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Abstract

Analysis of specific gene expression in single living cells may become an important technique for
cell biology. So far, no method has been available to detect mRNA in living cells without killing or
destroying them. We have developed here a novel method to examine gene expression of living
cells using an atomic force microscope (AFM). AFM tip was inserted into living cells to extract
mRNAs. The obtained mRNAs were analyzed with RT-PCR, nested PCR, and quantitative PCR.
This method enabled us to examine time-dependent gene expression of single living cells without

serious damage to the cells.

Background

The properties of individual cells depend on molecules
that constitute them. The different combinations of pro-
tein expression result in structural and functional changes
of individual cells. Although most of these events depend
on differences in gene expression, no method is available
to examine time dependent gene expression of individual
living cells. There are other methods to analyze mRNA
from single cells. For example, the cellular content may be
aspirated into a fine capillary and mRNAs could be ana-
lyzed with PCR [1], differential display [2], or amplified
antisense RNA procedure using T7 RNA polymerase [3].
These techniques did not allow examining time depend-
ent gene expression of individual living cells because their
mRNA harvesting procedures resulted in partial or com-
plete disruption of the cells. The goal of our study is a time
dependent measurement of gene expression of a single
living cell, as defined by mRNA expression. The change of
gene expression in a single living cell may determine its
uniqueness, function, and biochemical activities. We refer
to this field as single cell biology and believe it will pro-
vide exciting new opportunities to better understand new
biochemical processes of cell biology.

Recent progress in the field of nanotechnology has ena-
bled us to perform direct manipulations of biological ma-
terial containing proteins [4-6], DNA molecules [7,8],
organelles and cells [9-13]. The AFM has been considered
to be an important tool in the study of nanotechnology.
Since its invention in 1986 by Binnig et al. [14], the AFM
has been increasingly used in biological systems [15-21]
because it can be operated in a liquid environment as well
as under ambient conditions. The AFM has the ability not
only to produce high-resolution images of biological sam-
ples, but also to manipulate the sample because the AFM
tip makes direct contact with the sample surface with high
positional accuracy. In this paper, we developed a method
to examine mRNA expression of single living cells without
severe damage to the cells. This method also can be ap-
plied to extracting other biomolecules as well as mRNA
from living cells.

Results and Discussion

The B-actin mRNA expression of individual living cells
was examined using rat fibroblast-like VNOf90 cells and
mouse osteoblast-like MC3T3-E1 cells (Fig. 1a). Although
B-actin mRNAs are usually distributed throughout the
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Principal features of the experimental procedure. A target
region of a cell on a Petri dish was positioned underneath the
AFM tip through the observation of an inverted optical
microscope combined with AFM (a). The AFM tip was then
lowered onto the cell and inserted into it, and held for
approximately 45 s to allow the tip to bind the cell ingredient
containing mRNA with physical absorption. The tip was then
lifted off the cell and placed into a PCR tube. To avoid the
contamination of nucleic acid, all AFM instruments were
treated with DNAZap (Ambion, TX, USA) and then washed
with RNase free water extensively. B-actin mMRNA expres-
sion of five rat VNOF90 cells (b) and two mouse MC3T3-E|
cells (c) was examined as shown in the even numbered lanes.
In the negative control (odd numbered lanes), the tip was
contacted with media without the insertion of it into the cell.

cytoplasm uniformly, they are localized to the leading
edge of the cells when the cells start to migrate [22,23].
Thus we chose the single cells surrounded by other cells
that inhibit the migration of the target cells. PCR products
for rat and mouse B-actin mRNAs were detected as shown
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in the even numbered lanes of Figs. 1b and 1c. In the neg-
ative control, PCR products were not detected without the
insertion of the tip into the cell (odd numbered lanes in
Figs. 1b and 1c). Experiments for the detection of B-actin
mRNA and the negative control were performed
alternately.

In Table 1, the detection of B-actin mRNA from single
VNOf90 cells is presented. We performed our new meth-
od on 102 single living cells. The number of assays against
single cells ranged from one to six. The interval time be-
tween one assay to the next one against the same cell
ranged from 5 to 60 min. When we performed assays six
times against three single cells, the following results were
obtained. In cases of two single cells, PCR products were
detected at all six assays. In case of another cell, PCR prod-
ucts were detected five times out of 6 assays. Seventy-two
positive results were obtained when we tried one assay
against 73 single cells. In total, we performed 189 assays
on 102 single living cells, and 182 positive results were
obtained (96.3%). We encountered seven negative results
which may have resulted from the following three
reasons:

1) The procedure for inserting the tip into the cell was not
successful.

