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Abstract

Background: Inflammation plays an important role in many pathologies, including cardiovascular diseases,
neurological conditions and oncology, and is considered an important predictor for disease progression and
outcome. In vivo imaging of inflammatory cells will improve diagnosis and provide a read-out for therapy efficacy.
Paramagnetic phosphatidylserine (PS)-containing liposomes were developed for magnetic resonance imaging (MRI)
and confocal microscopy imaging of macrophages. These nanoparticles also provide a platform to combine
imaging with targeted drug delivery.

Results: Incorporation of PS into liposomes did not affect liposomal size and morphology up to 12 mol% of PS.
Liposomes containing 6 mol% of PS showed the highest uptake by murine macrophages, while only minor uptake
was observed in endothelial cells. Uptake of liposomes containing 6 mol% of PS was dependent on the presence of
Ca2+ and Mg2+. Furthermore, these 6 mol% PS-containing liposomes were mainly internalized into macrophages,
whereas liposomes without PS only bound to the macrophage cell membrane.

Conclusions: Paramagnetic liposomes containing 6 mol% of PS for MR imaging of macrophages have been
developed. In vitro these liposomes showed specific internalization by macrophages. Therefore, these liposomes
might be suitable for in vivo visualization of macrophage content and for (visualization of) targeted drug delivery to
inflammatory cells.
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Background
Inflammation plays a crucial role in many pathologies,
including cardiovascular diseases, neurological disorders
and oncology, and is generally considered as an import-
ant predictor for disease progression and outcome [1,2].
Therefore, modulation of the inflammatory response by
dedicated therapy is of particular interest.
The efficacy of traditional therapeutic compounds of low

molecular weight is often limited by short blood circulation
half-lives and adverse side effects due to non-specific sys-
temic distribution and accumulation. Additionally, it is dif-
ficult to obtain quantitative information on the amount of
drug accumulating in the diseased tissue. Drug delivery via
a nanocarrier system provides an attractive alternative to
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reproduction in any medium, provided the or
alleviate these drawbacks. For example, Doxil is a clinically
approved nanocarrier system for cancer treatment, which
consists of doxorubicin encapsulated in liposomes [3,4].
This formulation limits cardiotoxicity and prolongs the
blood circulation half-life compared to free doxorubicin,
which results in an enhanced time window for drug deliv-
ery and extravasation of the liposomes through the leaky
tumor vasculature.
The surface composition of nanocarriers containing

drugs can be tailored to tune clearance kinetics, for in-
stance polyethylene glycol (PEG) is often incorporated to
prolong the blood half-life [5]. Furthermore, the larger
size of nanocarriers promotes a higher level of uptake in
diseased tissues by the enhanced permeability and reten-
tion (EPR) effect [6,7]. Importantly, to address the
inflammatory response in cardiovascular disease, the
drug-containing nanocarriers should be delivered with
high specificity to inflammatory cells in the diseased
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Table 1 Mol% of lipids present in different liposome
formulations

PC-L PS-6-L PS-12-L PS-37-L

DSPS 0 6 12 37

DSPC 37 31 25 0

Gd-DOTA-DSPE 25 25 25 25

Cholesterol 33 33 33 33

PEG2000-DSPE 5 5 5 5
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tissue. This can be achieved by introducing ligands that
mediate nanocarrier recognition and internalization by
the inflammatory cells.
An attractive route to target macrophages is by incorp-

oration of the lipid phosphatidylserine (PS) in lipid-based
nanoparticles, such as liposomes. In mammalian cells, PS
is predominantly present in the inner leaflet of cell mem-
branes. When a cell becomes apoptotic, PS is exposed on
the outer leaflet of the cell membrane, which serves as a
trigger for phagocytosis by macrophages [8,9]. The in-
corporation of PS in the liposomal membrane can there-
fore promote uptake by macrophages. Previously it was
shown that incorporation of PS in liposomes indeed
resulted in enhanced uptake by macrophages [10,11].
Also, magnetic resonance imaging (MRI) contrast

