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Abstract 

Environmental pollution is a major issue that requires effective solutions. Nanomaterials (NMs) have emerged 
as promising candidates for pollution remediation due to their unique properties. This review paper provides a sys-
tematic analysis of the potential of NMs for environmental pollution remediation compared to conventional tech-
niques. It elaborates on several aspects, including conventional and advanced techniques for removing pollutants, 
classification of NMs (organic, inorganic, and composite base). The efficiency of NMs in remediation of pollutants 
depends on their dispersion and retention, with each type of NM having different advantages and disadvantages. 
Various synthesis pathways for NMs, including traditional synthesis (chemical and physical) and biological synthe-
sis pathways, mechanisms of reaction for pollutants removal using NMs, such as adsorption, filtration, disinfection, 
photocatalysis, and oxidation, also are evaluated. Additionally, this review presents suggestions for future investigation 
strategies to improve the efficacy of NMs in environmental remediation. The research so far provides strong evidence 
that NMs could effectively remove contaminants and may be valuable assets for various industrial purposes. How-
ever, further research and development are necessary to fully realize this potential, such as exploring new synthesis 
pathways and improving the dispersion and retention of NMs in the environment. Furthermore, there is a need 
to compare the efficacy of different types of NMs for remediating specific pollutants. Overall, this review highlights 
the immense potential of NMs for mitigating environmental pollutants and calls for more research in this direction.

Keywords  Environmental contaminations, Wastewater treatment, Nanocomposites, Adsorption

*Correspondence:
Nosheen Asghar
nosheen@g.skku.edu
Attarad Ali
attarad.ali@uobs.edu.pk
Full list of author information is available at the end of the article

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s12951-023-02151-3&domain=pdf


Page 2 of 28Asghar et al. Journal of Nanobiotechnology           (2024) 22:26 

Graphical Abstract

Introduction
Exponential population growth and rapid global indus-
trialization result in a significant discharge of pollutants 
into the environment. Environmental contamination 
has become a major issue worldwide because even a 
small concentration of toxic pollutants can lead to seri-
ous health issues for human and animals [1, 2]. Undesir-
able gases, bioaerosols, oxides, microbes, sooth, heavy 
metals, and other toxic materials in outdoor and indoor 
air cause severe effects on human health and environ-
ment [3]. According to the World Health Organization 
(WHO), approximately 91% of the world’s population 
resides in places where pollutant levels exceed thresh-
olds of WHO air quality guidelines. Ambient air pollu-
tion is estimated to cause 4.2 million premature deaths 
globally [4]. Additionally, millions of harmful effluents 
in water from industrialization and urbanization effect 
the water quality [1, 5] Those pollutants mainly include 
pharmaceuticals, metals, dyes, pesticides, fertilizers, 
microorganisms (MOs), personal care products and 
radionuclides, etc., are significant threats towards global 
water security [6–8]. Those pollutants enter the food 
chain and cause detrimental effects on human health and 
negatively affect socio-economic development [9]. Thus, 
it is crucial to determine and eliminate primary sources 
and concentrations of all contaminants using cutting-
edge technologies that could deliver reliability and high 
quality cost-effectively and comply with environmental 

standards and regulations [8, 10]. Numerous remedia-
tion techniques have been developed during the last few 
decades to address air and water contaminants, includ-
ing physical, chemical, and biological methods; however, 
most of those treatment techniques have significant limi-
tations, such as high costs, the complexity of the opera-
tion, and secondary contamination [11].

Nanomaterials (NMs) are ultrafine particles ranging 
from 1 to 100  nm though size does not give a satisfac-
tory definition of NMs classification as shown in Fig. 1A. 
They can be natural, manmade, or incidental materi-
als [12]. NMs exhibit diverse structural dimensions, 
including zero-dimensional (0D), one-dimensional (1D), 
two-dimensional (2D), and three-dimensional (3D) 
arrangements. In the 0D configuration, nanometer-scale 
dimensions are observed along all three axes (x, y, z). In 
the case of 1D materials, nanometer-scale features are 
limited to two dimensions. Similarly, 2D structures pos-
sess nanometer-scale attributes in just one direction. 
Notably, the classification extends to encompass three-
dimensional (3D) nanostructures, despite their dimen-
sions exceeding 100  nm as shown in Fig.  1B. NMs can 
be synthesized through chemical, biological, and green-
based routes [3]. During the past few years NMs are 
gaining much interest in environmental applications as 
promising adsorbents and catalysts for the application of 
environmental remediation [13]. Through their unique 
redox properties and significant features such as size, 
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dissolution/solubility, surface area, surface charge, and 
surface chemical composition beneficial for the removal 
of redox-sensitive pollutants via degradation [14, 15]. 
Many types of NMs have been developed to treat water 
contaminations and air cleaning as a cost-effective and 
reliable technique because they provide high adsorp-
tion capacities and increased surface area compared to 
micro and macrostructures [16, 17]. Additionally, careful 
tunning and surface modification of NMs provides addi-
tional characteristics and substantial benefits for tack-
ling environmental contamination. Some NMs eliminate, 
while others sequester pollutants [18]. However, NMs 
have some drawbacks, such as high costs, potential toxic-
ity, challenges with recycling, and interactions with other 
media. Moreover, exposure and unintentional release 
of NMs pose substantial risks and health concerns [19]. 
Several dependable, low-cost, and environmentally 
friendly NMs with various functions have been described 

for detoxifying pollutants from air and water [5, 20, 21]. 
However, it should be safe and demonstrate strong sorp-
tion capacity and selectivity, particularly because pol-
lutants found in low concentrations should easily be 
removed and recycled. Much research in recent years has 
proven that NMs can meet most of those requirements.

Bibliometrics is a helpful tool that offers direction 
for ongoing research and future studies worldwide. It 
uses quantitative and statistical analysis to explain how 
research papers are distributed within a particular topic, 
field, institution, and nation. They can offer a more thor-
ough analysis to show research fields, development pat-
terns or direction. Even though there has been significant 
growth in NMs research on remediation of air and water 
pollution, however, a comprehensive and systematic 
review on bibliometrics, NMs synthesis pathways, and 
reaction mechanism is still absent. Therefore, in this 
review paper, we investigated and analyzed literature in 

Fig. 1  A Comparison of size of nanomaterial with common materials B schematic illustration of low-dimensional nanostructures: zero-dimension 
(0D), one-dimension (1D), two-dimensions (2D), and three-dimensions (3D). Information was adapted and modify from A [22] B [23]
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the past 10  years to better understand NMs application 
and research progress in air and water pollution treat-
ment. Furthermore, we systematically discussed conven-
tional and advanced technologies for the remediation of 
contaminants from air and water. Additionally, a brief 
overview of the importance of NMs, types, synthesis 
pathways, pros and cons, and mechanisms of reactions 
were discussed thoroughly. Finally, some shortcomings 
and recommendations of NMs for pollutant remediation 
were mentioned for future research directions.