2) The PCR reaction was not successful.

3) B-actin mRNA did not exist in the cell where the tip was
inserted.

The first two results were considered to be experimental
errors, and the last one was considered to result from the
probability of the existence of mRNA. Nevertheless, the
high probability of detecting B-actin mRNA indicated that
it could be used as a positive marker for examining the ex-
pression of other genes which would exclude the first two
reasons from consideration. A population of mammalian
cells grown in culture medium contains about one mil-
lion mRNAs per cell. Fibroblast cells are reported to con-
tain 2,000~3,000 copies of B-actin mRNA per cell [24].
Our method can be applied to detect other mRNAs whose
copies number more than several thousand per cell. To ex-
tract mRNA specifically or detect smaller numbers of mR-
NA, the use of AFM tips coupled with oligo(dT)n might be
helpful.

In the next experiment we tried to examine if our method
could be used to determine more than one kind of gene at
the same time. As shown in Fig. 2a, VNOf90 cells ex-
pressed fibronectin protein as well as B-actin. AFM tips in-
serted into the single living cells were placed into RT-PCR
solution that contained primers for both B-actin and fi-
bronectin. Five pl aliquots of the first PCR product were
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Table I: The detection of B-actin mMRNA from single VNOf90 cells.
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The number of assays
against single cells

The number of B-actin positive
cases

The number of cells

The total number of 3-
actin positive cases

The total number of assays
on each case

| |

| 0

2 2

2 |

2 0

3 3

3 2,1,0or0
4 4

4 3

4 2,l,0r0
5 5

5 4

5 3,2,1,0r0
6 6

6 5

6 432,1,0r0

72 72 72
| 0 |
4 8 8
| | 2
0 0 0
| 3 3
0 0 0
12 48 48
3 9 12
0 0 0
4 20 20
| 4 5
0 0 0
2 12 12
| 5 6
0 0 0
102 182 189

put into a second PCR solution containing B-actin or fi-
bronectin primer sets. In total, we assayed 10 single living
cells and the results of five single cells are shown in Fig.
2b. PCR products for both B-actin and fibronectin mRNAs
were detected in all of the 10 different single cells.

In order to examine time dependent gene expression of
single living cells, the response of rat VNOF90 cells to se-
rum has been used as a model for studying the changes in
c-fos gene expression (Fig. 3a). In our study the cells were
induced to enter a quiescent state with DMEM containing
0% FBS for 24 hours and then stimulated by addition of
10% FBS and 10 pg/ml cycloheximide (CHX) for 2 hours.
CHX is well known to induce increases in c-fos mRNA ex-
pression level to prevent degradation of c-fos mRNA. The
cell medium was then changed to DMEM containing no
FBS and 10 pg/ml CHX for one hour. Finally, the cell me-
dium was changed to DMEM containing 10 ng/ml CHX
(Condition A) or no CHX (Condition B). Total RNA from
confluent cells on 60 mm dishes at different times was ex-
tracted using the procedures of the RNA Isolation Kit
(Gentra System, MN, USA). Quantification of mRNA was
carried out with quantitative PCR. The 3-actin mRNA lev-
els were more constant than the c-fos mRNA levels in both
A and B conditions (Fig. 3b). Although the c-fos mRNA
levels decreased rapidly in the absence of CHX from 3 to
5 hours following stimulation, they decreased gradually
in the presence of CHX from the cell population analysis.
The detection of c-fos and B-actin mRNAs from single
cells, termed A1, A2, and A3 cells (from condition A) was
examined with our method (Fig. 4). The change of B-actin
mRNA levels was also small compared with that of c-fos