agents can be incorporated to image drug delivery and
obtain quantitative information on the local concentration
of drugs at the target site [12,13]. Previously, Harel-Ader
et al. developed liposomes with PS containing iron-oxides
for MRI visualization of inflammatory cells in myocardial
infarction [14] and Maiseyeu et al. described liposomes
with PS containing Gd-DTPA-distearylamide for MR im-
aging of macrophages in atherosclerotic plaques [10].
However, a detailed characterization and optimization of
MRI-detectable PS-containing liposomes, including the
conditions under which they most effectively target
macrophages and induce strongest contrast in MRI, is
still lacking.
In this study, we therefore describe the design and

characterization of MRI-detectable liposomes that are
targeted to macrophages using PS. Liposomes containing
different molar percentages of PS were prepared and
liposome size and morphology were studied by dynamic
light scattering (DLS) and cryogenic transmission elec-
tron microscopy (cryoTEM). Fluorescent labels, incor-
porated in the liposomes, enabled detailed analysis of
liposome binding and internalization by macrophages
using confocal laser scanning microscopy (CLSM) and
fluorescence activated cell sorting (FACS). The ability
of the liposomes to induce contrast changes in MR
images was studied in macrophages and quantified on
the basis of the measured changes in T1 and T2 relax-
ation times.

Results
Characterization of liposomes
Liposomes containing 0, 6, 12 and 37 mol% of phosphati-
dylserine (1,2-distearoyl-sn-glycero-3-phospho-L-serine =
DSPS or PS) were prepared. In this paper we will refer to
these liposomes as PC-L, PS-6-L, PS-12-L, and PS-37-L,
respectively (see also Table 1 and Methods). Thin layer
chromatography (TLC) confirmed the presence of PS in
the liposome formulations by the appearance of a spot
corresponding to DSPS (Figure 1a). The spot became
more intense with increasing mol% PS in the lipid prep-
aration mixture, which shows that PS was successfully
incorporated in increasing amounts in the final liposome
preparations up to 37 mol%.
Representative DLS spectra for the different types of

liposomes are presented in Figure 1b. For all formula-
tions a single dominant peak was observed, indicating a
relatively narrow range of liposome diameters. PS-6-L
and PS-12-L had the same mean hydrodynamic diameter
as PC-L (Table 2). However, PS-37-L had a somewhat
smaller diameter (p <0.05 vs. PC-L). Incorporation of PS
resulted in a significant increase of the polydispersity
index (PDI, p <0.05 vs. PC-L), which was also observed
as a modest broadening of the DLS peaks (Figure 1b).
We think that changes in the membrane rigidity or sta-
bility due to incorporation of PS leads to a smaller size
after extrusion. Liposome morphology was investigated
in more detail using cryoTEM (Figure 1c). CryoTEM
images revealed predominantly single unilamellar lipo-
somes for all formulations. For PC-L, PS-6-L and PS-12-L
liposomes were spherical, whereas for PS-37-L occasion-
ally non-spherical, deformed liposomes were observed
(Figure 1c, black arrows).
The ability of the liposomes to generate contrast in MRI

is determined by their potency to change the longitudinal
(T1) and transversal (T2) relaxation times, which is
expressed by the longitudinal (r1) and transversal (r2)
relaxivity. The r1 and r2 of the liposomes at 9.4 T and
room temperature, normalized to Gd concentration,
were 3.0-4.0 mM-1�s-1 and 42–60 mM-1�s-1, respectively
(Table 2). Incorporation of PS did not significantly affect
the longitudinal and transversal relaxivity. All liposome
formulations displayed a similar relatively high r2/r1
ratio.