Bibliometric analysis
The basic bibliometrics of research papers on air and 
water pollution remediation using NMs during 2013–
2022 are shown in Fig.  2A. The results show that the 
number of related research papers on air pollution treat-
ment using NMs has rapidly increased yearly from 2013 
(224) to 2022 (732). A similar trend was observed for 
wastewater treatment using NMs in the last 10  years, 
with the total number of publications in 2013 (292) 
increasing to (1022) in 2022. It slightly decreases from 
2020 to 2021 due to the corona pandemic. In this review, 
we follow a similar methodology to other bibliomet-
ric studies. Data were obtained from Thomson Reuters 

online science citation index (SCI) expanded databases 
of the web of science on 17th May 2022. Bibliometric 
analysis was done by searching in "Web of Science "for 
the words "Nanomaterial" (topic) and "air pollution treat-
ment" (topic), and "wastewater treatment" (topic). Ten 
high-impact factors well famous international journals 
were included in our bibliometric analysis. Only journal 
research articles from top relevant journals related to 
NMs usage for the treatment of air and water pollution 
have been compiled for the bibliography. All the details 
of the articles, including title, year of publication, key-
words, abstract, funding agencies, web of science catego-
ries of the article, and names of journals, were transferred 
into a spread excel sheet. VOS viewer software for creat-
ing and displaying bibliometric networks was used [24]. 
The affiliation of at least one author to the articles served 
as a proxy for the contributions of various institutions 
and nations, and the phrase "single country article" was 
applied when the researchers’ addresses were from the 
same nation. Cite space 5 was applied in the co-citation 
analysis. The most co-cited article was thought to be the 
most populous work in this field and thought to be a pio-
neer or hot issue. Co-citation and author keyword analy-
ses were conducted to identify the current hot topics and 

Fig. 2  A Increase of studies on remediation of air and water pollution using nanomaterials from 2013 to 2022 B Distribution of studies using 
nanomaterials for air pollution remediation, and C Distribution of studies using nanomaterials for water pollution remediation (Data taken from Web 
of Science)
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significant research trends. Co-citation occurs when two 
works are both cited in the same work. According to co-
citation theory, the strength of co-citation between cited 
articles reflects their inherent association. Figure 2B and 
C presents the co-citation cluster’s outcome of air and 
water pollution remediation. This analysis gives us a his-
torical perspective on the development of intensive sci-
entific research on a specific topic of sciences has over 
100 branches in different cities, and articles divided into 
branches and would result in a different ranking.

Remediation strategies
Conventional strategies
A wide range of treatment technologies has been devel-
oped to minimize the concentration of pollutants in the 
environment. These technologies are crucial in reducing 
the negative impact of pollution on the environment and 
human health. However, despite various treatment meth-
ods, their effectiveness varies, and they often have limi-
tations such as low stability and high complexity [25]. In 
air treatment, several strategies, such as activated carbon 
adsorption and selective catalytic reduction, wet flue gas 
desulfurization (WFGD), and activated carbon injection 
(ACI), have been utilized to reduce the concentration of 
pollutants [26, 27]. Likewise, water treatment techniques 
involve chemical, physical, thermal, mechanical, and bio-
logical methods [5, 28, 29]. Further techniques include 
wet oxidation, electrocoagulation, ion exchange, ozonoly-
sis, Fenton, adsorption, extraction, flocculation/coagula-
tion, evaporation, steam stripping, distillation, filtration, 
floatation, screening, sedimentation, reverse osmosis, 
forward osmosis, phytoremediation, bioaccumulation, 
biotransformation, and biomineralization [5, 30–32]. 
However, they often involve high capital and operational 
costs, and their efficiency is limited by membrane foul-
ing, low selectivity, and the disposal of residual sludge 
[8, 30, 33]. To address the limitations of conventional 
treatment methods, researchers worldwide have focused 
on developing NMs as an alternative approach with 
strong oxidation power that can oxidize and mineralize 
various organic and inorganic contaminants. NMs have 
shown promising results in pollutant removal and have 
the potential to provide a low-cost and environmentally 
acceptable solution. Therefore, developing and imple-
menting NMs in treatment processes can potentially 
revolutionize pollution control and management [26, 27].

Nanomaterial‑based strategies
Inorganic nanomaterials
Metal and  metal oxide‑based nanomaterials  Metal 
and metal oxide based NMs are some of the most widely 
used inorganic NMs for removing various hazardous pol-
lutants from the environment. All three variants of iron 

oxide, namely magnetite (Fe3O4), maghemite (γ-Fe2O3), 
and hematite (α-Fe2O3), have been thoroughly examined 
for their suitability in pollution treatment applications. 
However, among them the Fe3O4, and γ-Fe2O3 are metal-
lic in nature [34]. The commonly used metal oxide NM 
is nano zerovalent iron (NZVI), which contains a shell of 
Fe(II), Fe(III), and zerovalent iron and an outer mixed iron 
oxides shell layer [35]. Nanocomposites (NCs) of metals 
and magnetic iron oxides such as Fe3O4, zinc iron oxide 
(ZnFe2O4), unidentified iron oxide (uFe2O4), manganese 
iron oxide (MnFe2O4), and cobalt iron oxide (CoFe2O4) 
have also been extensively studied for the removal of pol-
lutants especially heavy metals from the environment 
(refer to Tables  1 and 2) due to their magnetic proper-
ties, excellent separation, recyclability, high specific sur-
face areas, high adsorption, and high binding energies 
[36]. The magnetic iron oxide based NMs can efficiently 
disperse in water and can be quickly recovered by an 
external magnetic field. The ability to recycle and reuse 
are the most important parameters. However, their real 
applications are limited by aggregation and oxidation, and 
their magnetic phase can still leak in acidic environments 
[26]. Aggregation of magnetic iron oxide base NMs alters 
the magnetic properties and reduces surface energy [34]. 
Thus, the functionalization of iron oxide NMs with inor-
ganic and organic material having adsorption properties 
are recommended in the literature because they prevent 
iron oxide from oxidation [17, 37]. Surface function-
alization with functional groups like carboxylic group (–
COOH) and (–NH2) groups has been observed to confer 
notable enhancements in terms of stability, adsorption 
efficiency, and surface area especially for chelating metal 
ions [34]. Furthermore, magnetic iron oxide NMs exhibit 
the distinctive advantage of being recoverable, regen-
erable, and reusable subsequent to their application in 
diverse contexts. The recovery of these NMs through the 
implementation of magnetic field is extensively reported 
in relevant literature [38]. Additionally, separation and 
regeneration techniques for NMs include thermal sepa-
ration and pH adjustment depending on type of coating 
material or functional groups [39]. 

Metal oxide NMs such as titanium oxide (TiO2), gold 
oxides (Au2O3), silica (SiO2), silver oxide (AgO), tin 
oxide (SnO2), zinc oxide (ZnO), alumina (Al2O3), man-
ganese oxide (MnO), copper oxide (CuO), nickel oxide 
(NiO2), zirconium oxide (ZrO2) and vanadium oxide 
(V2O5), cesium oxide (CeO2), and  magnesium oxide 
(MgO) encapsulated with carbon-bearing compounds 
(see Fig. 3) have been extensively studied for the remedia-
tion of pollutants [1, 40, 41]. These NMs are known for 
degrading contaminants through fast reaction rates, sta-
bility, availability, non-toxicity, high Brunauer–Emmett–
Teller (BET) surface area, and polymorphic structures 
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[42]. They also provide acidic groups necessary for heavy 
metal binding and protect the encapsulated NMs from 
aggregation and corrosion [43]. Furthermore, they can 
inactivate MOs when exposed to ultraviolent (UV) or 
solar radiation by producing reactive oxygen species such 
as the hydroxyl radical (OH•), superoxide radical (O2•), 
and hydrogen peroxide (H2O2) [44]. Recent studies have 
shown that TiO2 NCs have significant reactivity and sta-
bility, making them successful in removing heavy met-
als, eliminating toxic pollutants by gas sensing, purifying 
indoor air by decomposing them into carbon dioxide 
(CO2) and water (H2O), and developing oxidative absor-
bents for the atmosphere [26, 45]. In addition, the surface 
of metal and metal oxide base NMs can be easily func-
tionalized using multiple ionic or ionizable groups that 
may enhance the binding efficiency toward different pol-
lutants. Despite their effectiveness they have inadequate 
adsorption capacities and low selectivity and are eas-
ily deactivated by other aqueous contaminants severely, 
limiting their effectiveness in removing pollutants. To 
overcome these limitations, efforts should be made to 
improve their stability to prevent aggregation, oxidation, 

and magnetic phase leakage and enhance their recy-
clability. Additionally, standardizing the synthesis and 
characterization methods can enhance their efficiency. 
Furthermore, long-term toxicity studies are needed, 
focusing on real-life applications to optimize their use. It 
is essential to consider potential environmental risks and 
implement appropriate risk management strategies to 
ensure their safe use. Table 1 shows recent studies with 
organic and inorganic NMs for remediation of air pollut-
ants from the environment while Table  2 shows recent 
studies with organic and inorganic NMs to remediate 
water pollutants.