mRNA levels in single cell analysis as well as in the cell
population analysis. Although the expression profile of c-
fos mRNA in the A1 cell was very similar to the result ob-
tained from the cell population analysis, the A2 and A3
cells showed different expression profiles. These results
suggest that c-fos mRNA expression levels are not uniform
among individual cells. Although c-fos mRNA was not de-
tected in the A3 cell at 3.5 h, B-actin mRNA was detected,
indicating that the experimental errors were able to be
eliminated. In condition B (B1, B2, and B3 cells), c-fos
mRNA expression was not observed in any of the cases at
5 h following stimulation. This result corresponded to the
result from the cell population analysis. The expression of
c-fos mRNA in the B1 cell was observed only at 3 h. In the
B2 cell, c-fos mRNA expression was detected at 3 h and at
3.5 h and not after 4 h. In the B3 cell, c-fos mRNA expres-
sion was detected at 3 h and not at 3.5 h, and then detect-
ed again at 4 h. This type of pattern was also observed in
the A3 cell. These results indicate the possibility that the
fluctuation of c-fos mRNA expression level occurs at the
single cell level. Figure 4c shows the histogram of the
number of B-actin mRNAs bound to AFM tips. In most
cases, their number was equal to or less than 20. We per-
formed nested PCR as well as quantitative PCR followed
by RT-PCR to examine c-fos mRNA expression. When c-
fos mRNA was not detected with quantitative PCR, the
nested PCR product was not detected on agarose gels,
either.

Conclusions
We provide a powerful new technique to study gene ex-
pression in mammalian single cells. Our studies

Page 3 of 8

(page number not for citation purposes)



Journal of Nanobiotechnology 2003, 1 http://www.jnanobiotechnology.com/content/1/1/2

Rat VNOF90 Cells

(a) Fibronectin (b) B-actin

o

—
(c) 100 pym

Fibronectin

B-actin

Figure 2
Detection of both 3-actin and fibronectin mRNAs from single living cells. Immunocytochemistry demonstrated VNOf90 cells
expressed both fibronectin (a) and B-actin (b). Both [-actin and fibronectin mMRNAs were detected in all of the 5 different sin-

gle cells (c).
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Figure 3

The cell population analysis. The response of VNOf90 cells to serum and CHX was used as a model for studying time depend-
ent gene expression (a). VNOF90 cells were induced to enter a quiescent state by serum deprivation for 24 hours and then
stimulated by addition of DMEM containing 10% FBS and 10 pg/ml CHX. The addition of serum and CHX induced the changes
in gene expression including c-fos mRNA. (b) Relative mRNA levels of the cell population were measured with quantitative RT-
PCR. The ordinate represents a common logarithm of a relative initial mMRNA quantity. The 3-actin mRNA levels were con-
stant in both A and B conditions. The c-fos mRNA levels in condition B decreased more rapid than those in condition A.
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Figure 4

The single cell analysis. Time dependent mMRNA expression of single living cells was examined (a and b). The ordinate repre-
sents a common logarithm of initial MRNA copies. The nd on the ordinate indicates that the product was not detected with
quantitative PCR. In this case, the PCR product was not detected with ethidium bromide-stained 1% agarose gel followed by
nested PCR, either. The histogram shows the number of -actin mRNAs detected with single cell assay (c). Quantitative PCR
was performed with standard curves using DNA fragments from rat p-actin.
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demonstrate that time dependent gene expression pat-
terns in single cells are not always similar to those in large
cell populations. At the single cell level, gene expression
patterns sometimes fluctuate up and down. We expect
that these phenomena will aid in the understanding of the
properties of individual cells.

Methods

Preparation of cells

Rat fibroblast-like VNOf90 cells derived from the vomer-
onasal organ [25] and mouse osteoblast-like MC3T3-E1
cells obtained from RIKEN GenBank were grown in 35
mm Petri dishes in Dulbecco's minimum essential medi-
um (DMEM) supplemented with 100 U/mL penicillin,
100 pg/mL streptomycin, and 10% heat-inactivated fetal
bovine serum (FBS). The cells were washed three times
with  DMEM lacking FBS and used for the AFM
experiments.

mRNA extraction with AFM

Manipulation of the AFM tip (NP, Digital Instruments,
Santa Barbara, CA) was carried out using an atomic force
microscope (NVB-100, Olympus, Inc.). The AFM tip was
positioned above a target cell under an optical micro-
scope. The AFM tip approached the cell surface using a
step motor command of the AFM operation. The touch of
the AFM tip on the cell surface was detected by the deflec-
tion signal of an AFM cantilever. More loading forces were
applied to insert the AFM tip into the cell membrane. The
AFM tip was inserted into the cytoplasm region around
the nucleus to collect mRNA. After the AFM tips were in-
serted into the single cells, the tips were then placed into
PCR tubes.

