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Abstract

Control over spatial distribution of individual neurons and the pattern of neural network provides
an important tool for studying information processing pathways during neural network formation.
Moreover, the knowledge of the direction of synaptic connections between cells in each neural
network can provide detailed information on the relationship between the forward and feedback
signaling. We have developed a method for topographical control of the direction of synaptic
connections within a living neuronal network using a new type of individual-cell-based on-chip cell-
cultivation system with an agarose microchamber array (AMCA). The advantages of this system
include the possibility to control positions and number of cultured cells as well as flexible control
of the direction of elongation of axons through stepwise melting of narrow grooves. Such
micrometer-order microchannels are obtained by photo-thermal etching of agarose where a
portion of the gel is melted with a 1064-nm infrared laser beam. Using this system, we created
neural network from individual Rat hippocampal cells. We were able to control elongation of
individual axons during cultivation (from cells contained within the AMCA) by non-destructive
stepwise photo-thermal etching. We have demonstrated the potential of our on-chip AMCA cell
cultivation system for the controlled development of individual cell-based neural networks.

Background

Acquisition of the epigenetic information is becoming
more and more important for understanding the adapta-
tion mechanism of living systems. One of the main inter-
ests of epigenetic studies in neuroscience is how such
information is processed and recorded as plasticity within
a network pattern, what might be caused by the change in
the network pattern or by the degree of complexity related
to the network size. One of the best approaches to under-
standing the meaning of the network pattern and size is to

analyze the function of an artificially constructed neural
cell network under fully controlled conditions. For many
years the formation of neural networks (grown from indi-
vidual neurons) and the firing patterns of neurons were
investigated using microprinting techniques and the fab-
rication of cultivation substrates [1-3], patterning on sili-
con-oxide substrates [4] and three-dimensional structures
made using photolithography [5]. Conventional micro-
fabrication techniques provide structures with fine spatial
resolution, but are not very effective in studying
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epigenetic information. Making flexible microstructures
with simple steps or changing their shape during cultiva-
tion is nearly impossible with conventional techniques
since the shape is usually unpredictable and only defined
during cultivation.

We have developed a new on-chip cultivation system
capable of cultivating cells in a controlled environment
using agarose microstructures and a photo-thermal etch-
ing method [6,7]. We can produce microstructures within
the agarose layer on the chip using photo-thermal etching
i.e. by melting a portion of the agarose layer at the spot of
a focused infrared laser beam. This method can be applied
prior or during cultivation. We can therefore change the
network pattern of nerve cells in real time during cultiva-
tion by adding microchannels connecting different micro-
chambers in a step-by-step fashion. This has helped us to
understand the meaning of the spatial pattern of a neuro-
nal network by comparing the changes in cell signaling
before and after changing the network shape. However,
until recently we were not able to control the direction of
synaptic connections. We have developed a method to
fully control the direction of neural networks within the
agarose microchamber (AMCA) system. Our technique
can be used to obtain long-term electronic properties of

http://www.jnanobiotechnology.com/content/2/1/7

topographically controlled neuronal networks with pre-
cise fixation of cell positions and flexible network pattern
rearrangement through photo-thermal etching of the aga-
rose layer. This manuscript describes our method for con-
trolling the direction of synaptic connections with the
newly developed neural-cell cultivation chip.

Results

On-chip AMCA cell cultivation system

We have developed an individual-cell-based on-chip cell-
cultivation system consisting of an agarose microchamber
(AMCA) cell cultivation array maintained at constant tem-
perature, controlled atmosphere and humidity (Figure 1).
We used the AMCA cell cultivation chip to create a neural
cell network from individually grown cells. The AMCA
was fabricated on the surface of 0.5 mm thick glass slide
coated with 50 nm thick indium-tin oxide (ITO). Prior to
agarose coating, we have coated the ITO layer with colla-
gen I and Poly-D-Lysine to improve cells' adhesion to the
surface (Figures 2(a),2(b),2(c)). In order to spatially sep-
arate cells, define their positions, and the network pattern,
a 10-um-thick agarose layer on the AMCA chip surface
was etched by spot heating using the infrared laser to form
microchambers and microchannels (Figure 1). Wells and
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illustrating the procedure of photo-thermal etching.