Nano clays  Nanoclays are NMs commonly referred to 
as layered silicates or nanoclays minerals. They are a type 
of minerals distinguished by their widespread availability 
and cost-effectiveness. These minerals are characterized 
by the presence of layered structures comprising tetra-
hedral silicate sheets and octahedral hydroxide sheets 
that give them a plate-like structure [46]. Nanoclays are 
categorized by their distinct mineralogical compositions, 
as approximately 30 nano clays variants exist. Their spe-

Table 1  Summary of mechanisms and removal efficiency of different organic and inorganic nanomaterials  for air pollutants 
remediation

Nanomaterials Air pollutants Mechanism Removal efficiency (%) References

CuO–MnO2–Fe2O3/ γ-Al2O3 Mercury (Hg°) Thermal desorption – [109]

Cerium oxide CO Catalytic oxidation 100 [110]

Fe/Co co-doped/Mn-Ce/TiO2 NO and Hg° Reduction and oxidation 55–92 [111]

Ti-doped Fe3O4 (1 1 1) NOx Catalytic oxidation 80 [112]

Silver, zinc, and iron E. coli Disinfection 97 ~ 99 [113]

Pt-TiO2 NOx Catalysis 96.7 [114]

Graphene oxide PM 2.5 Filtration 99 [58]

CoFe2O4-peroxymonosulfate Hg° Catalysis 85 [115]

Fe3O4@EDTA@Fe (II) NOx Adsorption 90 [116]

Iron-loaded ZSM-5 zeolite SO2, NO, Hg° Catalysis 100, 72.6, 93.4 [117]

Silver/polyacrylonitrile Bacteria (E. coli) Filtration 104 CFU/mL [118]

ZnO H2S Adsorption 29.50 mg/g [119]

bismuth oxide with graphene Xylene Photocatalysis 38.8–98.7 [120]

MnOx- MIL-100(Fe) Hg° Adsorption and oxidation 77.4 [121]

Silica(HS-UVM7-NH2-UVM7) Lead (Pb) Adsorption 95 [122]

MOF-801 and Cu2O PM2.5 and PM10 Filtration, adsorption 64–85 [123]

Nd (neodymium) -TiO2 VOCs Photocatalysis 60–80 [124]

V2O5-WO3/TiO2 NOx and Hg° Catalytic reduction 93 ~ 99 [26, 125]

Thiol modified silica Vanadium (V) Adsorption 95 [126]

Polyacrylonitrile-boehmite PM 2.5 Filtration 99.97 [127]

Hypochlorite (ClO−) Sulfur gas Adsorption – [26]

Nd (neodymium) -TiO2 NOx, VOCs, bioaerosols Photocatalysis 60 ~ 80 [124]

Ca-doped ZnO Tetracycline Mineralization 99 [128]

Li2MnO3 CO, CO2 Chemisorption, Catalysis – [129]

Polysaccharides/MnO2-polymer fiber Formaldehyde Oxidation, catalysis 95.5 [130]
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cific attributes render them suitable for diverse appli-
cations, each hinging on their unique properties [47]. 
Among them, montmorillonite (MMT), rectorite (REC), 
vermiculite (VMT), and kaolinite clay (KC) stands as a 
prominent choice [48]. They have extensive utility in the 
enhancement of polymer matrices, to enhance mechani-
cal, thermal, and barrier attributes under high tempera-
ture. Polymer chains have the capability to intercalate 
into the interlayers of clay, facilitating the dispersion of 
clay within the polymer matrix at a nanometer scale [49]. 
As the polymer permeates the interstitial gaps between 
the neighboring nanoclays layers, and the interlayer dis-
tance expands, leading to the formation of an intercalated 
structure [50] Nanoclays find application in diverse fields, 
including environmental pollution remediation, capitaliz-
ing on their attributes like elevated surface area, porosity, 
and mechanical robustness. However, when synthesizing 
nanoclays-polymer composites, meticulous attention to 
each phase is imperative. This is particularly crucial due 

to the propensity for nanoclays agglomeration and clus-
tering upon introducing substantial quantities into resins. 
Additionally, an excess input of energy has been noted to 
trigger premature resin curing, culminating in the brittle-
ness of the final composite products [51].

Carbon‑based nanomaterials
Carbon-based NMs (CBNMs) are promising adsor-
bents due to their unique chemical and physical char-
acteristics that enable them to remove organic and 
inorganic pollutants on a broad scale due to their high 
surface area and reactivity (see Fig. 3).

Carbon nanotubes  Among CBNMs carbon nanotubes 
(CNTs) have garnered significant attention in recent years 
due to their unique properties, including high porosity and 
surface area, high electronic conductivity, and excellent 
chemical, physical, and mechanical properties [52, 53]. 
Their highly durable nature and higher adsorption capa-

Fig. 3  Schematic illustration of diverse types of nanomaterials based on composition employed for air and water pollutants nano remediation. 
Information was adapted and modify from [69–71]
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bility make them attractive candidates for various appli-
cations. Structurally, CNTs are one-dimensional NMs 
with cylindrical, sturdy membranous honeycomb lattice 
structures that effectively capture pollutants [54]. Based 
on the number of cylindrical shells, CNTs are divided into 
two groups: single-wall CNTs (SWCNTs) and multi-wall 
CNTs (MWCNTs) [55]. Numerous studies have investi-
gated the practical applications of CNTs in environmen-
tal remediation (Table 2). However, the main obstacle to 
applying CNTs is their small particle size, difficulty in 
separation, and poor dispersion in the aqueous phase that 
significantly hinder their effectiveness. To overcome these 
challenges, loose clusters/aggregates containing intersti-
tial gaps, grooves, and CNT membranes are widely used 
for water treatment due to their high adsorption energy 
sites for organic molecules [56, 57]. Researchers are also 
exploring techniques such as surface modifications and 
functionalization to improve the dispersion and separa-
tion of CNTs making them more effective for environ-
mental remediation.