Immunocytochemistry

VNOf90 cells were fixed in 3.7% formaldehyde for 15
min, washed three times with PBS and then incubated
with primary antibodies to fibronectin (a) in PBS contain-
ing 0.1% Tween-20 and 10% FBS for 12 h was followed by
three washes and incubation with FITC labeled secondary
antibodies and rhodamin-phalloidin bound to actin fila-
ments (b). After being washed three times with PBS, the
cells were examined using fluorescent microscopy.

PCR

RT-PCR was performed with a one step RT-PCR kit (Qia-
gen, Valencia, CA) according to the kit's instructions with
0.2 uM of each primer in a 50 pl reaction volume. The se-
quences of the PCR primer pairs (5' to 3') that were used
are as follows: mouse p-actin, 5'-primer 5'-GT-
GGGCCGCTCTAGGCACCAA-3' and 3'-primer 5'-
CTCTTTGATGTCACGCACGATTTC-3'; rat p-actin, 5'-
primer 5'-TTGTAACCAACTGGGACGATATGG-3' and 3'-
primer 5'-GATCITGATCTTCATGGTGCTAGG-3'; rat fi-
bronectin, 5'-primer 5'-CCCTCCATTTCTGAGTGGTC-3'
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and 3'-primer 5'-GACAGTGAGTCCTGTGGGGT-3'; and
rat c-fos, 5'-primer 5'-ATGATGTTCTCGGGTT-3' and 3'-
primer 5'-TCACAGGGCTAGCAGTGTGG-3'. First-strand
cDNA synthesis was performed at 50°C for 30 min, at
which time the reaction was heated to 95°C for 15 min to
activate HotStrTaq DNA polymerase. The amplification
reaction was carried out for 30 cycles, and each cycle con-
sisted of 94°C for 45 s, 55°C for 45 s, and 72°C for 1 min,
followed by a final 10 min elongation at 72°C.

Nested PCR was carried out for 20 cycles, and each cycle
consisted of 94°C for 45 s, 55°C for 45 s, and 72°C for 1
min, followed by a final 10 min elongation at 72°C. A 5
pl volume of the reaction product from the first round was
transferred to 45 ul of a second round mix for the 2nd
round. The sequences of the PCR primer pairs (5' to 3')
that were used are as follows: mouse B-actin, 5'-primer 5'-
GACTCCTATGTGGGTGACGAGG-3' and 3'-primer 5'-
GGATCITCATGAGGTAGTCCGTCA-3'; rat B-actin, 5'-
primer 5'-AAGATTTGGCACCACACTTTCTAC-3' and 3'-
primer 5'-ACACTTCATGATGGAATTGAATGT-3'; rat fi-
bronectin, 5'-primer 5'-CCTTAAGCCITCTGCTCTGG-3'
and 3'-primer 5'-CGGCAAAAGAAAGCAGAACT-3'; and
rat c-fos, 5'-primer 5'-AGAATCCGAAGGGAAAGGAA-3'
and 3'-primer 5'-ATGATGCCGGAAACAAGAAG-3'. PCR
products were visualized on ethidium bromide-stained
1% agarose gels and then photographed.

Quantitative PCR was performed with an Applied Biosys-
tems Prism 7000 sequence detection system. Reactions
were performed in a 50 pl volume including 40 pg of total
RNA and buffer included in the SYBR Green I RT-PCR
Mastermix (Qiagen, CA, USA). PCR cycling conditions
were 50°C for 30 min, 95°C for 15 min, and 40 cycles of
94°Cfor 15, 55°C for 30 s, and 72°C for 45 s. Amplifi-
cation plots and predicted Ct values from the exponential
phase of the PCR were analyzed with ABI Prism 7000 SDS
software. A standard curve was generated by using total
RNA from the cells at 3 h diluted at 4-fold intervals. All
standard curves and sample assays were performed in
quadruplicate to improve the accuracy of mRNA tran-
script detection. For single cell assay, quantitative PCR
was performed with the SYBR Green I PCR Mastermix
(Qiagen, CA, USA) according to the kit's instructions with
0.6 uM of each primer in a 50 pl reaction volume. A 1 pl
volume of the reaction product from the first round was
transferred to 49 pl of the second round mix for the 2nd
round. The sequences of the PCR primer pairs (5' to 3')
that were used are as follows: rat B-actin, 5'-primer 5'-
GTAGCCATCCAGGCTGTGTT-3'and 3'-primer 5'-CCCT-
CATAGATGGGCACAGT-3'; and rat c-fos, 5'-primer 5'-
AGAATCCGAAGGGAAAGGAA-3' and 3'-primer 5'-AT-
GATGCCGGAAACAAGAAG-3'. Standard curves were gen-
erated by using DNA fragments from rat B-actin (Toyobo,
Osaka, Japan) and c-fos at 4-fold intervals. DNA frag-
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ments from rat c-fos were generated with RT-PCR as de-
scribed previously and then isolated with Wizard SV Gel
and PCR Clean-up System (Promega, WI, USA). The con-
centration of the product was determined with an absorb-
ance at 260 nm.

