used for short-range 
interactions and van der Waals forces. Covalent bonds 
involving hydrogen atoms were constrained using the 
LINCS algorithm [68]. The system was equilibrated by a 
100-ps NVT simulation at 300 K using the velocity resca-
ling thermostat [69], followed by 100-ps NPT equilibra-
tion at the pressure of 1 bar using the Berendsen barostat 
[70]. For each construct, three independent 300-ns pro-
duction runs were performed.

Free energy landscape analysis
Free energy landscapes (FELs) map the possible 
conformations of a given protein and their associated 
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energy levels in the MD simulation [71]. FEL visualizes 
the conformational energy function versus the given 
configuration space, which usually is a two-dimensional 
space. To construct the FELs, principal component 
analysis (PCA) was first performed on alpha carbon 
(Cα) coordinates of a given simulated protein. The gmx 
covar tool in GROMACS was used to calculate the 
covariance matrix, which was then diagonalized to obtain 
eigenvectors and eigenvalues. Next, we used the gmx 
anaeig tool to project the simulated conformations onto 
the first two principal components (PC1 and PC2), which 
accounted for the most variance. For each simulated 
trajectory, the R studio and Bio3D package [72] was used 
to calculate the cumulative variance rate of PC1 and PC2; 
and for each construct, the trajectory with the highest 
cumulative variance contribution was selected as the 
representative. Accordingly, the Gibbs free energy of a 
given conformation at the two-dimensional space defined 
by PC1 (x) and PC2 (y) was calculated using the following 
equation:

where kB is Boltzmann constant, T  is the simulation 
temperature, and p

(

x, y
)

 is the probability distribution 
along the two given reaction coordinates, x and y. 
pmax is the maximal probability of the distribution. In 
addition to the FELs built by PCA, we also constructed 
FELs using root mean square deviation (RMSD) and 
radius of gyration (Rg) as the projection coordinates, 
which provide a complementary perspective on the 
conformational space defined by PC1 and PC2. The 
Matplotlib package in Python was used to visualize the 
FELs.

MM/GBSA calculation
The gmx_MMPBSA package was used to calculate the 
binding free energy of the monomers of the trivalent 
proteins via the MM/GBSA (Molecular Mechanics/Gen-
eralized–Born Surface Area) method [73, 74]. And 1500 
frames were extracted from the last 150  ns of each tra-
jectory for analysis. The AMBER ff99SB-ILDN force field 
was used to determine the internal term  (Eint), van der 
Waals  (EvdW), and electrostatic  (Eele) energies. The modi-
fied Generalized Born model  GBOBC1 (igb = 2) was used 
to estimate the polar contribution of the solvation energy 
(GGB), while the nonpolar energy is estimated using the 
solvent-accessible surface area (SASA). Here, the self-
assembling binding free energy of the monomers was 
computed as:

(1)�G = −kBTln
p
(

x, y
)

pmax

(2)��Gbind = �Gcomplex −�GA −�GB −�GC

where A, B, and C represent the three monomers (chains) 
of the trivalent protein, respectively; �GA is obtained by 
calculating the binding free energy between monomer 
A and the complex unit BC; and �GB and �GC were 
obtained in the same way. The mean and standard 
deviation of ��Gbind were calculated by averaging over 
the three independent simulations for each system.

Protein expression and purification
To construct the trivalent constructs using miniACE2, 
linker sequences were inserted after miniACE2, followed 
by the trimerization scaffolds. Codon-optimized 
genes encoding the designed protein sequences were 
cloned into a modified pET-29b (+) vector with an 
N-terminal 8 × His-tag and TEV cleavage site. The 
plasmids were transformed into E. coli Rosetta (DE3) 
cells. The cells were cultured at 37 ℃ in LB broth until 
an  OD600 of ~ 0.6–0.8 was reached, then induced with 
IPTG at 20  ℃ overnight. Cells were then harvested, 
sonicated, and lysed on ice with lysis buffer (pH 7.4, 
1 × PBS, 20  mM Imidazole). The soluble fraction was 
extracted by centrifugation at 12,000  rpm for 30  min. 
For purification of the proteins, cell supernatants were 
filtered through a 0.45  μm syringe and applied to Ni–
NTA gravity-flow columns pre-equilibrated with buffer A 
(pH 7.4, 1 × PBS, 20  mM Imidazole). The columns were 
washed sequentially with buffer A and 1 × PBS containing 
80  mM Imidazole before eluting the His-tag proteins 
with buffer B (pH 7.4, 1 × PBS, 300 mM Imidazole). The 
proteins were then analyzed by sodium dodecyl sulfate–
polyacrylamide gel electrophoresis (SDS-PAGE).

