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Abstract

Natural polymers are able to self-assemble into versatile nanostructures based on the information encoded into their
primary structure. The structural richness of biopolymer-based nanostructures depends on the information content of
building blocks and the available biological machinery to assemble and decode polymers with a defined sequence.
Natural polypeptides comprise 20 amino acids with very different properties in comparison to only 4 structurally similar
nucleotides, building elements of nucleic acids. Nevertheless the ease of synthesizing polynucleotides with selected
sequence and the ability to encode the nanostructural assembly based on the two specific nucleotide pairs underlay the
development of techniques to self-assemble almost any selected three-dimensional nanostructure from polynucleotides.
Despite more complex design rules, peptides were successfully used to assemble symmetric nanostructures, such as fibrils
and spheres. While earlier designed protein-based nanostructures used linked natural oligomerizing domains, recent
design of new oligomerizing interaction surfaces and introduction of the platform for topologically designed protein fold

incentive for further development in this direction.

may enable polypeptide-based design to follow the track of DNA nanostructures. The advantages of protein-based
nanostructures, such as the functional versatility and cost effective and sustainable production methods provide strong
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Introduction
The versatility of biopolymers can be used to rationally de-
sign new molecules and assemblies with structures and
functionalities unseen in nature. The ability of biopolymers
to self-assemble into complex shapes and structures defined
at the nanometer scale, and our competence of sustainable
large-scale production using cell factories makes them
highly desirable for diverse technological applications. In
the rapidly-growing research area of modern nanobiotech-
nology the natural components polypeptides and nucleic
acids have been employed as building blocks for the assem-
bling of new designed nanostructures and nanomaterials.
Bionanotechnologists have in the last decades achieved im-
portant advances in protein-based and particularly DNA-
based responsive nanostructures, which can now be designed
to self-assemble into almost any selected shape.

Molecular self-assembly as the main organizing principle
of biological systems is also a widely applied strategy in the
nanotechnology as the driving force for the assembly of
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artificial nanostructures. In self-assembly the final structure
is encoded by interactions of its building elements defined
by their properties and the order of building blocks within
the linear polymer. The shapes and functions of both,
DNA- and protein-based nanostructures are encoded by
the sequence of their constituents, nucleotides and amino
acids. Additionally, the architecture of both type of the
nanostructures can be affected also by the environmental
factors, such as solvent, pH, temperature and building
blocks concentration.

DNA nanostructures are based on the Watson-Crick
nucleic base complementarity. There are only two differ-
ent base pairs based on a specific pairwise interaction,
where stacking with neighboring pairs underlies the for-
mation of stable double-helical domains that serve as
the nanostructural building blocks. Some of the most
spectacular examples of the potentials of nanobiotech-
nology have been demonstrated by DNA-based nano-
structures. In the nature the primary function of nucleic
acids are the storage, processing and mediation of gen-
etic information; however natural structures such as
aptameres, telomeres and partially the ribosome as one
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of the key and most complex nanodevices are formed by
nucleic acids assembled into 3D structures. The rele-
vance of the physiological role of nucleic acids that per-
form their function in form of self-assembled noncoding
RNA transcripts is still unknown. On the other hand
artificial rationally designed DNA nanostructures, which
utilize a narrower subset of interactions from aptameres,
can adopt a huge diversity of 2D or 3D shapes [1-5].

In contrast to designed DNA nanostructures, the ra-
tional design of protein nanostructures is much more
complicated due to the complex cooperative interac-
tions between amino acids stabilizing the fold of native
proteins. The comparison of some features of self-
assembled DNA- and protein nanostructures is pre-
sented in Figure 1. Structural folding of most natural
proteins still cannot be easily predicted from their primary
structure due to contribution of many cooperative and
long-range interactions between amino acids, therefore
de novo design of completely new protein folds is even
more challenging.

