Skip to main content

Table 1 The renoprotective mechanisms of different metallic and polymeric nanoparticles

From: Ameliorative impacts of polymeric and metallic nanoparticles on cisplatin-induced nephrotoxicity: a 2011–2022 review

Nanoparticles

Size (nm)

Zeta potential (mV)

Treatment

Renoprotective mechanisms

Ameliorative effects on kidneys

Refs.

Metallic nanoparticles

 Cerium oxide nanoparticles (CONPs)

Less than 25

Albino rats (60 mg/kg) (i.p.)

-As an anti-oxidant and anti-inflammatory agent

-Decreased: urea, creatinine, and histopathological damages

-Increased: IL-10 and TAO

[52]

 Nanoceria

113

−15.4

Swiss mice (0.2 and 2 mg/kg) (i.p.)

-Anti-oxidant and anti-inflammatory activities

-Decreased: urea, creatinine, lipid peroxidation, pro-inflammatory cytokines, and histopathological damages

-Increased: catalase and GSH

[53]

 Green silver nanoparticles (CP-AgNPs)

33.2

Wistar rats (2.5 mg/kg) (i.p.)

-Inhibiting mitochondria-mediated apoptosis

- Decreased: Bax, caspase-3, and histopathological damages

-Increased: Bcl-2

-Inhibited: the releases of AIF and cytochrome c from mitochondria

[54]

 N-(2-hydroxyphenyl) acetamide-conjugated gold nanoparticles (NA2-AuNPs)

25–60

−45.7

Balb/c mice (Different doses) (i.p.)

-As a nano-carrier for a natural anti-oxidant

-Downregulated: NF-κB, iNOS and IL-6

-Upregulated: HO-1

[55]

 Ficus carica L. leaves extract-loaded AuNPs

100

Albino rats

(0.5 ml of Au

NPs/Fig mixture as different v/v ratios) (orally)

-As a nano-carrier for a natural anti-oxidant

-Scavenging ROS

-Mitigating AKI severity

[56]

 Selenium nanoparticles (SeNPs)

45.9

Pretreatment of albino rats with both SeNPs (0.5 mg/kg; orally) and fish oil before cisplatin administration and γ-radiation

-Inhibiting caspase-dependent apoptosis and inflammation

-Strengthening the antioxidant system

-Decreased: urea, creatinine, TNF-α, caspase-3, cyclooxygenase-2, and histopathological damages

[57]

 Tea polyphenol (TP)-functionalized SeNPs (Se@TE)

Under microwave conditions:

-After 0.5 h: 200.8

-After 1 h: 216.4

-After 2 h: 220.4

-After 0.5 h: − 9.4

-After 1 h: − 11.5

-After 2 h: − 10.7

-In vitro: HK-2 cells

-In vivo: KM mice (1 and 2 mg/kg) (i.v.)

-As a nano-carrier for a natural anti-oxidant

-Prevention of mitochondrial dysfunction

-Activating seleno-enzymes

-Inhibited: dephosphorylation of AKT, phosphorylation of p38 MAPK, phosphorylation of JNK, phosphorylation of p53, pro­apoptotic genes (i.e., Bax and Bad), caspase-mediated apoptosis, and ROS production

-Upregulated: anti-apoptotic genes (i.e., Bcl2 and Bcl-xL)

[58]

 6-hydroxy-2,5,7,8-tetramethylchroman-2-carboxylic acid (trolox) surface-functionalized

SeNPs (Se@Trolox)

100

Lower than -50

-In vitro: HK-2 cells

-Inhibiting apoptosis

-Blocked: ROS-induced p53 phosphorylation

-Regulated: AKT/MAPK pathways

[59]

 Se@SiO2 nanocomposites

53

-In vitro: HK-2 cells

-In vivo: pretreatment of C57BL/6 mice with Se@SiO2 (200 μl, 2 mg/ml) (i.v.)

-Reversing cisplatin-induced tubular damage

-Decreased: TNF­α and IL-6

-Activated: Sirt1 at both in-vivo and in-vitro

[60]

 A. officinarum-silver nanoparticles (AG-AO)

100

Wistar rats

(50 mg/kg/day or/and 100 mg/kg/day)

(orally)

-As a nano-carrier for a natural anti-oxidant

-Decreased: ROS levels, Bax, p53, caspase­3 and ­9 proteins, TNF­α, IL­1β, NF-κB and NO pathways

-Increased: Bcl2 protein, SOD, CAT and GSH

-Inhibited: tubular atrophy, interstitial edema, necrosis and inflammation

[62]

