Skip to main content
Fig. 5 | Journal of Nanobiotechnology

Fig. 5

From: Unconjugated PLGA nanoparticles attenuate temperature-dependent β-amyloid aggregation and protect neurons against toxicity: implications for Alzheimer’s disease pathology

Fig. 5

PLGA changes size and secondary structure of Aβ1–42 aggregates. DLS analysis (A, B, D, E, G, H) and CD spectra (C, F, I) of 10 µM Aβ1–42 in the presence and absence of PLGA following 24 h incubation at 27 °C (AC), 37 °C (DF) and 40 °C (GI). DLS analysis reveals a differential decrease in the diameter of Aβ1–42 in the presence of 5 µM (red), 10 µM (blue) and 25 µM (green) PLGA incubation at 27 °C (A, B), 37 °C (D, E) and 40 °C (G, H) compared to control Aβ1–42 (black) as depicted by size distribution curves and avearge size histograms. PLGA nanoparticles (violet) without exposure to Aβ peptide have also been represented in the corresponding graphs. CD spectra showing β-sheet content following incubation of 10 µM Aβ1–42 in the absence (black) and presence (red) of 25 µM PLGA after 24 h incubation at 27 (C), 37 (F) and 40 °C (I), respectively. Note the decreased formation of β-sheet rich secondary in the presence of PLGA which increases with the rise of temperature. (J) ITC binding isotherms showing interaction between PLGA and Aβ1–42 at 25 °C. The top panel shows the differential power signal measured for each injection throughout the experiment and the bottom panel shows the integrated peak areas corresponding to the measured heat released per injection. The thermodynamic parameters for the protein and ligand interaction are shown in the adjacent table

Back to article page