However, a significant progress has been recently
achieved in the development of strategies for building
artificial self-assembled bionanostructures, and a range
of both, DNA- and protein nanostructures rapidly in-
creased in last two decades. In this review we mainly
focus on protein-based nanostructure strategies, while
DNA nanotechnology has been discussed in detail in
many recent reviews [6-12].
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Designed DNA nanostructures

In 1982, Seeman proposed to use DNA as the structural
material for the bottom-up self-assembly [13] and he is
accepted as the founder of the field of DNA nanotech-
nology. Since then, DNA-based self-assembly achieved
spectacular results relying on the base-pairing specificity
of nucleotides, using DNA synthesis technology, com-
puter based design and, above all, imaginative design.
Over the last three decades self-assembled DNA nano-
structures have been extensively studied and several dif-
ferent approaches for building DNA nanostructures have
been developed. Self-assembled DNA nanostructures
range from 3D structures with a well-defined shape
[2,4,14-17] to a variety of complex dynamic DNA de-
vices [8,18-20]. This avenue of research also spawned
DNA computing [21,22] and design of dynamic devices
[8,23,24], which are however beyond the scope of this
review.

DNA self-assembly is a robust and flexible biomimetic
strategy for molecular construction that is directed by
the information embodied in the nucleotide sequence.
Development of DNA nanostructures encompasses sev-
eral different approaches (Figure 2), where the design of
nanostructures is based on the assembly of:

— several medium-sized DNA (few 10—100 nucleo-
tides) oligonucleotides that form finite sized nano-
structures [14];
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Figure 1 Some features of self-assembled DNA- and protein nanostructures. Natural proteins comprise 20 amino acid residues with diverse
properties in comparison to only 4 structurally similar nucleotides, building elements of nucleic acids. The advantages of protein nanostructures
include also cheaper manufacturing of building blocks, as well as the multiple cooperative interactions that govering protein nanostructures.
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Figure 2 Different approaches for building DNA nanostructures. The design of DNA nanostructure is based on the assembly of several
medium-sized oligonucleotides that form either (a) a finite sized nanostructure or (b) assembled building blocks that further oligomerize into a
finite sized nanostructure. () DNA nanostructure can be assembled from a single long DNA scaffold (blue) and short oligonucleotides (red, green)
that hold the scaffold in place. (d) 2D and 3D nanostructures can be constructed by short DNA strands, DNA bricks.
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— several medium-sized DNA oligonucleotides that as-
semble into building blocks that further oligomerize
into finite sized structures such as different polyhe-
dra or into lattices [3,25];

— single long DNA scaffold (e.g. encompassing several
1000 nucleotides from the single stranded DNA
phage) that is shaped into selected structure by the
addition of short oligonucleotide clamps a.k.a. DNA
origami technique, invented by Paul Rothemund
[26]. This approach can result in complex 2D or 3D
shapes such as molecular raster images, box, sphere
etc. [27-30];

— large number of short DNA bricks (32 or 42
nucleotide long strands that form U-shaped brick)
that fill the 2D plane or 3D space, where the se-
lected structure is formed by the omission of appro-
priate DNA bricks from the assembly mixture.
Almost any 2D or 3D shape can be formed by this
approach [15,31].

An important advantage of DNA-based nanostructures
is that it is possible to address the selected positions
within the 2D or 3D nanostructures at approximately
5 nm resolution and introduce oligonucleotides with se-
lected functionalities, such as different organic com-
pounds, fluorophores, metal binding groups, proteins
etc. into those positions, thereby functionalizing DNA
nanostructures [9,32-36].

RNA has the distinct advantage that ssSRNA could eas-
ily be produced in vivo in order to promote the self-
assembly. This property was used to prepare RNA-based

scaffolds with attached sites for functional proteins fused
to specific sequence RNA binding domains. While those
in vivo assembled structures were not well characterized,
the scaffold strongly enhanced the reaction yield [37]
similar to the DNA-based scaffolded enzymes, where the
arrangement of enzymes had been linear [38]. It is
hoped that this in vivo approach will be further devel-
oped for in vivo applications. ssDNA could also be pro-
duced in vivo, demonstrated by the self-assembly of a
tetrahedron [39]. Isothermal DNA nanostructure assem-
bly strategy has been developed that could further facili-
tate future DNA self-assembly in vivo [40].

DNA nanostructures were used to make devices that
were functional in the cellular milieu; e.g. drug delivery
container that encapsulates cargo, such as therapeutic
antibodies, while opening of the container could be con-
trolled by binding of the trigger signals to the aptamer
lock that regulates opening of the container only if the
triggering signals for both of the two locks are present
[41]. DNA origami seems to be stable in vivo indicating
that it is relatively protected against nucleases. There are
also reports on the use of DNA nanostructures as the
constituents of vaccines [42-44]. However real applica-
tions of DNA nanostructures are at the moment quite
rare and essentially all DNA nanostructures are prepared
by chemical synthesis, which limits the technological ap-
plications due to the cost and scale of production.