For the nanobody Nb67 and its trivalent construct 
Tr67, codon-optimized genes for Nb67 (with an 
N-terminal PelB sequence for periplasmic secretion and 
a C-terminal 6 × His-tag) and Tr67 (with an N-terminal 
6 × His-tag and TEV cleavage site) were cloned into 
pET-26b (+). The plasmids were transformed into E. coli 
Rosetta (DE3) cells. Nb67 expression was induced at 25 ℃ 
for 20 h. Periplasmic extracts were obtained by osmotic 
shock. Expression steps for Tr67 were consistent with 
those for the miniACE2-based trivalent constructs, and 
purification also followed the same protocol mentioned 
above.

To remove His-tags, purified proteins were desalted 
using a HiTrap desalting column and then incubated 
overnight at 4 ℃ with TEV protease. Tag-free proteins 
were further isolated by Ni–NTA chromatography.

Size exclusion chromatography
A Superdex 200 Increase 10/300 GL column attached 
to the ÄKTA avant (GE Healthcare) system was used 
for size exclusion chromatography (SEC) to detect and 
separate the oligomeric populations of the purified 
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trivalent proteins. The column was equilibrated with 
1 × PBS, pH 7.4. Then, 500  µL of concentrated trivalent 
protein was loaded onto the column. Proteins were eluted 
at a flow rate of 0.5 mL/min, and the protein signals were 
monitored by measuring the ultraviolet light absorbance 
at 280 nm. The contents of different oligomeric fractions 
were evaluated by the peak integration area. The trimeric 
fractions were collected for further characterization.

Native polyacrylamide gel electrophoresis
The trimeric fractions isolated from SEC were analyzed 
by Native polyacrylamide gel electrophoresis (Native-
PAGE) to evaluate their conformational homogeneity 
[75]. The protein samples were diluted in native 
sample loading buffer and subjected to 15% native gels. 
Electrophoresis was conducted using a native running 
buffer at 120 V for approximately 1.5 h at 4 ℃. Gels were 
subsequently stained to visualize the trimer protein 
bands.

Biolayer interferometry measurement
The binding kinetics of the trivalent constructs and 
corresponding monomers to the RBD of S protein were 
determined by Biolayer interferometry (BLI) using an 
Octet RED96e system (Sartorius/ForteBio). Briefly, each 
protein was diluted in running buffer (1 × PBS, 0.02% 
Tween-20, 0.1% BSA) and transferred to a 96-well plate. 
For miniACE2 and MP-5ff assay, the RBD (Wuhan-Hu-1) 
was immobilized onto HIS1K biosensors (ForteBio) 
following the manufacturer’s protocol. For Nb67 and 
Tr67 assay, RBD (Omicron BA.1) was immobilized onto 
streptavidin (SA) biosensors (Sartorius/ForteBio). After 
equilibrating in the running buffer, the sensors with 
immobilized RBD were dipped into wells containing the 
protein sample at various concentrations (50–3.125  nM 
for miniACE2; 100–3.125 nM for MP-5ff; 500–31.25 nM 
for Nb67; 100–3.125 nM for Tr67) for association 1 min, 
followed by dissociation for 3  min. Binding curves 
were fitted by a 1:1 binding model with the Octet Data 
Analysis software (ForteBio). The kon, koff, and  KD values 
were then determined from curves with  R2 > 0.95.