List of abbreviations
AFM: atomic force microscope

PCR: polymerase chain reaction
CHX: cycloheximide
DMEM: Dulbecco's modified Eagle's medium

Authors' contributions

TO conceived of the study and drafted the manuscript.
HU carried out PCR and AFM. HK carried out AFM. Al par-
ticipated in the design of the study and coordination. All
authors read and approved the final manuscript.

References

l. Lambolez B, Audinat E, Bochet P, Crepel F and Rossier ]| AMPA re-
ceptor subunits expressed by single Purkinje cells. Neuron
1992, 9:247-258

2. Dulac C and Axel R A novel family of genes encoding putative
pheromone receptors in mammals. Cell 1995, 83:195-206

3. Eberwine ], Yeh H, Miyashiro K, Cao Y, Nair S, Finnell R, Zettel M and
Coleman P Analysis of Gene Expression in Single Live
Neurons. Proc Natl Acad Sci USA 1992, 89:3010-3014

4. Muller D Observing structure, function and assembly of single
proteins by AFM. Prog Biophys Mol Biol 2002, 79:1-43

5. Oesterhelt F  Unfolding pathways of
bacteriorhodopsins. Science 2000, 288:143-146

6.  Viani MB, Pietrasanta LI, Thompson |B, Chand A, Gebeshuber IC,
Kindt JH, Richter M, Hansma HG and Hansma PK Probing protein-
protein interactions in real time. Nat Struct Biol 2000, 7:644-647

7.  Dahlgren P and Lyubchenko Y Atomic force microscopy study of
the effects of Mg(2+) and other divalent cations on the end-
to-end DNA interactions. Biochemistry 2002, 41:11372-8

8. Sanchez-Sevilla A, Thimonier ], Marilley M, Rocca-Serra | and Barbet |
Accuracy of AFM measurements of the contour length of
DNA fragments adsorbed on mica in air and in aqueous
buffer. Ultramicroscopy 2002, 92:151-158

9. Langer MG, Fink S, Koitschev A, Rexhausen U, Horber JK and Rup-
persberg JP Lateral mechanical coupling of stereocilia in coch-
lear hair bundles. Biophys | 2001, 80:2608-262 |

10. Sagvolden G, Giaever |, Pettersen EO and Feder | Cell adhesion
force microscopy. Proc Natl Acad Sci U S A 1999, 96:471-476

I'l.  Lehenkari PP, Charras GT, Nykanen A and Horton MA Adapting
atomic force microscopy for cell biology. Ultramicroscopy 2000,
82:289-295

12.  Charras G and Horton M Single cell mechanotransduction and
its modulation analyzed by atomic force microscope
indentation. Biophys | 2002, 82:2970-81

13.  Engel A and Muller D Observing single biomolecules at work
with the atomic force microscope. Nature Structural Biology 2000,
7:715-718

4. Binnig G, Quate C and Gerber C Atomic force microscope. Phys
Rev Lett 1986, 56:930-933

15.  Fotiadis D, Scheuring S, Muller SA, Engel A and Muller D) Imaging
and manipulation of biological structures with the AFM. Mi-
cron 2002, 33:385-397

16. Bustamante C, Macosko ] and Wuite G Grabbing the cat by the
tail: manipulating molecules one by one. Nat Rev Mol Cell Biol
2000, 1:130-136

