Skip to main content
Fig. 2 | Journal of Nanobiotechnology

Fig. 2

From: Ultrasensitive dopamine detection with graphene aptasensor multitransistor arrays

Fig. 2

Dopamine detection in physiological buffers with gMTAs. A Schematic illustration of aptamer structure reorientation close to an EG–gFET graphene channel upon dopamine binding. B Calibration curve for dopamine detection in 1 × PBS (data is mean ± sem, with 4th order polynomial line fit) (top). Representative transfer curve shifts as a function of increasing dopamine concentrations for the linear detection range of one EG–gFET in 1 × PBS. VDIRAC moves towards positive gate voltages (VGS) (black arrow indicates the direction of VDIRAC shifts) (middle). Illustration of the hypothesized reorientation of the aptamer's backbone negative charges close to the gFETs upon dopamine binding in 1 × PBS, leading to electrostatic repulsion in the graphene channel (bottom). C Calibration curve for dopamine detection in 1 × aCSF (data is mean ± sem, with 4th order polynomial line fit) (top). Representative transfer curve shifts as a function of increasing dopamine concentrations for the linear detection range of one EG–gFET in 1 × aCSF, with VDIRAC moving towards negative gate voltages (VGS) (black arrow indicates the direction of VDIRAC shifts) (middle). Illustration of the hypothesized reorientation of the aptamer's structure in aCSF upon dopamine binding, with the increased attraction of positive charges closer to the graphene channel, leading to negative shifts of VDIRAC (bottom). D Calibration curves for dopamine detection in 1 × PBS at pH 6.4 (blue), 7.4 (red) and 8.4 (dark green) (data is mean ± sem, with 4th order polynomial line fit). E Comparative responses of gMTAs to 1 pM dopamine, 1 nM L-DOPA, 1 nM L-tyrosine and 1 nM ascorbic acid in 1 × PBS (normalized data is mean + sem; One-way ANOVA, *p < 0.0001)

Back to article page