Graphene based nanomaterials  Graphene-based NMs 
(GBNMs) are derived from graphene, a two-dimensional 
carbon allotrope with a honeycomb lattice structure. They 
include various forms of graphene, such as graphene oxide 
(GO), reduced graphene oxide (rGO), graphene quantum 
dots (GQDs), and graphene nanoribbons (GNRs) [58, 
59]. Well, GBNMs possess unique properties, such as 
exceptional mechanical strength, high surface area, high 
electrical conductivity, and excellent thermal properties, 
which make them attractive for a wide range of applica-
tions, including electronics, energy storage, catalysis, and 
environmental remediation [40, 43]. The functionaliza-
tion of GBNMs with various functional groups can also 
enhance their properties and increase adsorption capaci-
ties. Various researchers used graphene based NMs for the 
adsorption of heavy metals (refer to Table 2). However, it 
is essential to consider the potential environmental risks 
associated with GBNMs [60]. To minimize the potential 
risks associated with GBNMs, strategies such as improv-
ing their synthesis, functionalization methods, develop-
ing effective monitoring and detection techniques, and 
establishing regulations for their safe use and disposal 
have been proposed. Further research is needed to fully 
understand the long-term effects of GBNMs on the envi-
ronment and living organisms [56, 57]. Likewise, carbon 
fullerenes have several unique properties that make them 
attractive for environmental remediation. With the abil-
ity to act as electron acceptors or donors, fullerenes can 
effectively degrade pollutants through various mecha-
nisms such as photo-induced electron transfer, radical 
generation, and singlet oxygen generation [61, 62].

Carbon quantum dots  Carbon quantum dots (CQDs) 
are a class of carbon-based NMs that have garnered sig-
nificant attention due to their promising potential in vari-
ous environmental remediation applications. They were 
accidentally discovered while separating other CNTs. 
These CQDs have special properties like large surface 
area, customizable fluorescence, and exceptional biocom-
patibility. These attributes collectively make them highly 
attractive candidates for a range of applications aimed at 
addressing environmental challenges thus, CQDs have 
shown great potential for detecting and removing heavy 
metals, organic pollutants, and antibiotics from contami-
nated water sources [63, 64]. CQDs include carbon nano-
dots (CNDs) and GQDs with fascinating optical proper-
ties, such as photoluminescence, and chemiluminescence 
[65]. They can be synthesized using two methods: the top-
down approach and the bottom-up approach. The degree 
of oxygen content in the oxidized CQDs varies from 5 to 
50%, based on the chosen synthesis method. Additionally, 
they can also detect environmental contaminants through 
fluorescence quenching and biosensing applications [66, 
67]. Two primary categories of fluorescence emission 
mechanisms have been advanced to explain the character-
istics of CQDs. The first category revolves around band-
gap transitions resulting from conjugated p-domains, 
whereas the second category encompasses more intricate 
origins associated with surface defects present in CQDs 
[63, 68]. Their low toxicity and biodegradability make 
them an attractive substitute for conventional remedia-
tion techniques. However, a comprehensive exploration is 
imperative to grasp their complete potential for extensive 
deployment in environmental remediation endeavors [64, 
66].

Organic nanomaterials
Polymer‑based nanomaterials  Among organic NMs nat-
ural polymers have been extensively investigated for their 
potential in environmental remediation owing to their 
high surface area, poly-functional groups, and superior 
adsorption and chelating capabilities [72, 73]. Cellulose, 
hemicellulose, and lignin are the most abundant polymers 
found in nature and constitute the major components of 
plant fibers [74, 75]. In addition, easy availability, abun-
dance, and low cost made them attractive bio-based raw 
materials for NMs synthesis. The synthesis pathway of pol-
ymeric NMs is illustrated in Fig. 4A. Cellulose is a linear 
polysaccharide consisting of repeating D-glucopyranose 
units joined by glycosidic linkages, making up 30–50% 
of polymers [76]. It contains functional groups such as 
methylol and hydroxyl, which make it attractive for inac-
tivating microparticles and metal  nanoparticles (NPs) 
[77, 78]. The presence of six hydroxyl groups per cellobi-
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ose unit enhances its adsorption capacity. Increasing the 
surface roughness of cellulose is necessary for creating 
composites with better properties [79]. Likewise, hemi-
celluloses, comprising 20–35% of lignocellulosic biomass, 
link cellulose and lignin and control cellulose microfibril 
aggregation [80]. Hemicelluloses contain a variety of neu-
tral sugars and have a β-(1 → 4) backbone like cellulose, 
and their molecular heterogeneity modulates interactions 

with cellulose microfibrils through intermolecular inter-
actions and covalent linkages with lignin [81].

The third prevalent polymer is lignin (15–30%), 
obtained from black liquor from various plant sources 
[76, 82]. It is an aromatic compound with several func-
tional groups linked by C–C and C–O bonds and has a 
nanocrystalline heterogeneous structure refer to Fig. 4A 
[83]. Lignin can be modified through depolymerization 

Fig. 4  Schematic illustration of A schematic illustration of synthesis procedure of green and polymer base NMs, and B MOFs and MOF-based 
materials compared to bulk materials and nanomaterial for adsorption of pollutants. Information was adapted and modify from A [96, 97] and, B 
[98]
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to produce newer monomers for developing NMs with 
inherent properties such as antioxidants, antimicrobial, 
and UV absorption [84]. Chemical treatments alter poly-
mers properties and enhance organic substance adsorp-
tion, with virgin fibers having 20–50  mmol/g capacity 
and unmodified fibers having 400–1000  mmol/g capac-
ity depending on solute composition and alteration 
sequence [5]. Polymer-based nanofiber was widely used 
for water treatment with heavy metals. An overview is 
shown in Table  2. However, despite having a wide sur-
face area, polymer NMs have limited ability for adsorp-
tion of cationic dyes and remaining metals due to a lack 
of suitable reactive functional groups. To improve adsor-
bent selectivity the surface polarity and hydrophilicity 
can be increased by adding additional functional groups. 
Furthermore, chemical modifications of polymers can 
improve their hydrophilicity or hydrophobicity, flexibil-
ity, microbial resistance, water absorbency, adsorptive or 
ion exchange, and thermal resistance, ultimately improv-
ing their capabilities. Although polymeric NMs require 
further research, to fully realize the potential of poly-
meric NMs for environmental remediation.

Dendrimers  The term dendrimers, is derived from the 
Greek word dendra means “tree” and meros means “part” 
are intricate synthetic polymers characterized by their 
highly branched, tree-like structure, offer a versatile plat-
form for diverse functionalities and applications. Den-
drimers are built either by divergent approach or conver-
gent method [85]. Operating at the nanoscale, dendrimers 
grabbed attention in the field of drugs and gene delivery. 
Furthermore, these materials exhibit the potential to 
revolutionize environmental remediation practices [86]. 
Notably, dendrimers can serve as efficacious adsorbent 
to purify water and air by sequestering contaminants. 
Through strategic functionalization with specific chemi-
cal groups like amino, carboxyl, or hydroxyl, dendrimers 
acquire distinctive surface properties, enabling selective 
interactions with environmental pollutants such as heavy 
metals, organic compounds, and dyes [87]. Furthermore, 
dendrimers demonstrate a propensity to act as carriers for 
metal chelating agents and other remediation substances, 
facilitating precise transport to polluted sites for targeted 
intervention. Moreover, these polymers can be ingen-
iously engineered to function as sensors, enabling the 
detection and continuous monitoring of environmental 
pollution [88]. Amidst their potential, it is paramount to 
conduct comprehensive research to fine-tune their prop-
erties, assess potential risks, and ascertain environmental 
repercussions. Overall, dendrimers stand as a potent asset 
in the realm of environmental remediation, presenting a 
pathway towards a cleaner and safer ecosystem. Their 
versatile functionalities, ability to selectively interact with 

contaminants, and potential for tailored delivery make 
them a promising avenue for driving positive change in 
our environment [89]. Nonetheless, inadequately delin-
eated chemical structures are a major problem associ-
ated with dendrimers. To enhance physicochemical and 
biological attributes researchers are making attempts 
through nanotechnology with the aims to elevate solubi-
lization bolster bioavailability, and ultimately address the 
poorly defined structures [90].