Association of PS-containing liposomes
with macrophages
In vitro experiments were performed to determine which
formulation of PS-containing liposomes resulted in high-
est association with mouse macrophages (RAW cells).
RAW cells were incubated with PC-L, PS-6-L, PS-12-L
and PS-37-L and association of liposomes with the
macrophages was characterized by several readouts
exploiting the various components of the liposomes,



Figure 1 Characterization of paramagnetic liposomes. a) TLC of the different types of liposomes. b) Representative number-weighted DLS
size distributions for all liposome formulations. c) cryoTEM images of the liposomes. The arrows point at non-spherical liposomes present in
PS-37-L. Scale bar = 100 nm.
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including quantitative T1 and T2 mapping with MRI,
quantitative Gd determinations by inductively coupled
plasma mass spectrometry (ICP-MS), and CLSM.
Figure 2a shows results of quantitative Gd determina-

tions of RAW cells, including untreated cells (no L) and
cells incubated with PC-L, PS-6-L, PS-12-L or PS-37-L.
Gd concentrations for the incubations with PS-12-L and
PS-37-L were at the baseline level of PC-L non-specific
uptake and untreated cells. Solely, incubation with PS-6-
L resulted in a significantly higher Gd concentration
(0.64 ± 0.23 mM, p <0.05 vs. no L).
MRI measurements were performed at 9.4 T on the

same cell pellets as for ICP-MS. MRI consisted of quanti-
tative T1 and T2 mapping. The cells incubated with PS-6-
L could clearly be distinguished from untreated cells and
cells incubated with other types of liposomes (Figure 2b).
Table 2 Characterization of liposome formulations

PC-L

Hydrodynamic diameter (nm)a 136 ± 3

PDI (−)a 0.13 ± 0.03

r1 (mM-1�s-1)b 3.0 ± 0.1

r2 (mM-1�s-1)b 42.3 ± 5.5

r2/r1
b 14.4 ± 2.0

a n = 5 for PC-L and PS-6-L and n= 4 for PS-12-L and PS-37-L; b n = 4 for PC-L and P
Bonferroni correction.
Average R1 (=1/T1) and R2 (=1/T2) values for the differ-
ent groups are summarized in Figure 2c and 2d, respect-
ively. Incubation with liposomes always resulted in
enhanced R1 and R2 values (p <0.05 vs. no L). In agree-
ment with quantitative Gd determinations, however less
pronounced, both R1 and R2 were highest for the incuba-
tions with PS-6-L (0.942 ± 0.004 s-1 and 37.3 ± 1.2 s-1, re-
spectively, p <0.05 vs. all).
The relaxivities r1 and r2 in the cellular environment

were estimated from the quantitative Gd determinations in
relation to changes in R1 and R2 (Table 3). For PC-L, r1
and r2 were 1.9 ± 0.3 mM-1�s-1 and 32.5± 3.6 mM-1�s-1, re-
spectively. For PS-6-L, r1 and r2 were 0.8 ± 0.4 mM-1�s-1
and 16.3± 5.8 mM-1�s-1. As shown previously, PC-L and
PS-6-L relaxivities in aqueous solution were similar
(Table 2). The lower cellular relaxivities for PS-6-L
PS-6-L PS-12-L PS-37-L

120 ± 7 111± 10 97 ± 4*

0.28 ± 0.05* 0.30 ± 0.02* 0.30 ± 0.19*

3.0 ± 0.3 3.4 ± 0.4 4.0 ± 0.1

51.5 ± 4.5 60.7 ± 5.1 46.7 ± 4.2

18.1 ± 2.6 18.2 ± 0.8 11.8 ± 0.9

S-6-L, and n= 3 for PS-12-L and PS-37-L; * p <0.05 vs. PC-L, ANOVA with



Figure 2 Association of PS-containing liposomes with RAW cells. a) Gd concentration of RAW cells incubated with different liposome
formulations in RPMI medium as determined with ICP-MS (n = 3/group, except for PS-6-L n = 2/group). * p <0.05 vs. no L, ANOVA with Bonferroni
correction. b) Representative T1 and T2 maps of RAW cell pellets. c) Average R1 and d) average R2 of cell pellets measured at 9.4 T. * p <0.05 vs.
all, ANOVA with Bonferroni correction. e) CLSM images of RAW cells. Top row: in red, the fluorescence signal of the NIR-lipids present in
liposomes (laser intensity 2% of maximal intensity). Bottom row: NIR signal (in red) merged with signal of labeled macrophage CD68 (in green)
and cell nuclei (in blue). Scale bar = 20 μm.
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compared to PC-L therefore suggested a different PS-6-L
uptake mechanism in RAW cells and consequently a dif-
ferent cellular distribution, which was investigated in more
detail as described further on.
CLSM imaging of the near-infrared (NIR)-labeled lipids

incorporated in the liposomal membrane revealed associ-
ation of all types of liposomes with RAW cells
(Figure 2e). No NIR autofluorescence signal was detected
in RAW cells incubated without liposomes. In agreement
with MRI, NIR fluorescence and therefore liposome
Table 3 Relaxivities of the liposomes in the cellular
environment