Polymeric nanoparticles

 Nanocurcumin (NC)

240.7

Sprague–Dawley rats (100 mg/kg/day) (orally)

-Changing the expression of cisplatin transporters on renal cells

-Increased: OCT2

[66]

 Curcumin nanoparticles (CUR NPs)

10–50

Wistar albino rats (50 mg/kg body wt/day) (orally)

-Maintaining the mitochondrial function

-Decreased: lipid peroxidation, NO and TNF-α

Increased: GSH and Na+/Ka + -ATPase activity

[73]

 The platinum complexes of curcumin (Pt-CUR@ mPEG-SS-PBAE-PLGA)

154.87

−20.8

In vitro: HEK-293 cells

In vivo: Balb/c nude mice (1 mg/kg of Pt-CUR) (tail intravenous injection)

-Redox and pH-dependent release

-Suppressed: ROS production

[74]

 Curcumin nanoparticles (CURNPs)

2–100

Rats (30 or 60 mg/kg b.w) (orally)

-As an antioxidant

-Decreased: urea, creatinine, F-2IsoPs, and histopathological damages

-Increased: SOD and CAT activities

[72]

 SinaCurcumin®

Patients with localized muscle-invasive bladder cancer (180 mg/day)

-A complementary therapy

-No significant difference between nanocurcumin group and placebo group in response to grade 3/4 renal

[76]

 Cisplatin-incorporated liposome conjugated with EGFR antibodies (EGFR:lP-cDDP)

247.9

 

Balb/c nude mice (10 mg/kg) (i.v.)

-Targeted cisplatin delivery

-No pathological changes

[78]

 Cisplatin-sodium alginate conjugate liposomes modified with EGF (CS-EGF-Lip)

112.37

−23.83

Balb/c nude mice (i.v.)

-Targeted cisplatin delivery

-Decreased: urea and creatinine

[79]

 RNAi-Chemotherapy Layer by Layer Nanoparticle

180

−30

Mice (i.v.)

-RNA-based therapeutics

-Increased: urea and creatinine at nanoparticles contained 16 mg/kg of cisplatin

-Decreased: cisplatin-induced nephrotoxicity

[80]

 Lipoplatin

Patients with both cancer and renal failure

-Monotherapy

-co-therapy with 5-fluorouracil-leucovorin or

gemcitabine or paclitaxel

Creatinine at a normal level

[81]

 Lipocisplatin

104.4

Balb/c mice (6.5 mg Pt/kg) (tail intravenous injection)

-The size of cisplatin was more than cutoff for renal clearance

-Less drugs in kidneys

[82]

 Curcumin-loaded liposomes synthesized by microfluidic technology (Lipo-Cur)

120

Balb/c mice (20 mg/kg) (i.v. and orally)

-Decreased: urea, creatinine, and histopathological damages after a single dose

[83]

 Nanoparticulated honokiol

(ICR mice 5 mg/kg b.m) (Tail-vein injection)

-As a nano-carrier for a natural anti-oxidant

-Inhibiting inflammation and fibrosis

-Inhibited: caspase-3-mediated apoptosis

-Reversing acute kidney injury

[84]

 Lipid-coated cisplatin nanoparticles

63.6

 + 12.8

Xenograft mice

-Microneedle mediated delivery

-pH-dependent release

-Decreased: urea, creatinine, and histopathological damages

[85]

 Cisplatin NanoComposite (CHIT/Cis/MgO NPs)

Wister rats (5.75 mg/kg b. wt.day) (i.p.)

-Sustained release

-Compared to cisplatin, it induced less malondialdehyde (MDA), 8-hydroxy-2’-deoxy-guanosine, NADPH oxidase, iNOS, NF-κB, STAT1, p53, caspase-3, phosphorylated mTOR, TNF-α and IL-1β

-It decreased GSH, p-AMPK, p-PI3K, p-Akt less than cisplatin

-Reduced: histopathological damages

[87]

 N-benzylN,O-succinyl chitosan (BSCT)

356.6

−16.7

RPTEC/TERT1 cells

-Sustained and pH-dependent release

-Decreased: necrotic or late apoptotic cells

[88]

 CDDP complexed with γ-polyglutamic acid and chitosan (γ-PGA/CDDP-CS)

196

−59

AB23G2-bearing mice (45 mg/kg) (i.p.)