Composite nanomaterials
Metal–organic frameworks  Metal–organic frameworks 
(MOFs), or coordination polymers, are crystalline porous 
materials composed of metal ions or clusters linked by 
organic ligands to form a 3D structure Fig. 4B [91]. These 
materials possess various attractive properties, including 
porosity, tunability, high surface area, and pore size, that 
facilitate the efficient diffusion of contaminants into the 
framework [92]. The adaptability of MOF structures is 
another key advantage, as they can be easily modified by 
changing the type of metal ion, linkers, and post-synthetic 
modifications [93]. Moreover, MOFs can be functional-
ized with chemical groups that selectively adsorb specific 
contaminants, such as heavy metals, organic pollutants, 
and gases. Combining MOFs with other materials such 
as metals, metal oxides, polymers, graphene, and others 
can create heterogeneous materials that exhibit improved 
stability over the original MOFs [94]. These MOF-based 
materials can take different forms, such as hydrogels, 
aerogels, beads, membranes, and spheres [95]. Due to 
their unique structural characteristics, MOFs and MOF-
based NMs have been extensively investigated for their 
potential to remediate various air and water pollutants. 
They have also been studied as catalysts for photo- or 
electrocatalytic CO2 reduction, a rapidly developing field 
of research [92]. However, MOFs suffer from certain limi-
tations that can impede their practical application. These 
include structural instability, high production costs, and 
toxicity risks. Research has been directed towards devel-
oping functional MOF-based NMs to overcome these 
challenges and optimize the potential in various applica-
tions. Future investigations could explore the develop-
ment of stable production methods, cost-effective pro-
duction techniques, alternative ligands and metals, and 
hybrid materials to unlock the full potential of MOFs in 
environmental remediation and other areas of use.

Nanocomposite membranes  Nano-composite mem-
branes (NCMs) are a new breed of adsorbents and mem-
branes made of polymeric and non-polymeric materials, 
such as metals and ceramics [5]. These membranes have 
numerous applications in environmental remediation 
and pollution control because of their superior proper-
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ties, such as improved mechanical, thermal, and chemical 
properties, increased hydrophilicity, and effective removal 
of pollutants such as dyes, heavy metals, and antibacterial 
capabilities [59, 99]. The NCMs encompass several types, 
such as inorganic–organic hybrid, polymeric, ultrafine, 
CNT, polymeric, and MOF membranes. These mem-
branes can be created by incorporating various types of 
nanoparticles (NPs), including TiO2, Al2O3, ZrO2, CNTs, 

Ag, SiO2, MOF, covalent organic framework (COF), and 
NZVI, into the polymeric membrane matrix as shown in 
Fig. 5A–D. This incorporation leads to a notable improve-
ment in the performance of the NCMs, such as enhanced 
functionality, thermal stability, and microbial inactivation 
properties, while maintaining the structural integrity of 
the membrane [100]. The fabrication process of  NCMs 
typically involves mixing the polymer matrix and inor-

Fig. 5  Schematic illustration of nano composite membranes A flat sheath, B hollow fiber nano composite membranes, C, D synthesis steps 
of nanocomposite membranes, and E nano sensors for air and water pollutants remediation. Information was adapted and modify from A [105] B 
[106] C [107] and, D [108]
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ganic NPs together, followed by casting or electrospin-
ning the mixture into a membrane as shown in Fig.  5C 
and D. The properties of the membrane can be fine-tuned 
by varying the type, size, and concentration of NPs and 
polymer matrix [101, 102]. Interfacial polymerization 
and phase inversion methods are two widely used tech-
niques in the fabrication process of NCMs. In interfacial 
polymerization, the reaction occurs between monomers 
present in different phases at the interface between them, 
which leads to a thin, uniform polymer layer on the sur-
face of NPs. This method is beneficial when synthesizing 
inorganic–organic hybrid and MOF membranes. On the 
other hand, phase inversion methods involve converting a 
homogeneous polymer solution into a porous membrane 
structure by manipulating the thermodynamics of the 
polymer solution refer to Fig. 5C and D [53, 103]. This pro-
cess includes dissolving the polymer in a suitable solvent, 
casting it onto a substrate, and extracting or evaporating 
the solvent, forming a porous membrane structure. This 
method is well-suited for fabricating polymeric and CNT 
membranes [104]. Other techniques, such as layer-by-
layer assembly, sol–gel or chemical vapor deposition can 
also fabricate NCMs with specific properties. Although 
the use of NCMs deteriorates a wide range of pollutants, 
however, they tend to leach out and aggregate, especially 
if they are grafted on a membrane without surface protec-
tion, which could make the process more difficult and low 
contaminants degradation. Thus, to address the disadvan-
tages, future research can focus on improving selectivity, 
stability, and durability of NCMs. Furthermore, to explor-
ing new types of NMs and advanced characterization 
techniques, and developing sustainable and cost-effective 
fabrication methods for large-scale production.

Nano sensors  Nano sensors empowered by NMs allow 
precise detection and remediation of environmental pol-
lutants at the nanomolar to sub-picomolar scales. Nano 
sensors are energy converters at nanoscales that can rec-
ognize and detect chemical, machinal, and physical phe-
nomena at the nanoscale in the environment and give an 
electrical or optical signal as output. Nano sensors com-
prise a specificity-enhancing recognition component and 
a signal transmission technique that enable them to con-
firm the presence of an analyte [17]. Nano sensors are sus-
ceptible, with high detection power and capacity to moni-
tor multiple tasks at once, and they can easily suspend 
in the air for a long time to collect information through 
their wireless and send it to a central base. With the use of 
nano sensors, air pollution has been effectively controlled. 
Nano sensors of CNTs, SnO2, Pt, Cu, Ag, and CQDs have 
been reported to remove toxic gases and heavy metals 
from the environment. Furthermore, nano sensors of NCs 
coated with gold (Au), silica oxide (SiO2), zinc (Zn), and 

lead (Pb) have been reported to detect heavy metals in 
drinking water.