17. Osada T, Takezawa S, Itoh A, Arakawa H, Ichikawa M and Ikai A The
distribution of sugar chains on the vomeronasal epithelium

individual

http://www.jnanobiotechnology.com/content/1/1/2

observed with the atomic force microscope. Chemical™ @Sens-
es 1999, 24:1-6

18. Osada T, Arakawa H, Ichikawa M and lkai A Atomic force micro-
scopy of histological sections using a new electron beam
etching method. | Microsc 1998, 189:43-49

19.  WongSS, Joselevich E, Woolley AT, Cheung CL and Lieber CM Cov-
alently functionalized nanotubes as nanometre-sized probes
in chemistry and biology. Nature 1998, 394:52-55

20. Guthold M, Falvo M, Matthews WG, Paulson S, Mullin J, Lord S, Erie
D, Washburn S, Superfine R, Brooks FP Jr and Taylor RM 2nd Inves-
tigation and modification of molecular structures with the
nanoManipulator. | Mol Graph Model 1999, 17:187-197

21. lkai A STM and AFM of bio/organic molecules and structures.
Surface Science Reports 1996, 26:261-332

22. Kislauskis E, Zhu X and Singer R Beta-Actin messenger RNA lo-
calization and protein synthesis augment cell motility. | Cell
Biol 1997, 136:1263-1270

23. Lawrence ] and Singer R Intracellular localization of messenger
RNAs for cytoskeletal proteins. Cell 1986, 45:407-415

24. Latham VM Jr, Kislauskis EH, Singer RH and Ross AF Beta-actin
mRNA localization is regulated by signal transduction
mechanisms. | Cell Biol 1994, 126:1211-1219

25. OsadaT, lkai A, Costanzo RM, Matsuoka M and Ichikawa M Contin-
ual neurogenesis of vomeronasal neurons in vitro. | Neurobiol
1999, 40:226-233

Publish with Bio Med Central and every
scientist can read your work free of charge

"BioMed Central will be the most significant development for
disseminating the results of biomedical research in our lifetime."
Sir Paul Nurse, Cancer Research UK
Your research papers will be:
« available free of charge to the entire biomedical community
« peer reviewed and published immediately upon acceptance
« cited in PubMed and archived on PubMed Central
« yours — you keep the copyright

Submit your manuscript here:

O BioMedcentral
http://www.biomedcentral.com/info/publishing_adv.asp

Page 8 of 8

(page number not for citation purposes)



http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=1323310
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=1323310
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7585937
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7585937
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=48793
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=48793
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=1557406
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12225775
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12225775
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10.1016/S0079-6107(02)00009-3
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10753119
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10753119
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10.1126/science.288.5463.143
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10932247
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10932247
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10.1038/77936
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12234179
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12234179
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12234179
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10.1021/bi026102e
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12213016
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12213016
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12213016
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10.1016/S0304-3991(02)00128-6
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11371438
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11371438
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9892657
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9892657
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10.1073/pnas.96.2.471
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15160
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10741681
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10741681
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10.1016/S0304-3991(99)00138-2
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12023220
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12023220
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12023220
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10966636
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10966636
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10.1038/78929
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10033323
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10.1103/PhysRevLett.56.930
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11814877
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11814877
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10.1016/S0968-4328(01)00026-9
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11253365
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11253365
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10.1038/35040072
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10.1093/chemse/24.1.1
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10.1093/chemse/24.1.1
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10.1093/chemse/24.1.1
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9503657
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9503657
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9503657
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10.1046/j.1365-2818.1998.00269.x
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9665127
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9665127
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9665127
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10.1038/27873
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10736776
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10736776
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10736776
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10.1016/S1093-3263(99)00030-3
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10.1016/S0167-5729(97)80003-9
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9087442
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9087442
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10.1083/jcb.136.6.1263
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=3698103
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=3698103
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8063858
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8063858
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8063858
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10413452
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10413452
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10.1002/(SICI)1097-4695(199908)40:2<226::AID-NEU8>3.0.CO;2-R
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/publishing_adv.asp
http://www.biomedcentral.com/

	Abstract
	Background
	Results and Discussion
	Table 1

	Conclusions
	Methods
	Preparation of cells
	mRNA extraction with AFM
	Immunocytochemistry
	PCR

	List of abbreviations
	Authors' contributions
	References