tunnels were formed within the agarose layer according to
the trace of the heating spot of laser. To create a precise
microchamber design, we checked the position of the
heating spot with an optical microscope prior to irradiat-
ing the chip with 1064 nm laser beam. We also confirmed
whether the irradiation time and intensity was sufficient
for desired size and shape by direct microscopic observa-
tion, as described previously [6,7]. Size and shape of the
melted areas was controlled by manipulatingthe intensity
of laser power and the magnification of objective lenses.
First, as shown in Figures 2(d),2(e) and 2(h),2(i), we irra-
diated 35-mW focused laser using x10 objective lens to
form a 30-um-diameter round microchambers for culti-
vating cells. The size of the wells was monitored by optical
microscope and the heating continued until the wells
reached a desired size. Next, we etched the 5-um-wide
tunnels (microchannels) between two adjacent holes with
17-mW laser using X20 objective lens (Figures 2(f) and
2(j)). It should be noted that at this stage we have con-
nected only one chamber with the tunnel. The tunnel
width was limited to 5 pm in order to prevent cell bodies
passing through the tunnels. Finally, we melted a portion
of agarose layer at the end of the tunnel to connect two

microchambers (Figures 2(g) and 2(k)). For this experi-
ment, we used low-melting-point (LMP) agarose that
melted at about 65°C. The use of LMP It is required in
order to minimize the damage to cells within the micro-
chambers when we change the shape of microstructures
during cultivation. Another important requirement for
the agarose is an absence of contaminations, since impu-
rities such as dust particles absorb 1064-nm-wavelength
laser light and may cause unpredicted and uncontrolled
melting of the agarose.

Neural network direction control of hippocampal cells by
stepwise photo-thermal etching

Figure 3 shows the schematic drawing of hippocampal
cell cultivation in AMCA chip. Prior to cultivation micro-
channels were connected only to one side of two adjacent
microchambers. Then, individual cells were introduced
into each AMC and cultivation was started as described in
Figs 2(f) and 2(j). To control the number of cells and cell
types in each chamber, we used a micropipette to intro-
duce individual single cells into each chamber. After neu-
rites were sufficiently elongated into each microchannel,
the other sides of the channel were connected by photo-
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Schematic drawing of hipocampal cell cultivation in AMCA chip.
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thermal etching (see Figs 2(g) and 2(k)) to allow elon-
gated neurite to connect to cells in the neighbouring
chamber. Figure 4 illustrates an example of such a proce-
dure. The micrographs show phase-contrast images of the
growth of single hippocampal cells in three microcham-
bers. When the cultivation started, single cells were trans-
fered to AMCAs (Fig. 4(a)). Six hours later, single neurites
elongated from cells into microchannels (Fig. 4(b)). At
that time additional photo-thermal etching was used to
connect two adjacent AMCAs (Fig. 4(c)). Two hours later
(8 h total cultivation time), all of the cells kept their shape
and continued their elongation (Fig. 4(d)). Eventually
these cells were connected by their neurites counter-clock-
wise. (Figs 4(e) and 4(f), 14 and 28 h cultivation, respec-
tively). The use of the stepwise photo-thermal etching has
ensured the unidirectional elongation of cells. If no step-
wise photo-thermal etching is use (i.e. if each microcham-
bers had two channels), cells in such microchambers
elongated in both directions (clockwise and counter-
clockwise) simultaneously as shown in Figure 5(a) (5 h
after cultivation started).