Cellular r1 (mM-1 �s-1) Cellular r2 (mM-1 �s-1)
PC-L 1.9 ± 0.3 32.5 ± 3.6

PS-6-L 0.8 ± 0.4 16.3 ± 5.8

PS-12-L 1.4 ± 0.5 19.1 ± 6.9

PS-37-L 1.3 ± 0.1 22.0 ± 8.1
association was highest for cells incubated with PS-6-L
and intermediate for PC-L, while PS-12-L and PS-37-L
showed similarly low levels of NIR fluorescence.
To confirm that the observed association of PS-6-L

with RAW cells was mediated by their phagocytic char-
acter, endothelial H5V cells, for which no or minor
phagocytosis was expected, were incubated with the dif-
ferent liposome formulations. MRI T1 and T2 maps for
untreated and liposome-incubated cell pellets, shown in
Figure 3a, revealed only minor differences between the
various groups. Nevertheless, incubation with liposomes
resulted in enhanced R1 values (p <0.05 vs. no L) and the
highest values were detected for cells incubated with PS-
6-L (0.524 ± 0.003 s-1, p <0.05 vs. all, Figure 3b). No sig-
nificant differences were detected for R2 (p >0.05 vs. all).
However, R1 and R2 values were significantly lower com-
pared to RAW cell incubations for all groups (p <0.05 vs.
RAW cells). ΔR1 (= R1,PS-6-L - R1,no L) values were 8.5
times lower for H5V cells compared to RAW cells, and
for ΔR2 this was even 45 times. CLSM of the H5V cells



Figure 3 Association of PS-containing liposomes with H5V cells. a) Representative T1 and T2 maps of H5V cell pellets incubated with the
different types of liposomes in RPMI medium. b) Average R1 and R2 of H5V cell pellets measured at 9.4 T (n = 3/group). * p <0.05 vs. all, ANOVA
with Bonferroni correction and † p <0.05 vs. RAW cell pellets, Student’s t-test. c) CLSM images of H5V cells. Top row: in red, the fluorescence
signal of the NIR-lipids present in liposomes. The laser intensity (20% of maximal intensity) was ten times higher as compared to Figure 2d.
Bottom row: NIR signal (in red) merged with signal of labeled H5V cell membranes (in green) and cell nuclei (in blue). Scale bar = 20 μm.
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revealed no NIR fluorescence for incubations with PC-L
and very few faint spots for PS-6-L (Figure 3c).

Divalent cation dependency of liposome association
with macrophages
The above-described experiments suggested that lipo-
somes with 6 mol% DSPS (PS-6-L) were the most opti-
mal formulation for targeting of macrophages. Therefore,
PS-6-L was used in the experiments described from here.
Association of PS-containing vesicles with the macro-
phage cell membrane depends on the presence of diva-
lent cations such as Ca2+ and Mg2+ [11]. To test whether
PS-6-L binding depended on the presence of divalent
cations, which could be indicative for an interaction be-
tween these ions and PS resulting in membrane binding,
RAW cells were incubated with PC-L and PS-6-L in
Hank’s buffered salt solution (HBSS) with 1.26 mM Ca2+

and 0.90 mM Mg2+ (HBSS+) or without Ca2+ and Mg2+

(HBSS-). Furthermore, samples from RAW cells incu-
bated in incubation medium with intermediate Ca2+ and
Mg2+ concentrations (0.424 mM and 0.407 mM, respect-
ively), identical to the ones used in previous experiments,
were included. Cellular association was quantified with
FACS.
With increasing Ca2+ and Mg2+ concentrations, the

