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Abstract

promoting medicine.

properties due to capping with folic acid.

biosystems.

Background: ZnO nanoparticles (grown in the template of folic acid) are biologically useful, luminescent material. It
can be used for multifunctional purposes, e.g., as biosensor, bioimaging, targeted drug delivery and as growth

Methods: Sol-gel chemical method was used to develop the uniform ZnO nanoparticles, in a folic acid template at
room temperature and pH ~ 7.5. Agglomeration of the particles was prevented due to surface charge density of
folic acid in the medium. ZnO nanoparticle was further characterized by different physical methods.

Results: Nanocrystalline, wurtzite ZnO particles thus prepared show interesting structural as well as band gap

Conclusions: A rapid, easy and chemical preparative method for the growth of ZnO nanoparticles with important
surface physical properties is discussed. Emphatically, after capping with folic acid, its photoluminescence properties
are in the visible region. Therefore, the same can be used for monitoring local environmental properties of

Keywords: ZnO nanoparticles, Folic acid, Structural effects, Spectroscopic study, Charge transfer effects

Introduction

Nanometer size multifunctional materials are gearing
the biological fields in various ways [1]. One of the
promising nontoxic and biocompatible semiconductor
material is Zinc Oxide (ZnO), which has received exten-
sive application due to its exceptional electrical and op-
tical characteristics [2] in fabricating nanoscaled
electronic and optoelectronic devices. ZnO is a kind of
wide band gap (3.37 eV) semiconductor with large ex-
citon binding energy (60 meV) [2]. In comparison to
other wide band-gap semiconductors, ZnO possesses
higher quantum efficiency [3] and higher exciton energy
[4,5]. Also, ZnO is a biofriendly oxide semiconductor
and an inexpensive luminescent material. Owing to the
properties stated above, it is expected to have a wide
range of applications in room temperature ultraviolet
(UV) lasing [6], biosensors [7], bioimaging [8], drug de-
livery [9] and piezoelectric transducers [10]. In general,
ZnO is considered “generally recognized as safe” (GRAS)
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[11] but ZnO nanoparticle system may be toxic. ZnO
nanosystem may be of important relevance in the con-
text of nanomedicine, where targeted treatment of bio-
logical systems at molecular level is a necessity [12].

Recently, there are several physical or chemical syn-
thetic methods of preparing ZnO, such as thermal evap-
oration [13], pulsed laser deposition (PLD) [14], ion
implantation [15], reactive electron beam evaporation
[16], thermal decomposition [17] and sol-gel technique
[18-22]. To obtain ZnO nanoparticle, we choose sol—gel
method because of its simplicity, which offers a possibil-
ity of large-area yield at low cost.

In the present study, nano-sized ZnO sample has been
prepared by chemical synthesis in presence of surface
active biological substance, such as folic acid. Folic acid
[23,24] is a member of the Vitamin B family and is ne-
cessary for the healthy function of a variety of bodily
processes. The structural aspect of the folic acid is
shown in Figure 1. Folic acid is sparingly soluble in pure
water, but is well dispersed under physiological pH ~ 7.5.
Folic acid being a multi dentate ligand, helps in control-
ling ZnO nanoparticle size through its surface charge
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Figure 1 Molecular structure of folic acid.

density [23]. Also, folic acid has a natural affinity to-
wards Folate receptor protein, which is over expressed
by a number of tumor cells [25]. Since ZnO nanoparti-
cles are cytotoxic and can combat the growth of tumor
cells, it is envisaged that such a capping would help in
targeting tumor cells. In this article further, the struc-
tural effects and the influence of folic acid are discussed
in detail with the help of physical methods and spectro-
scopic tools. It is envisioned that the simple preparative
scheme of the compound and the physical characteris-
tics as shown in this article, would find its vital pathway
in biotechnological applications and as well as optoelec-
tronic device forming material.

Materials and methods

Chemical method

Chemical Synthesis of pure Zinc oxide (ZnO)

ZnO nanoparticles were prepared by the sol-gel tech-
nique (shown in Figure 2) from the zinc acetate (Zn
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(CH3COOQ),. 2H,0, extra pure AR, grade material, from
SRL, India). Desired weight of zinc acetate was dissolved
in triple distilled water (TDW) and (1:1/vol) ammonia
solution (Merck India) was added to this solution drop
by drop, maintaining pH ~ 7.5; initially zinc precipitated
as zinc hydroxide. After centrifugation, the precipitate
has been collected and re-dispersed into TDW for re-
moving of excess ions. Finally, the precipitate was recol-
lected and dried at 100°C to get ZnO.