Available pathways to synthesize nanomaterials
Traditional pathways
Traditionally, NMs can be synthesized in two different 
ways chemical and physical synthesis  pathway. Chemi-
cal synthesis includes liquid and gas phase pathways, 
as shown in Fig.  6A. Among them  liquid phase meth-
ods include colloidal methods, precipitation, sol–gel, 
coprecipitation, solvothermal, water–oil microemul-
sions, hydrothermal methods, chemical reduction, pol-
yol approach, and radiolytic method, while gas phase 
includes pyrolysis and inert gas condensation method 
[145]. Furthermore, ionotropic gelation and microemul-
sion methods are also used to synthesize NMs using 
polyelectrolytes, enzymatic treatment, ultrasonic, acid 
hydrolysis, chemo-mechanical therapy, and nanoprecipi-
tation. Physical synthesis utilizes various physical pro-
cesses to create structures with unique properties and 
characteristics. Similarly, the two different ways of syn-
thesis as already discussed in subheading "Carbon quan-
tum dots" (top-down and bottom-up strategy). Top-down 
strategy utilizes mechanical processes such as milling, 
grinding, or etching to reduce bulk materials into smaller 
particles. In contrast, bottom-up strategy involves assem-
bling smaller units, such as atoms, molecules, or NPs, 
into larger structures. Production techniques such as 
lithography, etching, and exfoliation are used in top-
down strategy, while wet chemical precipitation, sol–gel, 
chemical vapor deposition, hydrothermal, sputtering, 
template growth, electrospinning, and atomic layer dep-
osition are used in bottom-up techniques. Traditional 
pathways present limitations and disadvantages, such as 
high energy requirements, special equipment, and high 
costs [15, 132]. These challenges can be overcome by 
introducing functional groups to the surface of NMs in 
various ways to improve their effectiveness, selectivity, 
and sensitivity. These methods include creating chemical 
bonds between the modifier and NMs surfaces or physi-
cally adsorbing the modifying species to the NM surface 
[132]. However, the chemicals used in these processes 
can be corrosive, toxic, and flammable, posing significant 
environmental problems [104]. Furthermore, the tradi-
tional pathways are toxic and costive; therefore, it is fore-
seen that green and polymer base NMs will emerge as a 
hotspot for future research studies, especially on indus-
trial-scale applications. Therefore, it is recommended to 
adopt simple and reliable alternative methods such as 
synthesis and use of green based NMs for NMs synthesis.
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Biological pathways
To achieve more sustainable and eco-friendlier NMs 
production, scientists have started exploring the use of 
less hazardous and toxic chemicals in the manufactur-
ing process [146, 147]. Green and biobased NMs produc-
tion has gained attention as a promising alternative to 
molecular solvents due to its potential to remediate envi-
ronmental pollution cost-effectively and sustainably. This 
is achieved by using non-toxic precursors and environ-
mentally friendly solvents during the synthesis process, 
which minimizes the production of harmful byproducts 
[148]. It involves extracting various biological materi-
als, including bacteria, fungi, algae, yeast, green extracts, 
proteins, polysaccharides, nitrates reductase, coenzymes, 
biosurfactants, and hemicellulose biomass to produce 
a wide variety of sizes and forms of NMs [16] shown in 
Fig. 6B. Some of the most important environmental fea-
tures of biologically synthesized NMs are biodegradabil-
ity, sustainability, and environment friendly, as they rely 

on renewable resources and reduce the use of hazard-
ous chemicals [72]. Plants raw materials possess various 
functional groups with reducing capabilities and phyto-
chemicals that can serve as coating agents to stabilize the 
NMs and facilitate multidimensional absorption. Valu-
able plant materials such as leaves, roots, flowers, and 
fruit have been investigated for their potential to produce 
NMs [149, 150]. For instance, plant leaf extracts con-
tain a range of phytochemicals, including alkaloids, tan-
nins, flavonoids, carotenoids, vitamins, minerals, amino 
acids, sterols, glycosides, alkaloids, flavonoids, phenolics 
saponins, and phenolic compounds which act as reduc-
ing agents to eliminate toxic chemicals, MOs, and haz-
ardous pollutants in environment [83, 113]. Compared to 
chemically synthesized counterparts, biologically synthe-
sized NMs offer a higher potential for sustainable growth 
and environmental remediation. Recently biologically 
synthesized NMs have widely reported holding signifi-
cant potential for effectively mitigating environmental 

(A). Traditional pathways

(B).  Biological pathways

Fig. 6  Graphical illustration of general procedures for nanomaterial synthesis. A traditional pathways and, B biological pathways. Information 
was adapted and modify from [151, 152]
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pollution and promoting sustainable development (refer 
to  Table  3). Future studies should prioritize investigat-
ing the scalability, cost-effectiveness, and safety con-
siderations of biologically synthesized NMs to enable 
their widespread commercialization and adoption in 
industries.

Mechanisms for pollution remediation using 
nanomaterials
The fundamental principles utilized in remediating envi-
ronmental pollution encompass three main approaches: 
physical, chemical, and biological treatments. Each 
approach operates through specific reaction mecha-
nisms. Physical treatment involves adsorption and 
radiation mechanisms, chemical treatment employs oxi-
dation and reduction mechanisms, while biological treat-
ment includes disinfection using aerobic and anaerobic 
microbes, and enzymatic processes [170].

Adsorption
Adsorption is a widely used technique to eradicate air 
and water pollutants. It is an excellent practical approach 
and lacks toxic by-products to mitigate organic and inor-
ganic pollutants [40]. Adsorbents are developed using 
altered, unaltered and enhanced NMs encompassing pol-
ymers, activated carbon, MOF, molecular sieves, zeolites, 
and other economically viable substances. The selection 
of a specific adsorbent hinges primarily upon its inher-
ent adsorption capacity and the materials intrinsic affin-
ity for the targeted compound [171, 172]. The adsorption 
process involves separating chemicals from one phase 
and concentrating them on the surface of another adsor-
bent material [12]. Adsorption occurs in three steps: (1) 
interaction of an adsorbed species with an absorbent in 
interface with a liquid state and a solid phase of differ-
ent compositions at a constant temperature and pres-
sure over a specific duration of time. (2) The adsorbent 
and liquid layer are separated after the reaction, and (3) 
the adsorbent material in the supernatant liquid state and 
any pressurized fluid phase are measured [15, 21]. The 
mechanism is presented in Fig. 7A. The adsorption rate 
of adsorbate is primarily influenced by two crucial fac-
tors, namely adsorption isotherms, and kinetics, which 
represent the adsorbent’s adsorption effectiveness and 
establish the adsorption parameters. Thus, a thorough 
grasp on thermodynamic and kinetic aspects is necessary. 
The Langmuir and Freundlich isotherm models and the 
pseudo-first order, pseudo-second order, and intraparti-
cle diffusion models are key isotherm and kinetic models 
commonly used to describe the adsorption process [83]. 
Through kinetic analysis, we can determine the residence 
time required for completion of adsorption reaction, and 

kinetic information aids in sizing the adsorption equip-
ment appropriately. It also evaluating the efficacy of 
fixed-bed systems or other flow-through setups [172]. 
Adsorption is widely recognized as the primary mecha-
nism for removing heavy metals, dyes, and other pol-
lutants. Previous studies have proposed four distinct 
adsorption mechanisms: ion exchange, electrostatic 
adsorption, surface physical adsorption, and complexa-
tion/chelation [40, 75]. The adsorbed substance is classi-
fied as either physisorption or chemisorption. Physical or 
physisorption usually adsorbate adheres through van der 
Waals (weak intermolecular) interactions. In contrast, 
chemisorption involves the formation of strong chemical 
bonds between the adsorbate and the adsorbent surface 
[8, 173]. Electrostatic interactions, π-π and hydropho-
bic interactions, acid–base interactions, and van der 
Waals interactions all play a crucial role in determin-
ing the efficacy of nano adsorbents in absorbing organic 
compounds, complex compounds, and heavy metals. 
The NMs surface offers many active sites for interac-
tion with various chemical species due to its small size, 
high surface area, and surface multi-functionalities [10, 
174]. Many factors influence the adsorption efficiency 
of hazardous pollutants, e.g., pH, operating tempera-
ture, amount of adsorbent, suspended particles, surface 
charge, concentration of adsorbent and adsorbate and 
contacting time (discussed in our previous study) [175]. 
Each of these factors needs meticulous optimization 
in order to determine efficiency of absorbent. In recent 
studies, the adsorption capacity onto NMs was reported 
to strongly influenced by the pH of the solution specifi-
cally, increase in pH because it was observed to promotes 
adsorption when the surface of the adsorbent has a nega-
tive charge [15, 174]. The underlying mechanisms of this 
process involve molecular diffusion and surface binding. 
Conversely, when the pH is lower, and the surface of the 
adsorbent becomes positively charged, the adsorption 
of pollutants slows down due to reduced electrostatic 
attraction. It is crucial to control solution conditions for 
fine-tuning adsorption efficiency and enhance adsorbents 
effectiveness. As suggested in literature, incorporating 
NMs by blending them with adsorbents can improve the 
attraction between the desired substances and the adsor-
bents. These insights can enhance the design and optimi-
zation of nano adsorbents for more effective removal of 
pollutants from contaminated resources [43, 100].