FACS fluorescence intensities of RAW cells increased for
both PC-L and PS-6-L (Figure 4a and 4b, respectively).
The average NIR fluorescence for cells incubated with
PC-L or PS-6-L in medium lacking Ca2+ and Mg2+

(HBSS-) was equal (p >0.05, Figure 4c). Importantly, for
incubations in medium with high Ca2+ and Mg2+ concen-
trations (HBSS+), fluorescence was significantly highest
for PS-6-L (p <0.05 vs. all).
DLS showed that the diameter of both PC-L and PS-6-

L increased after 2 h of incubation in HBSS+(Figure 4d).
For PC-L the average hydrodynamic diameter changed
from 164.3 ± 0.9 nm in HBSS- to 209.5 ± 25.2 nm, while
for PS-6-L the diameter increased from 104.6 ± 19.4 nm
to 170.8 ± 33.5 nm. This size increase could additionally
enhance the uptake of both types of liposomes by the
cells.

Binding versus internalization
To study whether PS-6-L were internalized by macro-
phages, RAW cells were incubated with PC-L or PS-6-L
in HBSS+ at either 4°C or 37°C. Incubation at 4°C inhi-
bits phagocytosis and thus a comparison between 4°C or
37°C enabled a differentiation between binding to the cell
membrane and internalization. FACS analysis of cells
incubated at 4°C revealed no significant differences in
average fluorescence intensities after incubation with
PC-L and PS-6-L (Figure 5a-b). At 37°C, however, a sig-
nificantly higher fluorescence intensity was observed for
PS-6-L (p <0.05 vs. all, Figure 5a-b).
CLSM confirmed the FACS measurements (Figure 5c).

Incubation of RAW cells with PC-L and PS-6-L at 4°C
resulted in minor association of liposomes. CLSM using
higher laser intensities showed that the liposomes
appeared as a rim around every cell, bound to the cell
membrane. No significant internalization was observed.



Figure 4 Divalent cation dependency of liposome association with RAW cells. Representative FACS spectra for RAW cells incubated with a)
PC-L or b) PS-6-L in HBSS- without Mg2+ and Ca2+, RPMI incubation medium (0.424 mM Ca2+ and 0.407 mM Mg2+) or HBSS+ with 1.26 mM Mg2+

and 0.90 mM Ca2+. c) Average fluorescence intensities for all samples (n = 4/group). * p <0.05 vs. all, ANOVA with Bonferroni correction. d)
Number-weighted DLS size distributions for PC-L and PS-6-L incubated in medium with and without Ca2+ and Mg2+ (2 h, 37°C).
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For incubations with PC-L at 37°C CLSM images were
comparable to incubations at 4°C, with minor association
of liposomes, and higher laser intensities revealed that
PC-L were mainly bound to the cell membrane. CLSM
confirmed that incubation with PS-6-L at 37°C resulted
in massive internalization of the liposomes, as shown by
the high NIR signal inside RAW cells.

Discussion
Macrophages play a decisive role in several cardiovascu-
lar diseases. For example, in atherosclerosis high macro-
phage content is one of the hallmarks of plaque
vulnerability [2]. The inflammatory response after myo-
cardial infarction is important for cardiac remodeling
and outcome [1]. Therefore, macrophages form a signifi-
cant therapeutic target in cardiovascular diseases and
tools for noninvasive MR imaging of macrophages are
highly desired. Iron oxides have been successfully applied
for the MR visualization of macrophages in cardiovascu-
lar diseases [15-17]. Nevertheless, targeting of iron oxides
to CD11b/CD18, which is expressed on macrophages,
did not improve specificity for MR imaging of macro-
phages in a mouse model of atherosclerosis [18]. Recently,
Gd-labeled liposomes were used to visualize monocytes
and/or macrophages infiltration in the mouse myocar-
dium up to 7 days after myocardial infarction [19].
In this study, we describe the design and characterization
of paramagnetic liposomes targeted to macrophages by
incorporation of PS in the liposomal membrane. The
liposomes contained Gd-DOTA-DSPE for MRI detection.
Gd-DOTA-DSPE is a phospholipid that presents a high r1
and the Gd-DOTA complex displays a high thermo-
dynamic and kinetic stability [20]. As expected, at 9.4 T,
the longitudinal relaxivity is not as high as at lower, clin-
ical field strengths [20,21]. Importantly, incorporation of
PS did not significantly affect liposomal r1 and r2 values.
The r2/r1 ratio of the liposome formulations at 9.4 T was
relatively high, which means that the liposomes will dis-
play a significant T2 effect as well. Nevertheless, by appro-
priately choosing the MRI sequence parameters, the T1