a) ZnO grown under Folic acid template

Folic acid (M.F.: C;9H;9N-Og, procured from Sigma. life
Science), was dissolved in mildly alkaline TDW [26] at
different percentage concentrations. Folic acid solution
of desired dilution was added to zinc acetate solution
and the final pH was adjusted to 7.5. The samples are
denoted as Zyo, Zos, Z10» Z13 Zoo» Zso and Zsg. The
suffix (Z,) represents the percentage concentration
(weight/volume) of folic acid solution. After centrifuga-
tion, the precipitate was collected and re-dispersed into
TDW for removal of excess ions. Finally, the precipitates
were recollected and dried at 100°C. The schematic rep-
resentation of the chemical synthesis is given in Figure 2.
The prepared samples have been characterized by vari-
ous physical techniques as given in the following classi-
fied sections.

Physical methods of characterization of the ZnO
nanoparticles

X-ray diffraction (XRD) measurements

The phase structures of the samples were identified by
X-ray diffraction technique using Seifert XDAL 3000 dif-
fractometer with CuKa radiation (wavelength of the ra-
diation, k =1.54 A). The data have been collected in the
range (20) 30° —80° with a step size of 0.06°. Si has been
used as external standard to deconvolute the

~

Zinc acetate Solution
Zn(CH3;COO0),. 2H,0

W vacuum oven

~

Folic acid with different concentration
in alkaline solution

l " Dryingat 100°Cin &

Figure 2 Flow chart of chemical preparation of ZnO nanoparticle in presence of folic acid template.
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Figure 3 X-ray diffraction patterns with (hkl) values of as-
grown ZnO nanoparticles by sol-gel method, where folic acid

concentration (weight/volume) has been (a) 0%, (b) 0.5%, (c)
1.3%, (d) 4.8%.

contribution of instrumental broadening [27]. The XRD
pattern has been shown in Figure 3.

The grain sizes of the synthesized samples have been
calculated using Scherrer formula [27]:

KA

Dhg = ———
hkl Bocosd

where, Dy is the average grain size, K the shape factor
(taken as 0.9), X is the X-ray wavelength, Pp is the full
width at half maximum (FWHM) intensity (here 101
peak of the ZnO spectrum fitted with a Gaussian, for
precision measurement) and 0 is the Bragg angle.

The nano crystalline material usually suffers from
structural strain as the grain interior is relatively defect
free but the grain boundary consists of high-density de-
fect clusters [28,29]. Thus, the strain in the lattice has
been estimated through constructing Williamson—Hall
(W-H) plot, with different Bragg peaks [30] taken in to
consideration, such as:

BcosO = K\/Dypy + 2esinb

where, € is the micro strain parameter.
Also, an estimation of the lattice parameters has been
made by using FullProf program [31].
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Transmission Electron Microscopic (TEM) study

The morphology of the synthesized product were char-
acterized by transmission electron microscopy, TEM
(Tecnai S-twin, FEI) using an accelerating voltage of
200 kV, having a resolution of ~1 A. For this analysis,
the ZnO sample has been dispersed in TDW through a
probe sonicator; a drop of the same was placed onto a
carbon coated copper grid and dried at room
temperature. Furthermore, selected area electron diffrac-
tion (SAED) patterns are recorded to determine the
growth orientation of the synthesized ZnO.

Spectroscopic Measurements

i) Fourier transmission infrared (FT-IR) spectra Fou-
rier transmission infrared (FT-IR) spectra of the powders
(as pellets in KBr, without moisture) were recorded
using a Fourier transform infrared spectrometer (Perkin
Elmer FTIR system; Spectrum GX) in the range of 400—
6000 cm™* with a resolution of 0.2 cm™.

ii) UV -Vis Spectroscopic measurements The optical
absorption spectra were measured in the range of 250—
800 nm using a UV-VIS-NIR scanning spectrometer
(Lamda 750, Perkin Elmer).

iii) Room temperature Photoluminescence (PL) Spec-
troscopy Room temperature Photoluminescence (PL)
measurement was carried out by a laser induced lumi-
nescence spectrometer (model IK3102R-G), the excita-
tion source at room temperature being 325 nm line
from a He-Cd laser.