Possible damage to collagen layer in agarose
microchambers by photo-thermal etching

To evaluate the ability and limit of the stepwise photo-
thermal etching method used during cultivation, we need
to measure the extent of damage incurred on the collagen
layer by localised heating. The collagen layer is essential
for the stable attachment of neural cells onto the chip, but
it is heated by the focused infrared laser during photo-
thermal etching. We have therefore examined the effect of
heating on the collagen layer using a collagen coated chip
(Figures 6(a),6(b),6(c),6(d)). Figure 6(a) is the micro-
graph of the 20-hour-cultivation of hippocampal cells on
the collagen layer. Figure 6(b) shows the cultivation of the
same cells on the collagen layer, which was incubated for
60 min at 65°C before cultivation started. The incubation
temperature, 65°C, was determined by the melting of
LMP agarose (at 65°C). Figure 6(c) illustrates the cultiva-
tion of the same cells on the collagen layer, which was
incubated for 60 min at 90°C before cultivation started.
In this case the incubation temperature, 90°C, was deter-
mined by the possible highest temperature by spot heat-
ing of infrared beam, ca. 90°C. As a reference, we also
cultivated the same cells on the chip without a collagen
coating (Figure 6(d)). As shown in Figures 6(a) and 6(b),
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Figure 4
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Hippocampal cell cultivation for controlling the elongation direction of neurites with stepwise photo-thermal etching. (2)-(f):
optical micrographs obtained after 0, 6, 8, 14, and 28 hours of cultivation started, respectively. (c): additional photo-thermal

etching to connect two adjacent AMCAs.

the difference in the cell growth on the pre-heated and not
heated chips. Even when the chip was pre-heated 90°C for
one hour, the growth of neuritis was nearly identical on
all chips (pre-heated and non pre-heated). In this experi-
ment chips were irradiated for one hour, in contrast to a
regular experiment when no more than few seconds of
irradiation is required to produce a channel. Thus the
effect of photo-thermal etching on collagen layer was
smaller than the result shown in Figures 6(b) and 6(c). If
the collagen molecules were diffused, the result must be
same as the result shown in Figure 6(d), where cells could
not attach.

We have also checked the suitability of a collagen layer for
cell cultivation using an AMCA cultivation chip. In the

AMCA chip, the collagen layer is between ITO layer and
top agarose layer. To manufacture the cultivation wells,
we used 1064-nm 35-mW focused laser for 2 s with x10
objective lens to form 50-pm wide round microchambers.
Figure 6(e) is the micrograph taken after 20-hour of culti-
vating hippocampal cells in these microchambers. Figure
6(f) is the micrograph of the hippocampal cells grown
under the same conditions as Figure 6(e), except for the
AMCA chip re-coated with collagen after photo-thermal
etching. As seen on Figures 6(e) and 6(f) little or no differ-
ence was observed between cells grown in different cham-
bers. However, the neuritis on the collagen re-coated chip
climbed over the microchambers (Figure 6(f). These
results indicate that the collagen layer between ITO layer
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Figure 5
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Hippocampal cell cultivation without stepwise photo-thermal etching. (a), (b): optical micrographs obtained after 5, 8 hours

cultivation started, respectively.

and agarose layer kept their performance even after photo-
thermal etching.

Discussion

As described above, we can fully control the direction of
elongation of neurites by the stepwise photo-thermal
etching method. This task is impossible for the conven-
tional pattern control method like microprinting and
microstructures. Because neuronal cells have the tendency
to elongate one neurite, followed by multiples of short
dendrites, the ability to control the elongation direction
of the first allows to fully control the direction of neural
network. We have therefore created only one tunnel for
each AMCA well to guide each neurite into the tunnel in
the desired direction. Only after the neurites have suffi-
ciently grown into the tunnels, have we connected the
tunnels to other AMCA wells.

Our system uses a 1064-nm focused infrared laser beam,
as in [6-9]. This wavelength is not absorbed by water, cells
or agar. Only ITO layer is capable of absorbing this wave-

length and therefore only a portion of the agar near the
ITO layer is melted. This has ensured minimal damage to
cultured cells.