effect of the liposomes can be effectively exploited
(Figure 2).
A distinct difference between the PS-containing lipo-

somes used in this study and previously reported formu-
lations for use in in vivo MRI studies is the incorporation
of 5 mol% polyethylene glycol (PEG) lipids in the liposo-
mal membrane. PEG reduces the interactions between
the liposomes, reducing aggregation and ensuring a
monodisperse formulation (Table 2 and Figure 1).
Additionally, PEG increases the in vivo blood circula-
tion half-life by reducing the interactions with plasma
proteins, assuring a longer interaction time with



Figure 5 Internalization versus binding. a) Representative FACS spectra for RAW cells incubated in HBSS+ at 4°C or 37°C with PC-L or PS-6-L,
or without liposomes. b) Average fluorescence intensities for all samples (n = 3/group). * p <0.05 vs. all, ANOVA with Bonferroni correction. c)
CLSM of RAW cells. In red the fluorescence of NIR-lipids present in liposomes, in green macrophage CD68 and in blue cell nuclei are shown. For
the NIR signal two different laser intensities are shown (2% and 25% of maximal laser intensity). Scale bar = 20 μm.
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macrophages [5]. According to previous studies, incorp-
oration of 5 mol% PEG in PS-containing liposomes is not
impeding the interaction of PS with macrophages, since
at least 10–15 mol% PEG would be needed to completely
shield the liposomes from any interactions with proteins
[22-24]. We therefore did not expect a decrease in the
uptake by shielding of the PS.
Liposomes containing 6 mol% PS resulted in the high-

est uptake by RAW murine macrophages (Figure 2).
Maiseyeu et al. and Rimle et al. have observed optimal
uptake by macrophages of liposomes without PEG when
these contained 5–12 mol% PS [10,11]. Interestingly,
these experimentally determined optimal concentrations
are in the range of 2–10 mol% PS found in the mem-
branes of mammalian cells [25], which suggests that
macrophages are optimally equipped to recognize and
phagocytose nanoparticles that express approximate
physiological concentrations of PS. Association was spe-
cific for macrophages as uptake by endothelial H5V cells
was significantly lower (Figure 3).
Uptake of PS-containing liposomes by macrophages

was stimulated by the presence of divalent cations
(Figure 4). Higher uptake was not primarily caused by di-
valent cation-mediated clustering of the liposomes, since
incubation of liposomes in HBSS+ resulted in moderate
changes in liposome size for both PC-L and PS-6-L. The
HBSS+ buffer contained a physiologically relevant con-
centration of 1.26 mM Ca2+, compared to for example
approximately 1.24 mM Ca2+ in mouse blood [26]. For
the PS-mediated recognition of apoptotic cells by macro-
phages, different engulfment receptors have been identi-
fied, such as scavenger receptors, oxidized low-density
lipoproteins recognizing receptors and CD68 [27], which
for the LOX-1 scavenger receptor has been proven to be
Ca2+-dependent [28]. Which of these receptors are im-
portant for PS-mediated uptake of liposomes remains
unknown.
With respect to MR imaging of liposome uptake, a

relatively high association of PS-6-L with macrophages,
as determined with ICP-MS, resulted only in a modest
increase in R1 (Figure 2). This is probably related to
compartmentalization of PS-6-L in intracellular vesicles
after phagocytosis, which limits effective access of bulk
water protons to the Gd contrast agent [29,30]. T1 short-
ening requires direct physical contact between Gd and
water protons to be most effective. This interpretation is
corroborated by the observation that the estimated cellu-
lar relaxivity of PS-6-L (r1 = 0.8 ± 0.4 mM-1�s-1) was lower
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than the one of PS-6-L in aqueous solution
(r1 = 3.0 ± 0.3 mM-1�s-1). Furthermore, internalization of
PS-6-L was observed by CLSM for incubations at 37°C
(Figure 5).
The next step will be to apply and study the uptake of