Results and discussions

X-ray Diffraction (XRD) study

XRD results give us the characteristic diffraction pattern
of the crystallites under the particular configuration,
through a Bragg angle. Figure 3 shows the XRD patterns
of the synthesized ZnO powder samples in presence of
folic acid template. The appearance of characteristic

Table 1 Lattice constant calculated from Fullprof
programming

Sample a(A) b (A) c(A)

Pure ZnO 3.249105 3.249105 5.203271
Zo> 3.249067 3.249067 5.201507
Zos 3.232881 3232881 5.188294
VAR 3.134176 3.134176 4959011
Z13 3.248979 3.248979 5.202200
Zs0 3.232689 3232689 5.195967
Z30 3.236962 3.236962 5.206523
Zsg 3.242703 3242703 5194723
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Figure 4 XRD peak fitting for Z, g sample using FullProf programming, notice Bragg position for crystallinity assessment.

diffraction peaks for pure ZnO sample corresponding to
(100),(002),(101),(102),(110),(103)and (11
2) planes is in good agreement with the standard XRD
peaks of crystalline bulk ZnO with hexagonal wurtzite
structure [JCPDS card No. 36-1451, a=3.2501 A,
c=5.2071 A, space group: Pg3mc (1 8 6)], except for Z, g
sample, where partial crystallinity has been found. No
characteristic peaks from the intermediates such as Zn
(OH), can be detected in the samples stated above. The
amorphous nature in Z,g sample is only due to the
ensconced folic acid molecules due to its high concen-
tration [32]. All the XRD data of the samples have been
analyzed by FullProf programming as shown in Table 1.
In order to have a clear idea of the partial crystallinity
observed in the case of Z,g sample, the analysis
(through FullProf programming) has been clearly shown
in Figure 4 and Table 2. The analysis depicts that partial

Table 2 Miller indices (hkl) and corresponding peak
position for Z, s sample

h ki peak position
100 31.8360
002 345018
101 36.3329
102 47.6491
110 56.7232
103 63.0119
200 66.5315
112 68.1121
201 69.2511
004 72.7565
202 77.1527

crystallinity of ZnO remains, despite the strong folic acid
influence in the medium. The lattice parameters given in
Table 1 for the synthesized ZnO samples are in accord-
ance with standard data of ZnO wurtzite structure ex-
cept for Z;, sample. The deviation here is~11% in a-

45 L

40 -

30 -

Particle size (nm)

25 -

T2 S U R R BN MR
0.0 0.5 1.0 15 2.0 25 3.0

Folic acid concentration (mg)

Figure 5 Relationship between ZnO grain size development
and folic acid concentration (weight/volume), added during
sol-gel preparation method.
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Table 3 Average grain size, agglomeration number (n),
surface to volume ratio of the crystallites and the
molecular organization of ZnO crystallites grown without
and with folic acid template

Avg. grain size n Surface/volume  No. of molecules
in the surface

40 nm (pure ZnO)  4x10%* 0.1 4x10%

20 nm 2x10% 03 6x10%

(with 3% folic acid concentration)

parameter and ~25% in c-parameter. This could be due
to the structural transition in the crystallite, which we
discuss later in detail.

Further, the average grain sizes of the ZnO samples
were estimated from X-ray line broadening using Scher-
rer’s equation [27]. The particle size of pure ZnO is
41 nm, whereas it decreases to 20 nm with increase in
folic acid concentration, shown in Figure 5. A sharp de-
crease in grain size (grain size ~ 18 nm) for Z; sample
has been shown in the results. The use of folic acid tem-
plate has been effective after a certain concentration in
controlling the Ostwald ripening [33] process in the
growth rate of the crystallites. From the size effect of the
ZnO shown the agglomeration number of the molecules
in the case of each samples can be explained through
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simple relationship (assuming the small crystallites are
roughly spherical for a minimal surface to volume ratio):

n = 4/3(nr’p)(Na /M)

where, density of ZnO (p)=5.606 gm/cm? N, is the
Avogadro’s number, molecular weight (M) =81.389 gm/
mole.

It has been noticed from the results (Table 3), shown
that the grain size decreases with folic acid concentra-
tion with a consequent decrease in agglomeration num-
ber of ZnO crystallites. One can estimate the strain in
ZnO structure due to its size effect (grown in the pres-
ence of folic acid) by W-H plot, shown in Figure 6. Con-
siderable anisotropy in structure has been noticed since
unambiguous linear plot of the strain from all Bragg
angles were not possible, the reason possibly lies with
the surface effect of the crystallites. Although the results
have been shown for only two representative samples
[for pure ZnO (~ 21 nm) and Z; 3 samples (~ 29 nm)]
but the trend has been maintained in case of all the
samples.