-pH-dependent release

-Reduced: histopathological damages

[89]

 Poly (lactic-co-glycolic acid) nanoparticles

284.8

−15.8

Balb/c mice (1.5 mg/kg of cisplatin in nanoparticles) (Tail-vein injection)

-A biphasic release profile

-Decreased: the cisplatin level, and CDDP-induced creatinine and urea nitrogen in kidneys

[96]

 PLGA-encapsulated nano-Boldine (NBol)

115.5

−17.4

Swiss albino mice (Co-treatment of cisplatin with 10 mg/kg of NBol) (orally)

-As a nano-carrier for a natural anti-oxidant

-Recovery of SOD activity, creatinine and urea levels towards their normal ranges

-Decreased: the rate of GSH depletion and the level of LPO

-Normal glomerule

-Negligible tubular damage

[97]

 N, N’-diphenyl-1, 4-phenylenediamine loaded PLGA nanoparticles (Nano-DPPD)

Sprague–Dawley rats (0.5 g/kg) (i.p.)

-Anti-fibrotic activity

-Inhibited: the interstitial fibrosis via decreasing CDDP-induced collagen contents in kidneys

-Prevented: CDDP-induced macrophages infiltration

-Decreased: tubular injury score, BUN, magnesium, creatinine, MCP-1 and hydroxyproline contents

-Increased: creatinine clearance

[98]

 Thymoquinone nanoparticles (NP THY)

210.9

 + 32.8

Ehrlich solid carcinoma (ESC) mice model (3 mg/kg) (orally)

-Anti-oxidant and anti-inflammatory activities

-Decreased: TNF-α, IL-1β, NF-κB, urea, uric acid, creatinine, MDA and cystatin C

-Increased: GSH, SOD and CAT

-Preserved: parenchyma structure

[99]

 Micelles of poly(ethylene glycol)-b-poly(methacrylic acid) (cisplatin/cl-micelles)

100–200

−20 to −30

C57Bl/6 mice (4 mg-cisplatin/kg b.w) (Tail-vein injection)

-Reducing renal exposure

-Recovery of creatinine and urea towards their normal ranges

-No histopathological changes

-No long-term effects

[101]

 Polymeric micelles (CDDP-PMs) (with drug/copolymer ratios of 1:3)

18.39

−4.77

Balb/c nude mice (4 mg-cisplatin/kg) (Tail-vein injection)

-Tumor-targeting accumulation of cisplatin

-A sustained, pH-dependent release

-Enhancing the dose of drug within systemic tolerability

[102]

 Micellar Pluronic F127-encapsulated quercetin

Wistar rats (Co-treatment of cisplatin and 100 mg/kg of P-quercetin containing 50 mg/kg quercetin)) (i.p.)

-As a nano-carrier for a natural anti-oxidant

-Decreased: CDDP-induced urea, creatinine, and tubular damage

-Increased: creatinine clearance

[105]

 Chitosan derivatives, O-succinyl chitosan complexed with cisplatin

317.67

−19.23

RPTEC/TERT1 cells

-Decreased: cytotoxic effects of cisplatin on renal proximal tubular cells

[107]

 Silymarin-loaded benzyl-functionalized succinyl chitosan (BSC) (SM-loaded PMs)

326

−23.8

RPTEC/TERT1 cells

-pH-dependent release

-As a nano-carrier for silymarin as a renoprotective agent

-low cytotoxicity on renal proximal tubular cells

-Increased: permeability of silymarin

across the intestinal membrane

[108]

 Human umbilical cord derived mesenchymal stem cells-exosomes

103

−24.15

Pre-incubated rat renal tubular epithelial cells (NRK) with exosomes

-Inhibiting apoptosis

-Increased: CDDP-inhibited viability, proliferation and G1-phase cells

-Decreased: cleaved caspase-9 and -3, Bim, Bad, and Bax,

[112]

 Carbon monoxide (CO)-loaded hemoglobin-vesicle (CO-HbV)

ICR mice (1000 mg Hb/kg) (Tail-vein injection)

-A renoprotectant

Suppressing caspase- 3-mediated apoptosis

[113]

 Gelatin microspheres incorporating cisplatin (GM-CDDP)

Balb/c mice (GM incorporating 40 mg

CDDP) (i.p.)

-Allowed high-dose

chemotherapy

-Decreased: the durability of the drug in the kidney

[114]

 Nanoparticles functionalized with folate (CP-FA-BSA-NPs)

134.53

−37.66

Balb/c mice (5 mg/kg of CDDP in CP-FA-BSA-NPs) (Tail-vein injection)

-Targeted cisplatin delivery

-Decreased: CDDP-induced urea, creatinine, and histopathological damage

[128]

 PEG grafted-olyphosphazene–cisplatin conjugate (Polycisplatin)

18.6

 

ICR mice (5, 10, 15 and 20 mg platinum/kg) (i.v.)