PS-6-L in a relevant animal model of cardiovascular in-
flammation, for example in atherosclerosis or myocardial
infarction. Christiansen et al. have shown that echocardi-
ography of PS-containing microbubbles trapped in
infarcted myocardium correlated moderately well with
MPO activity, which are excreted by inflammatory cells
[31].
Apart from use in imaging applications, PS-containing

liposomes are a promising vehicle for targeted drug deliv-
ery. Liposomes loaded with Q10, ATP or adenosine deliv-
ered to infarct myocardium were demonstrated to reduce
infarct size and salvage ischemic myocardium [32-34].
Also, liposomes have been used as a vehicle for delivery of
glucocorticoids drugs to perform anti-inflammatory cancer
therapy [12]. Targeting could enhance the specificity of
drug delivery to macrophages. Alternatively, PS-liposomes
themselves can be used for therapy of inflammation as
well [14,35-37]. As PS-liposomes mimic apoptotic cells,
they inhibit pro-inflammatory cytokines release and pro-
mote secretion of anti-inflammatory cytokines. However,
for therapy purposes higher PS-concentrations (up to
30 mol%) were used [14,36], which in this study did not
enhance uptake by macrophages.

Conclusions
In summary, paramagnetic liposomes, containing 6 mol%
of PS, showed enhanced uptake by macrophages com-
pared to liposomes without PS, while significantly less
uptake was observed for non-phagocytic cells. Associ-
ation of PS-containing liposomes to macrophages was
increased by the presence of divalent cations in the incu-
bation medium and resulted mainly in internalization of
liposomes, whereas only minor binding was observed.
Therefore, these liposomes can be used for molecular
MR imaging of macrophages and might as well be suit-
able for targeted drug delivery to macrophages in cardio-
vascular diseases.

Methods
Preparation of PS-containing liposomes
Liposomes containing different mole percentages of PS
were prepared by modification of the protocol described
by Hak et al. [20]. In short, lipid film hydration of a lipid
mixture was performed (typically 50 μmol of total lipid).
The lipid mixture, consisting of 1,2-distearoyl-sn-glycero-
3-phospho-L-serine (DSPS, Avanti Polar Lipids, Alabaster,
USA), 2-distearoyl-sn-glycero-3-phosphocholine (DSPC,
Lipoid, Steinhausen, Switzerland), Gd-DOTA-1,2-distearoyl-
sn-glycero-3-phospoethanolamine (Gd-DOTA-DSPE, SyMO-
Chem BV, Eindhoven, the Netherlands), cholesterol
(Avanti Polar Lipids) and 1,2-distearoyl-sn-glycero-3-phos-
poethanolamine-N-[methoxy(poly(ethylene glycol))-2000]
(PEG2000-DSPE, Lipoid), was dissolved in chloroform and
methanol (8:1 v/v) at molar percentages as shown in
Table 1. For liposomes containing DSPS, the mixture was
heated to dissolve the DSPS (to maximally 65°C). Addition-
ally, 0.1 mol% near-infrared664-1,2-distearoyl-sn-gly-
cero-3-phospoethanolamine (NIR664-DSPE, SyMO-Chem
BV) was incorporated. After rotary evaporation at 30°C
and overnight drying under a nitrogen flow, the lipid film
was hydrated in HEPES-buffered saline (HBS, 10 mM
HEPES, 135 mM NaCl, pH 7.4) at 65°C. The resulting mul-
tilamellar vesicles were sized by extrusion through 400 nm
filters (2 times) and 200 nm filters (8 times). Finally, the
liposomes were concentrated using ultracentrifugation
(45 min, 55,000 rpm, 4°C) and resuspended in HBS at a
concentration of approximately 70 mM total lipid.