Morphological Investigation by TEM
Typical TEM images of different ZnO samples grown
under folic acid template (pure, Z;3, Z,g) has been
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Figure 7 TEM images for structural morphology of (a) pure ZnO sample and (b) the corresponding fringe patterns; (c) Z, 3 sample and
the corresponding (d) SAED and (e) fringe pattern; (f) Z, g sample and (g) the corresponding fringe pattern of rod-like structure.
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shown in Figure 7. TEM analysis was carried out for the
determination of morphology, size and crystalline nature
of the synthesized ZnO crystals. It can be estimated that
the average size of ZnO lies nearly around 10 nm (from
Figure 7(a)), which appears lower than the estimated
results from Scherrer analysis. The fringes (shown in
Figure 7(b)) in the microscopic analysis depicts the crys-
tallinity of the selected zone in pure ZnO sample. Simi-
larly, the wurtzite pattern has been shown in Z;3
sample, shown in Figure 7(c) but with in the emblem of
folic acid. Changes in the structure and size due to en-
capsulation by folic acid are quite evident from the Fig-
ure 7(c). However, the crystallinity pattern is maintained
as shown in the subsequent results, in Figure 7(d) and
(e). With increase in folic acid concentration, such as
Z45 sample, a complete change in morphological struc-
ture has been found (shown in Figure 7(f)). The
organization of nano-rods is evident. Further, the elec-
tron beam was focused on the nano-rods, fringe struc-
ture was repeatedly observed, as shown in Figure 7(g).

Thus, we find at higher concentration of folic acid, al-
though the ZnO granules are organized into nano-rod
like structure yet a part of intrinsic crystallinity is
retained.

However, the size estimate of nanoparticles from
Scherrer method differs considerably, but it may be a
rough estimate from the Dy values in the Scherrer’s
formula. Both TEM and XRD method justifies the crys-
talline nature of the nanoparticles.

Spectroscopic study

FTIR investigation

The structural analysis of wurtzite ZnO was further sup-
ported through FTIR investigation, shown in Figure 8.
Figure 8(a) corresponds to the wurtzite oxide stretching
frequencies of ZnO. The main absorption bands at~
450-500 cm™(~ 4473x10'°- 4970 x10™° joule), which
is the stretching mode of ZnO, was considered [34-36].
In this context, it is observed that there is an influence
of folic acid as the stretching modes have been shifted to
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Figure 8 FTIR spectra of ZnO nanoparticles grown under the template of folic acid solution in (a) lower wave number and (b) higher
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higher energy states (with decrease in size of nanocrys-
tallites). The effect of folic acid concentration on the
starching frequencies of ZnO can be sensed through the
calculation of the force constant

v = 1/2mnc[K/p]"/?

and is tabulated as under Table 4 [37]. These shifts may
be related to change in bond length of Zn-O in the
nanoparticles [37]. Further the FTIR spectra show ab-
sorption bands corresponding to the residual functional
groups of folic acid template, as shown in Figure 8(b)
and Table 5. Thus, it can be inferred that the influence
of the template exists and ZnO electronic environment
has been modified.

UV-vis spectrum analysis

The electronic absorption spectrum of ZnO samples in
the UV-vis range enables to characterize the absorption
edge related to semiconductor band structure. Figure 9
shows the UV-visible spectra of ZnO nanoparticles

Table 4 IR frequency shift of Zn-O stretching frequency
under the influence of folic acid

Sample IR frequency (cm™)
Pure ZnO 451
Zo> 455
Zos 455
Zy3 456
Zag 457

synthesized under folic acid template. The spectral ab-
sorption coefficient «(\) has been evaluated [38] from
the measured spectral extinction coefficient, k(1), using
the following expression:

a(\) = 4nk(\) /X

where ) is the wavelength of the absorbed photon. The
optical band gap (Eg) of the samples have been esti-
mated from the well known expression [39] for direct
transition, by fitting experimental absorption data with
the equation

oF = A(E-Eg)"

where E (=hc/)) is the photon energy and A is a con-
stant and ‘n’ depends on the kind of optical transition
that prevails. Specifically, with n =1/2, a good linearity
has been observed for the direct allowed transition, the
most preferable one in the system studied here. Standard
extrapolation of absorption onset (as shown in Figure 10)
[39] to aE=0 (where E=Eg) has been made for each
samples. The band gap of pure ZnO is ~ 3.3 eV, which is