Protein nanostructures
Proteins provide masterful examples of complex self-
assembling nanostructures with properties and functiona-
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lities beyond the reach of any human-made materials. It is
estimated that there are only few thousand different protein
folds in nature, and recently the number of new determined
protein fold basically trickled to a halt despite determination
of tens of thousands of new protein structures each year. So
far folds of only few small protein domains can be accurately
predicted [45-48] and design of completely new folds with-
out resemblance to any of the existing native folds repre-
sents even a greater challenge [49].

Larger natural proteins have evolved through combi-
nations of several smaller independently folding domains.
Protein oligomerization based on the symmetric oligome-
rization domains is an important source of suprastructured
proteins [50]. Existing protein oligomerization domains have
been recognized as suitable building blocks for the predict-
able bottom-up design of artificial protein nanostructures.
Strategies that used modified natural domains, or genetically
or chemically linked secondary structure elements for self-
assembling, and resulted in formation of symmetric inter-
molecular protein assemblies, lattices and heterogeneous
cage-like assemblies, are described in reviews [51-53].
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Recently we presented a new approach where a single
polypeptide chain composed of concatenated coiled-coil-
forming peptides self-assembled into a new topological fold,
asymmetric tetrahedron-like cage, which is defined and sta-
bilized by the specific pairing of the coiled-coil-forming seg-
ments arranged in a precisely defined order rather than
cooperative packing of hydrophobic protein core [54].

Assemblies based on linked natural protein

oligomerizing domains

The first strategy for the creation of designed protein
nanostructures relied on interactions between oligomeriz-
ing protein domains which typically comprise 100-200 or
more amino acid residues. The domains can self-assemble
non-covalently, but specifically into larger superstructures.
Attempts in this direction have been pioneered with fu-
sion strategy [55]. Two different oligomerizing domains,
one promoting dimerization and another one promoting
homo-trimerization were linked by a semi-rigid linker
(Figure 3a). Several copies of such a fusion protein were
able to self-assemble into symmetric small cage-like but

-
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Figure 3 Design strategies for symmetric domain-based intermolecular protein assemblies. (a) Fusion of natural oligomerizing protein
domains. Two different oligomeric protein domains (dimerization domain (pink), trimerization domain (blue)) are genetically fused via helical
linker (violet) to obtain a single chain building block which self-assembled into a 12-subunit cage-like structure with tetrahedral shape (4d9j) [56].
(b) Novel protein domain interface design. Computational design of additional interaction surfaces (red) on natural trimerization domain (blue)
leads to the formation of 12-subunit assembly with tetrahedral - or 24-subunit assembly with octahedral symmetry (4ddf) [62].
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heterogeneous assemblies, or extended fibrils, depending
on the length of the helical linker. Recent refinement of
the original protein sequence resulted in a homogeneous
12-subunit assembly, confirmed by X-ray crystal structure
determination. The structure of this oligomeric nanostruc-
ture reveals tetrahedral geometry with 16 nm diameter
[56,57].

This approach provides the possibility to create smart
bionanomaterials by regulating the assembly and disas-
sembly. Self-assembly of the fusion protein composed of
the dimerizing gyrase B domain and trimerization do-
main can be driven by the addition of a small molecule.
The addition of pseudo-dimeric gyrase B ligand, cou-
mermycin, induced formation of hexagonal assemblies
and its dissociation by the subsequent addition of a
monomeric ligand novobiocin, which competes for bind-
ing to the same gyrase B site as the pseudodimeric cou-
mermycin [58].

The extended fusion strategy circumvented the problem
of connecting two oligomerization domains in a fixed rela-
tive orientation which assured well-ordered self-assembled
protein nanostructures [59]. They showed that fusion pro-
tein can be made by selecting two or more connections
between the adjacent oligomers if the two domains are
joined along an axis of symmetry that both oligome-
rization domains share. However this symmetry-matching
fusion protein strategy successfully manufactured linear
filaments, two-dimensional lattices and large solid aggre-
gates, but is not suitable for designing defined cage-like
structures.