Pseudovirus neutralization assay
The SARS-CoV-2 pseudoviruses carrying firefly 
luciferase reporter gene were generated with vesicular 
stomatitis virus (VSV) pseudotyping system according 
to a published protocol [76]. Briefly, plasmids encoding 
prototype or variant SARS-CoV-2 spike proteins 
(including Wuhan-Hu-1, Omicron BA.1, BA.2, BA.2.75, 
BA.2.12.1, BA.3, BA.5, BF.7, BQ.1.1, XBB.1 and XBB.1.5, 
respectively) were transfected into HEK 293  T cells 
together with VSVΔG pseudovirus particles. At 24  h 
post-infection, the viral supernatants were harvested, 

centrifuged, and filtered to remove cell debris, then 
stored at − 80 ℃. Pseudovirus titers were calculated by 
testing the median tissue culture infective dose  (TCID50) 
with a human ACE2 overexpression cell line [76]. For 
neutralization assays, the pseudoviruses were diluted 
to ~  104  TCID50/mL in cell culture medium. Then, 
75  μL protein sample dilution was mixed with 25  μL 
pseudovirus dilution in a 96-well white flat bottom 
plate, and incubated at 37 ℃ for 1  h. After incubation, 
100  μL of human ACE2 overexpression HEK 293 cell 
suspension were added to each well (5 ×  104 cells/
well). After incubation at 37 ℃, 5%  CO2 (v/v) for 24  h, 
infection was quantified by luminescence measurement 
using a luminescence meter (PerkinElmer, Cat. No. 
HH34000000). The inhibition ratio was calculated with 
the following formula:

where X is the luminescence value (RLU) of a certain 
well; CC is the cell control with only cells are added; CC 
is the mean value of cell control group; VC is the virus 
control with only cells and pseudovirus are added; VC 
is the mean value of virus control group. Each assay 
was done in triplicate. Data were fitted using non-linear 
regression, and the  IC50 values were calculated using a 
four-parameter regression equation in GraphPad Prism 
software.

Single‑particle cryo‑EM analysis
The Tr67-Omicron BA.1 spike complex was prepared 
by manual mixture of the two proteins in a 1.5:1 weight 
ratio, then diluted to a final concentration of 0.3 mg  ml−1. 
Samples (2 μL) were applied to a 200 mesh 1.2/1.3R Cu 
Quantifoil grid and vitrified using a Vitrobot Mark IV 
with a blot time of 6.5 s in the environment of 23 ℃ and 
100% humidity before the grid was plunged into liquid 
ethane.

All cryo-EM data were collected on a 200  kV FEI 
Glacios Cryo Transmission Electron Microscope 
(Thermo Fisher Scientific) equipped with a FEI Falcon 
3EC direct detector. Movie stacks were collected 
automatically using the EPU software (Thermo Fisher 
Scientific) at a magnification of 92,000 × with a pixel size 
of 1.57 Å. Each movie stack of Tr67-Omicron BA.1 spike 
complexes with 40 frames was exposed under a total dose 
of 43 electrons per Å2. The defocus range was set from 
− 1.8 to − 2.4 μm. In total, 4969 videos were acquired for 
the single particle analysis.

As illustrated in (Additional file  1: Fig. S4, for single 
particle analysis, the frames of each image stack (skipping 
the first and last frame) were motion-corrected with 

(3)Inhibition ratio =

(

1−
X− CC

VC − CC

)

× 100%
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RELION [77] implementation of the MotionCor2 
[78] algorithm and the corrected micrographs were 
imported into cryoSPARC [79] for further processing. 
Contrast transfer function (CTF) value estimations 
were performed by Patch CTF Estimation. Particle 
coordinates were automatically picked by PARSED [80] 
with diameters from 100 to 300  Å, and the 5,250,976 
particles were extracted with a box size of 280 pixels 
and a pixel size of 1.57  Å. Several rounds of iterative 
2D classifications were then performed to select well-
defined particle images, and about 254,339 particles were 
selected for further 3D reconstruction. Three parallel 
ab  initio reconstructions were conducted in cryoSPARC 
and a total of 144,101 particles contributing to the spike-
like density were selected. These particles were subjected 
to one round of homogeneous refinement with C3 
symmetry, and eventually generated an EM density map 
at the resolution of ~ 9 Å.
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