Table 5 FTIR absorption frequencies for residual groups
of folic acid

Wave number (cm™) Absorption band

~ 3400 O-H mode
~ 2900 C-H mode
~ 1600 Symmetric C= 0 stretching mode
~ 1380 asymmetric C= O stretching mode
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good agreement with other studies [40]. Overall decreas-
ing nature of optical band gap (from 3.30 eV to 3.22 eV)
has been observed in Figure 11, except for Z;, and Z; 3
samples, which lies in the structural transition zone.
This effect is in corroboration with the XRD results, as
referred in Figure 5. The red shift of the band gap due
to systematic increase of folic acid concentration in the
medium (at the sample preparation state) could be
attributed to some defect state between valence band
and conduction band (O, — Zngzq) [41]. The overall ef-
fect of this red shift of the band gap energy due to in-
crease in folic acid concentration also relates to
structural morphologies, particle size and surface micro-
structures [40]. However, a structural transition around
Z, and Z, 3 is evident from the result of XRD study (Fig-
ure 5) and optical absorption study (Figure 11). It would
be worthwhile perhaps to recall the effect of subtle elec-
tronic environmental changes from IR spectroscopic
data that conforms to this kind of structural changes.

Photoluminescence spectroscopy (PL)

The room-temperature PL spectroscopic study enables
to determine the electronic energy levels from where
emission is particularly observed which in turn helps to
corroborate the band structure of the ZnO nanoparticles
[42]. The results of PL spectrum of ZnO nanoparticles
are presented in Figure 12. The pure ZnO spectrum
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Figure 12 Photoluminescence spectra of (a) pure ZnO, (b) Z, s,
(€) Zy13, (d) Zy 0, (€) Z30, (f) Z45 samples.

shows a broad emission spectrum covering from near UV
to whole of the visible region. With introduction of very
low concentration of folic acid in the medium (Zys), a
double peak emission spectrum becomes existent. This
double peak structure is very prominent at Z;3; sample,
which is also the region exactly where a structural transi-
tion was observed with the size effect (vide Figures 5 and
11, band gap ~3.17 eV). The ultraviolet emission peak (UV)
corresponds to an exciton emission band, whereas the vis-
ible peak is believed to be due to an electronic transition
from a level close to the conduction band edge to a defect-
associated trap state, such as an oxygen vacancy [43,44].
The UV emission is known as a near-band-edge (NBE)
emission, originating from the recombination of free ex-
citon through an exciton—exciton collision process [45].

In pure ZnO spectrum, a weak emission peak at
440 nm (blue emission) has been observed due to sur-
face defect in ZnO, mainly due to Zn vacancy and
broad green emission band (~ 550 nm), known as a
deep level emission, relates to the deep-level defect
states [46]. Singly ionized oxygen vacancy is respon-
sible for this green emission in the ZnO [47]. It results
from the recombination of the photo-generated hole
with an electron, occupying the oxygen vacancy and
interstitials of zinc.

In all samples, green light emission is most prominent.
With increase in folic acid concentration in the medium
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(above 1.3%) a dramatic change in emission spectrum is
observed. The spectrum now shows the emission peak
only ~ 464 nm (for Z,,) to 472 nm (Z3y and Z,g) (with
the blue shift of single emission peak), which is a signa-
ture of charge transfer reaction [48]. This clear transition
is in corroborative confirmation of the effect of folic acid
concentration on ZnO particle size and band gap prop-
erties shown by Figures 5 and 11. ZnO is now virtually
ensconced structure with folic acid and the effect is
drastic. The effect is also evident from FTIR (Tables 4
and 5) and TEM (Figure 7) study. The surface defects of
ZnO are in the proximity of the functional groups of
folic acid. Therefore, charge transfer effect becomes
prominent and viable.

However, the physical mechanism behind visible
light emission in ZnO is claimed by different authors
in different ways and is still under controversy [49-
52]. Therefore, it is important to investigate the lumi-
nescent mechanism caused by the defects of ZnO
thin films, since they are the key factors for obtaining
the visible luminescence. In our case, we find that the
ZnO nanoparticle size decreases under influence of
folic acid, there is a structural transition and finally
the nano rod like structure is formed under the
strong influence of folic acid. As a consequence to
this the emission spectrum has shown the pro-
nounced green light emission, which is conferred to
photon induced charge transfer transition state.

Conclusions

Influence of folic acid in controlling the structural
effects of ZnO nanoparticle under physiological con-
ditions of temperature and pH has been studied as a
novel method. The physical investigations with XRD,
TEM and spectroscopic tools have been carried out
in order to understand the interesting structural
changes involved in the system which may find im-
portant biomedical applications. Photo induced charge
transfer due to folic acid ensconced ZnO nanosystem
is particularly a noticeable effect as seen from our
results.
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