Membrane filtration
Membrane filtration serves as a fundamental technique 
for segregating pollutants using porous materials or 
membranes that selectively allow desired particles or 
substances to pass while retaining others [176]. In recent 
times, membrane filtration has garnered significant 
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interest for being a cost-effective and highly efficient 
method. The filtration process is influenced by factors 
like particle size, surface charge, solute hydrophilicity, 

and shape. Traditional membrane filters are typically 
crafted from petroleum-derived polymers like polyethyl-
ene (PE), polypropylene (PP), and glass fibers [177, 178]. 

Fig. 7  A adsorption mechanism B filtration mechanism, C disinfection mechanism, D photocatalytic mechanism, and E oxidation mechanism 
of different pollutants with NMs. Illustrations were adapted for modification from [5, 35, 41, 175, 189, 198]
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The filtration mechanism in membranes occurs through 
physical capturing processes such as sieving, inertial 
impaction, interception, and diffusion. The four straight-
forward physical capturing processes of sieving, inertial 
impaction, interception, and diffusion are primarily used 
to fulfill filtration functions [179]. The mechanism is pre-
sented in Fig. 7B. Brownian motion can describe the fil-
tration mechanism of nanometer-sized particles, but it 
is unlikely to be a sufficient mechanism for filtration on 
its own. Brownian motion causes some particles to dif-
fuse toward the surface and deposit as they pass on both 
sides of the membrane filter. This happens when particles 
pass at a distance for collision by inertia or interception 
[178–180].

However, membrane filter properties can be fine-tuned 
using fabrication methods involving the integration of 
NMs and polymers. These modifications play a pivotal 
role in enhancing membrane performance and mitigat-
ing fouling. By incorporating or blending of NMs like 
Ag, SiO2, TiO2, ZnO, CNTs, polymers base NMs, metal 
oxides, halloysites, and more, membrane characteris-
tics can be adjusted. This infusion introduces functional 
groups and heightens hydrophilicity and adsorption 
capabilities, thereby bolstering their efficacy in reject-
ing contaminants [179]. This leads to improved removal 
of MOs and noxious pollutants. Notably, photocatalytic 
NMs, in particular, exhibit substantial promise in eradi-
cating toxic pollutants through photo degradation [180, 
181]. However, they only target solid particles and can-
not capture and remove other  toxic contaminants, and 
when disposed of, might result in secondary pollution. 
Recent research is focusing on creating hybrid mem-
branes with incorporation of NMs. Furthermore, modi-
fication of membranes was reported to enhance removal 
of harmful pollutants [182, 183]. The suggested modifica-
tion enhancements reported in literature involve surface 
modification to improved selectivity and hydrophilicity 
and interfacial polymerization to enhance strength, and 
chemical/thermal stability while also offering features 
like anti-fouling properties, self-cleaning ability, selectiv-
ity, and the capacity to combat microbes. They provide a 
high flow rate under low pressure conditions and allow 
for easy recovery and reuse of the NMs [176–178].

Disinfection
Well, NMs have been used as disinfectants due to their 
non-specific mode of action to remove organic and inor-
ganic contaminants and inactivate various types of MOs, 
such as viruses, protozoa, and bacteria [13]. Conventional 
disinfectants, such as chloramines, ozone, chlorine, chlo-
rine dioxide, and chlorine gas, can effectively prevent 
microbial growth, but they have short-lived reactivity 
and can present problems since they can produce toxic, 

carcinogenic disinfection byproducts (DBPs) [184, 185]. 
NMs successfully overcome drawbacks that prevented 
the viability of conventional disinfection and have estab-
lished themselves as effective disinfecting agents in envi-
ronmental remediation. NMs exhibit such behaviors due 
to their improved interfacial charge separation, increased 
surface area, solution chemistry, and transport behavior, 
which provide more active sites and prevent DBPs pro-
duction, thus increasing disinfection [186]. Addition-
ally, NMs are highly stable and can remain active for 
extended periods, reducing the need for frequent reap-
plication [187]. Many NMs have been proposed to inhibit 
the growth of microbes in air and water, including CNTs, 
chitosan, fullerene, TiO2, MgO, ZnO, AgO, and zerova-
lent NMs.

The disinfection mechanism operates through the 
adherence of NMs (such as ZnO + , Ag + , Ti +) to the 
lipopolysaccharide layer within the external cell walls of 
target microbes. This interaction induces oxidative stress 
(ROS), which subsequently degrades the peptidoglycan 
layer, triggering peroxidation of the lipid membrane. 
Consequently, oxidation extends to the membrane pro-
teins, inducing alterations in membrane characteristics 
that prompt the release of cations [188]. Even at low con-
centrations, these cations initiate a biological response. 
They incapacitate bacterial respiratory enzymes by bind-
ing to functional groups like thiol groups in proteins, 
inducing damage to microbial cells by disrupting DNA, 
oxidizing lipids, peroxidizing proteins, and impeding cel-
lular respiration [189]. This sequence ultimately leads to 
the malfunction of the cellular respiration process and 
peroxidation of polyunsaturated phospholipid compo-
nents in the cell membrane, culminating in cell death 
[186, 188]. Moreover, the interactions between cations 
and DNA can inhibit replication and create structural 
alterations in the cell envelope [104]. The mechanism is 
presented in Fig. 7C.

Photocatalysis
Photocatalysis has emerged as an effective and environ-
mentally friendly process for the degradation of persis-
tent organic pollutants (POPs), endocrine disrupting 
chemicals, heavy metals, insecticides, acetaldehyde, 
nitrogen oxides (NOx), sulfur oxides (SOx), ammonia 
(NH3), carbon monoxide (CO), mercury (Hg), volatile 
organic compounds (VOCs), and polycyclic aromatic 
hydrocarbon (PAHs) [18, 117, 167, 190]. This process 
enhances chemical reactions that transform toxic air pol-
lutants into non-toxic gases and in their powder form 
often result in complete mineralization. However, it still 
has drawbacks such as poor recovery and secondary con-
tamination [103, 190]. The process mechanism involves 
the use of a light source to activate a wide-bandgap 
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semiconductor materials, such as TiO2, ZnO, SnO2, 
cadmium sulfide, and tungsten trioxide, in the presence 
of water, causes electron separation, and develops an 
electron–hole pair [5, 41]. The photocatalysis mecha-
nism entails several steps starting with photoexcitation 
that triggers a series of oxidative and reductive reac-
tions on the surface of the photocatalyst upon exposure 
to an appropriate wavelength of light (often with photon 
energy (hv) more significant than or equal to the band 
gap energy) [149, 191]. Subsequently, the electrons dif-
fuse across the photocatalyst’s interface and interact 
with the surroundings, leading to reductions and oxida-
tions [192, 193]. Photocatalytic oxidation involves the use 
of a catalyst activated by an energy source to facilitate 
reactions that rely on the production of highly reactive 
radical species such as OH• and •O2 −, which are potent 
oxidizing agents that are generated through a reaction 
between photogenerated electrons and molecular oxy-
gen and between photogenerated holes and water, that 
non-selectively destroys all organic contaminants [92, 
194]. The mechanism is presented in Fig.  7D. The pho-
tocatalysis approach can be divided into two categories: 
homogeneous photocatalysis (photo-Fenton reaction), 
which responds up to a light wavelength of 600 nm, and 
heterogeneous photocatalysis (Fenton reaction), which 
does not entail any light irradiation [35]. In the context 
of large-scale applications, the photocatalytic perfor-
mance of nano catalysts may be hindered by the presence 
of complex chemical mixtures and prolonged irradiation 
periods. Several strategies have been developed to over-
come these limitations to enhance nano catalysts photo-
catalytic performance. These include introducing anionic 
and transition metal dopants and tailoring the surface 
properties of the nano catalysts. Dopants such as sulfur, 
fluorine, carbon, and nitrogen can modify the electronic 
structure of the nano catalysts and increase the number 
of active sites, resulting in higher efficiency. Nanofibers 
or nanotubes can also increase the surface area, while 
plasmonic materials such as Au or Ag NPs can enhance 
light absorption [103, 190]. Moreover, the incorporation 
of blended photocatalysts with supportive materials is a 
well-regarded approach in the literature. This technique 
not only enhances the recoverability of photocatalytic 
agents but also mitigates the potential for secondary con-
tamination. As a result, it facilitates the attainment of 
desirable attributes such as recyclability, reusability, and 
an extended lifespan of the photocatalytic components.