-Passive targeting by EPR effect

-Decreased: CDDP-increased BUN, creatinine, and kidney weight/body

[116]

 Poly(L-glutamic acid)-g-methoxy poly(ethylene glycol 5 K) nanoparticles

Changed based on pH

Kunming mice (5 mg/kg of CDDP) (i.v.)

-Decreased: platinum concentration in kidney

[117]

 LHRH-modified dextran nanoparticles (Dex-SA-CDDP-LHRH)

Kunming mice (5 or 10 mg/kg of CDDP) (i.v.)

-Targeted cisplatin delivery

-Decreased: renal cisplatin accumulation

[118]

 Gallic acid-loaded Eudragit-RS 100

Nanoparticles (nano-gallic acid)

180

Positive charge

Wistar rats (10 mg/kg) (orally)

-Anti-oxidant and anti-inflammatory activities

-Decreased: MDA and ROS production in mitochondria, mitochondrial membrane damage, TNF-α, IL-6, and histopathological damage

-Increased: GSH catalase, Superoxide dismutase, and Glutathione peroxidase in mitochondria

[119]

 Urolithin A nanoparticles

214

 + 25.1

C57BL/6 J mice (50 mg/kg) (orally)

-Reducing oxidative stress and apoptosis

-Attenuated: histopathological damages presented in CDDP-induced AKI

-Decreased: mortality by 63%, oxidative stress, nuclear factor erythroid-2-related factor 2 (Nrf2) gene, and P53-inducible gene

-Normalized: Poly(ADP-ribose) polymerase-1, miR-192-5p, miR-140-5p, intracellular NAD+, mitochondrial oxidative phosphorylation

[120]

 A magnetic CDDP-encapsulated nanocapsule (CDDP-PAA-NC)

186

Balb/c nude mice (10 mg/kg) (Tail-vein injection)

-A magnetic targeting

Decreased: BUN, creatinine, and histopathological damages

[121]

 Hyaluronan–cisplatin conjugate nanoparticles (HCNPs) entrapped in Eudragit S100-coated pectinate/alginate microbeads (PAMs) (HCNP-PAMs)

The diameters: 658 ± 73 µm

−20.16 for HCNPs

Wistar rats (3.5 mg/kg of cisplatin per Week) (orally)

-pH-dependent release

Decreased: creatinine level at day 29

[122]

 Glutathione-scavenging poly(disulfide amide) nanoparticles (CP5)

76.2

Negative charge due to the presence of DSPE-PEG 3000 layer

A2780cis tumor bearing athymic nude mice

-Reversing CDDP resistance via GSH-scavenging process

Decreased: BUN

[123]

 Hyaluronic acid cisplatin/polystyrene-polymetformin (HA-CDDP/PMet) dual prodrug co-assembled

nanoparticles

166.5

−17.4

C57BL/6 mice (5 mg/kg of CDDP) (i.v.)

-Intracellular co-delivery with excellent cleavage

-Decreased: renal CDDP accumulation, BUN, creatinine, and histopathological damages

[124]

 EGFR-targeted albumin-cisplatin nanoparticles

40

Nude mice (3.0 mg/kg equivalent Pt Dose) (Tail-vein injection)

-Targeted cisplatin delivery

-A sustained, pH-dependent release

Decreased: CDDP-induced cystic dilatation of renal tubes and tubular atrophy

[125]

 Pt (IV) prodrug-loaded ligand-induced self-assembled nanoparticles (GA-ALG@Pt NPs)

141.9

-36.7

Balb/c nude mice bearing dual-xenograft and Healthy Kunming mice (5 mg/kg) (Tail-vein injection) or (25 mg/kg) (i.v.)

-Redox-sensitive

-Targeted cisplatin delivery

Decreased: BUN, creatinine, and tubular damage

[126]

 Silk fibroin peptide/baicalein nanofibers (SFP/BA NFs):

In vitro: HK-2 cells

In vivo: mice (50/100 mg/kg) (i.g.)

Improved anti-oxidant responses

Decreased: DNA damage, cGAS-STING pathway activation, creatinine, and BUN

Increased: SOD

[127]

 CaCO3 nanoparticle (CDDP/OA-LCC NPs)

217

−23.7

Balb/c nude mice (i.v.)

-A sustained, pH-dependent release

-Anti-inflammatory activities

Decreased: NF-κB activation

[115]

 Chitosan/siRNA nanoparticles

Passively target kidneys by gene therapy to protect them against apoptosis

Decreased: OCT1&2, p53, PKCδ and γGT proteins, and creatinine, and BUN

[92]