Engineering new interaction surfaces into native

protein domains

In the strategies described above the range of suitable pro-
tein domains is limited by restrictions regarding the sym-
metry axes of the natural domains. A step further towards
the design of artificial protein nanostructures was done by
engineering domain surfaces for weak non-covalent interac-
tions in the self-assembling processes. The analysis of nat-
ural contact interfaces between protein domains disclosed
the rules governing domain association. The contacting
surfaces should be complementary and predominantly
non-polar. The contribution of hydrogen bonds and salt
bridges at the contact rim is negligible. Employing these
rules it was demonstrated that a given protein can be engi-
neered to form new contact interfaces that produced a
number of novel assemblies [60]. Algorithm Rosetta for
modeling protein-protein interactions [61] enables de novo
design of interacting interfaces which can drive the self-
assembly of designed proteins into a desired symmetric
architecture [46,62]. In a recent study, a computational de-
sign of protein nanostructures with atomic level accuracy
was described [62]. Protein building blocks, based on nat-
ural trimeric protein domains were docked together
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symmetrically to the target packing arrangements and low-
energy protein-protein interaction interfaces were designed
between building blocks in order to drive the self-assembly
(Figure 3b). The designed proteins assembled into cage-like
nanostructures with either tetrahedral or octahedral point
group symmetry which was confirmed by crystal structures.

Modular approach for de novo designed protein
nanostructures

The strategies employing oligomerizing protein domains
for designing new protein structures, described above,
are limited to homologues of known native protein folds.
The next generation engineering approaches are based
on modules that can be considerably smaller than the
typical protein domain. The modules comprise interact-
ing de novo designed secondary structure elements that
are predictably combined with specified partners to form
larger assemblies. De novo protein design refers to at-
tempts to construct completely new protein sequences
for the prescribed structures based on the principles de-
fining the stability and selectivity of building modules; in
de novo design the polypeptide sequence is selected by
the designer.

Modularity and orthogonality are two foundation con-
cepts of de novo design and engineering of new protein
nanostructures. Instead of optimization of the numerous
cooperative interactions that underpin the structures of
natural proteins, the use of well-understood structural
modules, which could be combined into complex nano-
structures, was proposed. a-helices and B-strands repre-
sent attractive protein folding motifs to serve as building
blocks for well-ordered and defined nanostructures with
complex architecture [63-67].

The most studied module for building self-assembled
protein nanostructures are interacting helical peptides and
particularly coiled-coils. They are ubiquitous facilitators of
inter- and intramolecular protein-protein interactions and
comprise two or more intertwined o-helices that are
encoded by the characteristic heptad sequence repeat,
where residues are labeled with abcdefg. The non-covalent
interactions that drive the formation of coiled-coils are the
hydrophobic effects between amino acids at positions a
and d that form a hydrophobic core of coiled-coil, and the
electrostatic inteactions between the opposite charged res-
idues at positions e and g. The rules governing coiled-coil
formation, their oligomerization state and interaction part-
ner specificity have been considerably established over
the last decades [68,69]. On the basis of those rules sets
of orthogonal designed coiled-coils as the toolkit for
the designed protein assemblies were developed [70-75].
Engineered coiled-coil polypeptides have been used to as-
semble different nanomaterials: nanofibres [76,77], mem-
branes [78], nanotubes [79], nanostructured films [80],
spherical structures [81], responsive hydrogels [82,83],
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spheres [84] etc. Homogeneous nanoparticles with regular
polyhedral symmetry, about 16 nm in diameter, were pre-
pared from single type of polypeptide chains where the
two coiled-coil modules with different oligomerization
states were joined by a short linker [85]. In another study
two oligomerizing coiled-coil peptides were tethered via
disulphide bond close to their center. The self-assembled
molecules spontaneously curved into the spherical cage-
like particles, with a hexagonal-pattern of the cage surface
and about 100 nm in diameter [84]. Another example are
discrete circular nanostructures of defined stoichiometry;
trimers or tetramers of < 10 nm were observed when
linker between two coiled-coil-forming segments compris-
ing 6-10 residues. Larger colloidal-scale assemblies as well
as flexible fibers were formed when shorter linkers limited
flexibility between peptides [86].

Designed topological protein folds based on interacting
coiled-coil modules

Recent innovative approach to construct new engineered
self-assembled protein nanostructures is based on the
concatenated interacting dimerizing modules, comprise
up to 45 amino acid residues [54]. The tetrahedral nano-
structure was built from only single polypeptide chain;
this strategy may appropriately be called designed protein
origami as opposed to native protein structures that fold
into a defined 3D structure from a single chain.