Oxidation
Organic and inorganic compounds can be oxidized by 
using NMs that produce active oxygen species such as 
superoxides and hydroxyl radicles. Commonly used 
metal oxides for oxidation are MnO2, V2O5, CuO, TiO2, 

ZrO2, and CeO2 [26, 41]. Oxidation is a process in which 
oxygen-containing groups are created on NMs by split-
ting the reaction media and is typically carried out using 
an oxidizing agent e.g., H2O2, potassium permanganate 
(KMnO4), sodium hypochlorite (NaOCl) and one or 
more inorganic acids such as nitric acid (HNO3) and sul-
furic acid (H2SO4) in a refluxing state [41, 192]. The reac-
tion mechanism of oxidation is still not fully understood, 
and the relevance of the particle size and surface mor-
phology is still under debate. The mechanism of oxida-
tion is presented in Fig. 7E. It was stated in literature that 
the mechanism of oxidation produces ROS such as (•OH, 
•O2

−, SO4
•−), and singlet oxygen (1O2) to improve the 

degradation of organic contaminants. For the decontami-
nation process to take place, the production of these radi-
cals need to be adequate [195, 196]. Different metal oxide 
NMs can remove gases and metals from the air using 
liquid-phase, gas-phase, and combined-phase oxidation 
methods that can be achieved by heating or plasma treat-
ment in the presence of oxygen gas [54]. Well, liquid-
phase oxidation is a more common method for removing 
metals and functionalizing products while advanced oxi-
dation processes (AOP) are also a significant component 
of liquid-phase oxidation. The commonly used gaseous 
oxidants include ozone (O3), chlorine dioxide (ClO2), and 
non-thermal plasma [8, 100, 169]. Transitional metals 
such as (Fe, Co, Ti, Zr, V, Mn, Cu, and Ce) are widely used 
to simultaneously remove toxic gases and heavy met-
als from the air by catalytic oxidation. These metals have 
large holes and favor redox reactions for electron trans-
fer, resulting in lower reaction activation energy. Metals 
can be doped or impregnated onto or into the substrate 
material to enhance the surface area of the catalyst and 
increase its reactivity in both oxidation and reduction 
of heavy metals and gases, improving their resistance to 
gases and water [26, 197]. So far, various oxidants are 
commonly used to eliminate harmful gases from the 
atmosphere, including chlorine-based and sulfur-based 
compounds, O3, and H2O2 [26]. Some oxidative absor-
bents are highly reactive and safe to use, with no toxicity, 
such as ClO2, hypochlorite (ClO−), chlorite (ClO2

−), and 
chlorate (ClO3

−). Additionally, persulfate (PS, S2O2
−) and 

permonosulfate (PMS, SO2
−) are also recommended for 

their ease of storage and transport [18, 197]. The reaction 
mechanism of oxidation is still not fully understood, and 
the relevance of the particle size and surface morphol-
ogy is still under debate. The mechanism of oxidation is 
presented in Fig.  7E. It was stated in literature that the 
mechanism of oxidation usually takes place between 
chemisorption of CO and dissociative adsorbed oxygen. 
For the decontamination process to take place, the pro-
duction of the radicals needs to be adequate.
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Future strategies for appropriate eco‑safe nano 
remediation
Although NMs are widely used for the remediation of 
environmental pollutants, they may still have uninten-
tional adverse effects on human health and the envi-
ronment when released in massive quantities and 
accumulate in the food chain. Therefore, it is crucial to 
develop sustainable technologies that can reliably reme-
diate pollutants while minimizing the risk to human 
health and the environment. The efficient application of 
NMs for remediating toxic pollutants requires careful 
consideration of their advantages and disadvantages and 
their dispersion and retention properties. Each type of 
NMs has unique advantages and disadvantages, making 
it challenging to determine which is best suited for envi-
ronmental remediation.

Chemically synthesized NMs have been proven harm-
ful to human health and the ecosystem, making it nec-
essary to develop sustainable, effective, and powerful 
NMs for environmental remediation. While polymer and 
green-based NMs are still being studied on a laboratory 
scale. Scientists have been using supporting materials 
such as plant waste and polymers to modify the structure 
and composition of NMs to boost their efficacy. Low-cost 
and readily available sources such as bone char, charcoal 
ash, fly ash, rice hull ash, and pomegranate cover can be 
used as absorbents and supporting materials to enhance 
efficiency and minimize the drawbacks of chemically syn-
thesized NMs [6, 199, 200]. Comparing the adsorption 
capacity of each NM is difficult as the parameters and 
adsorbates employed are always different. However, vari-
ous NMs have been found to have strong metal ion sorp-
tion abilities. Furthermore, research is needed to coat 
NMs, allowing them with surfactant to reach pollutants 
and destroy themselves after performing their job, such 
as coating them with a surfactant. The use of NMs for 
environmental remediation must be approached strategi-
cally, considering their impact on human health and the 
environment, to ensure appropriate and eco-safe reme-
diation. In addition, the utilization efficiency, engineering 
investments, and operational expenses associated with 
each type of NM must be compared to determine the 
most suitable approach.

Conclusions
This systematic review highlights the immense poten-
tial of NMs for mitigating environmental pollutants. 
NMs offer a promising avenue for addressing envi-
ronmental pollution, displaying potential advantages 
over conventional methods. This review covers the fol-
lowing aspects. Discussion on both conventional and 
advanced pollutant removal techniques, emphasizing 

the potential of NMs in this context. Exploration of 
NMs types, encompassing inorganic variants (metal 
and metal oxides, nanoclays), carbon-based, graphene 
based, carbon quantum dots, organic counterparts 
(polymer-based, and dendrimers) and nano compos-
ites (MOFs, NCMs, and nano sensors). Evaluation of 
diverse synthesis pathways, encompassing traditional 
methods (chemical and physical) as well as biologi-
cal synthesis routes for NMs. Elaboration on reaction 
mechanisms facilitated by NMs in pollutant removal, 
encompassing adsorption, filtration, disinfection, pho-
tocatalysis, and oxidation and provision of strategic 
insights for future research strategies.
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