Conclusions

We have developed a novel method for controlling the
direction of neurite elongation by the stepwise photo-
thermal etching. Our on-chip AMCA cell cultivation sys-
tem combined with a 1064-nm photo-thermal etching
method makes it possible to easily and quickly form
desired structures within agar layers. We demonstrated
that that neural cells can be grown and neural network
with the desired direction of neural connections can be
created in the AMCA chip. Possible damage of the colla-
gen layer inside the AMCA chip was also investigated to
confirm that no distinguishable damage was observed for
neural cells cultivation even after the photo-thermal etch-
ing procedure. Our system has potential for use in the bio-
logical/medical fields for cultivating individual-cell-based
networks and measuring their properties.
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Figure 6

(a)-(d): Optical micrographs of the 20-hour-cultivation of hippocampal cells on the collagen coated microchips. (a) without any
additional treatment; (b) after 65°C, | h treatment; (c) after 90°C, | h treatment; (d) without collagen coat (as a reference).
(e), (f): Optical micrographs of cultivated cells in AMCAs. (e) cells cultivated in the photo-thermal etched microchambers with-
out any additional treatment; (f) cultivated in the collagen re-coated microchambers after photo-thermal etching.
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Methods

AMCA cell cultivation chip

AMCA chips were kept at in a constant temperature and
under controlled atmosphere and humidity (37°C, 5%,
respectively) Aphase-contrast/fluorescent optical micro-
scope (IX-70; with a phase-contrast objective lens, x20,
Olympus, Tokyo, Japan) with a focused 1064-nm infrared
laser irradiation unit (max. 1 W; PYL-1-1064-M, IPG Pho-
tonics, Oxford, MA, USA) was used to melt the agar layer
on the chip. The objective lens in the microscope was used
to simultaneously observe the chip surface and to focus
the 1064-nm laser. A series of phase-contrast images of
cell growth and network formation was acquired by using
a charge-coupled device (CCD) camera (CS230, Olym-
pus) and recorded in the computer system with a video
capture board.

To attach the collagen onto the ITO surface, the chips were
washed twice with 80% ethanol and with PBS, air dried
and treated with 2 ml of 150-pg/ml collagen solution (pH
3.0) (Collagen type I-C (from pig skin): Nitta Gelatin,
Tokyo, Japan). Following 24 h incubation at room
temperature, the chip was washed with PBS once and
incubated with 2 ml of a 100-pg/ml Poly-D-Lysine solu-
tion (Poly-D-Lysine: SIGMA) for 24 h at room tempera-
ture. Following the incubation, the chip was washed with
PBS. Collagen and Poly-D-Lysine treated surfaces were
coated with 2% (w/v) agarose (ISC BioExpress, GenePure
LowMelt: melting temp. 65°C) using a spin-coater (500
rpm for 5 s followe by 4000 rpm for 20 s). The agar-coated
chips were placed in a refrigerator at 4 °C. The microstruc-
tures within the layer were designed using a photo-ther-
mal etching procedure.

Hippocampal cell cultivation

Rat hippocampal cells were obtained from 18-day-old
fetuses (E18) following a dissection protocol as described
previously [7]. The isolated tissue was incubated in 0.25%
trypsin (Sigma) in Ca2*- and Mg2+-free Hank's balanced
salt solution (HBSS, Gibco) for 8 min at 37°C. After
trypsination the tissue was rinsed in a 2-ml plating
medium (Neurobasal medium with B27 supplement,
Gibco) five times for 5 min and mechanically dissociated
with a fire-polished pipette into single cells. The cells were
placed one by one into each agar microchamber with a
micropipette and incubated at 37°C with 5% CO, at satu-
rated humidity (Figure 3). We used a conditioned serum-
free medium (Neurobasal medium with 0.074 mg/ml L-
glutamine, 50 pg/ml gentamycin, 2% (v/v) B-27 supple-
ment 25 pg/ml, Gibco and 50 pg/ml L-glutamic acid
hydrochloride, Sigma). Hippocampal glial cells were cul-
tivated for 2 weeks.

http://www.jnanobiotechnology.com/content/2/1/7
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