Rather than folding the structure based on the interac-
tions between residues in the hydrophobic core as for
the native proteins, the modular topological design is
based on pairwise interactions between concatenated
secondary structure elements (coiled-coil-forming seg-
ments), whose folding and orthogonality is engineered
independently. Orthogonality of used coiled-coil build-
ing modules ensures that each segment preferentially
binds to its designated partner segment within the same
polypeptide chain. The final topology is defined by the
sequential order of coiled-coil segments. The topological
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fold comprises a cavity bounded by coiled-coil dimers as
the edges of the polyhedron. This type of modular self-
assembly therefore in many aspects resembles the prin-
ciples of DNA nanostructures [2,3,26], where polyhedra
had been constructed based on the complementary
DNA segments.

According to this approach long range non-covalent in-
teractions occur between coiled-coil-forming segments,
which dimerize independently of the other segments. The
coiled-coil-forming segments are concatenated into a pre-
cisely defined order with intervening flexible linkers be-
tween each segment, to provide the hinge-like flexibility.
In the case of a monomeric tetrahedron, which was con-
structed to demonstrate the principle, the polypeptide
chain is composed of 12 designed coiled-coil dimer- form-
ing segments, each forming an orthogonal coiled-coil
dimer with its partner segment within the same polypep-
tide chain (Figure 4). In this way it forms 6 edges of a
tetrahedron, while the flexible linkers were positioned at
vertices. The polypeptide was produced in the recombin-
ant form in E. coli and self-assembled by a slow dialysis or
temperature annealing into tetrahedral structure, whose
edges measure around 5 nm. This direction opens an ex-
citing perspective for the creation of additional entirely
new protein folds. The principle of protein assembly can
benefit significantly by the application of a mathematical
topology theory, which can be used to analyze the number
of theoretical solutions and may be in the future applied
to optimize the kinetics of the assembly [87]. The results
of protein nanocage engineering show that modular de-
sign can be used for complex structures, with the potential
for applications biocatalysis, targeted drug delivery, vaccin-
ation, etc. [88].

Conclusions and future prospects

The recent successes in the design of new bionanostructures
based on DNA and protein demonstrates the potentials of
this approach to engineer new functional nanostructures.
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Figure 4 Protein origami: modular topological design of protein structure from a single polypeptide chain. A toolbox for constructing
tetrahedron-like cage comprised of six orthogonal pairs of coiled-coil-forming peptides, two antiparallel- and four parallel dimers (orientation is
denoted by arrow). Twelve peptides were concatenated in a defined order, separated by the tetrapeptide linker. The single polypeptide chain
served as a building block that self-assembled into monomeric and asymmetric tetrahedron-like nanostructure [54].
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While DNA-based nanostructures are clearly ahead of
the designed protein nanostructures in terms of the
complexity of the designed structures so far they lacked
tangible applications. Although it has been demonstrated
that DNA-based nanostructures are functional in organ-
isms, use of in vivo produced and assembled nucleic
acid-based nanostructures would represent an important
step ahead both for the production cost and new bio-
logical applications. Functionalization of nucleic acids
could combine structural design with precisely addressed
functionalities. However, proteins adopt much larger
conformational variability than nucleic acids and provide
more versatile functionality. De novo design of protein
nanostructures has been limited to small number of ap-
plication cases which predominatly utilizing repurposed
natural protein domains. Nevertheless the design of pro-
tein assemblies has matured beyond the proof of princi-
ples and is ready to face more complex challenges. New
emerging paradigms such as the topological protein folds
open completely new avenues that seem not to have been
adopted or perhaps even tested by nature. Future develop-
ments will demonstrate the potentials of different strat-
egies, or their combinations, with respect to the precise
engineering of nanostructures and the theoretical limita-
tions of different platforms. The next stage will need to
focus on application development. The potentials are nu-
merous, from targeted drug and biomolecule delivery, vac-
cine design, tissue engineering, senzors design, biocatalysis
to bionanomaterials science. The interdisciplinary ap-
proach of synthetic biology, combining structural biology,
molecular biology, mathematics, engineering and many
other disciplines, have the potential to join forces in this
exciting opportunity.
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