Characterization of liposomes
Total lipid concentrations of the final liposome formula-
tions were determined by a phosphate determination
according to Rouser [38]. Hydrodynamic number-
weighted size and size distribution were assessed with dy-
namic light scattering (DLS, ZetaSizer NanoS, Malvern
Instruments, Worcestershire, UK) at 23°C.
To confirm the presence of DSPS lipids in the PS-

containing liposomes, thin layer chromatography (TLC)
was performed on an aluminum sheet coated with silica
gel 60 F254 (Merck BV, Schiphol-Rijk, the Netherlands)
[39]. As eluent a mixture of chloroform, methanol, glacial
acetic acid and water (65:25:8:4 v/v) was used. Liposomes
were applied (expected concentrations of DSPS: PC-L
0 mg/mL, PS-6-L 2 mg/mL, PS-12-L 4 mg/mL and PS-
37-L 6 mg/mL) and allowed to migrate for 30 min. As
controls standard solutions of DSPS (0.5, 1, 2, 4 and
8 mg/mL) were used. Finally, primary and secondary
amines in DSPS and Gd-DOTA-DSPE were detected
with ninhydrin.
Liposomal morphology was evaluated with cryogenic

transmission electron microscopy (cryoTEM). Samples
were vitrified on carbon-coated cryoTEM grids with a
vitrification robot (Vitrobot Mark III, FEI, Hillsboro,
USA). Imaging was performed on a Tecnai 20 Sphera
TEM instrument (FEI) equipped with a LaB6 filament
(200 kV) and Gatan cryoholder (approximately -170°C)
at 25,000x magnification.
Liposomal longitudinal and transversal relaxation times

(T1 and T2) were determined with a 9.4 T small animal
MR scanner (Bruker Biospin GmbH, Ettlingen, Germany)
equipped with a 35-mm-diameter quadrature birdcage
RF coil (Rapid Biomedical, Rimpar, Germany). For T1

measurements an inversion recovery fast low angle shot
(FLASH) sequence was used, with the following
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parameters: overall repetition time (TR) 15 sec, TR 4 ms,
echo time (TE) 2 ms, flip angle (α) 15o, number of excita-
tions (NEX) 4, field of view (FOV) 3x3 cm2, matrix
128x128, 1 mm slice thickness, 32 segments and 60 in-
version times ranging from 72 to 4792 ms. T2 relaxation
times were determined using a multi-slice multi-echo se-
quence with the following parameters: TR 2000 ms, 32
TEs ranging from 9 to 288 ms, α 180o, NEX 4, FOV 3x3
cm2, matrix 128x128 and 1 mm slice thickness. T1 and
T2 relaxation times were calculated by mono-exponential
fitting with a custom-built fitting program (Mathematica
6, Wolfram Research Europe, Oxfordshire, UK). Relaxiv-
ities r1 and r2 (in mM-1�s-1) were determined from Ri =
Ri,0 + ri�[Gd], with i = 1,2, Ri = 1/Ti, Ri,0 the relaxation rate
of a sample without liposomes and [Gd] between 0.001
and 1 mM Gd.

Cell culture
Mouse macrophages, RAW264.7 (European Collection
of Animal Cell Cultures (ECACC)), were cultured in
RPMI medium (phenol-red free), supplemented with
10% FBS, 2 mM L-glutamine and 100 U/mL penicillin/
streptomycin. As non-phagocytic control cells, murine
heart endothelioma cells, H5V (kindly provided by prof.
dr. G. Molema, University of Groningen, the Netherlands),
were maintained in DMEM medium, containing 10%
FBS, 2 mM L-glutamine and 100 U/mL penicillin/
streptomycin [40].

Association of PS-containing liposomes with RAW cells
To determine the mol% of PS present in liposomes
resulting in maximal uptake by macrophages, RAW cells
were incubated with PC-L, PS-6-L, PS-12-L and PS-37-L
for 2 h at 37°C (1 mM total lipid). For MRI and induct-
ively coupled plasma mass spectrometry (ICP-MS), cells
were harvested by scraping and non-bound liposomes
were removed by centrifugation (3x5 min, 500 g, RPMI
medium at 37°C). Cells were fixed in 4% PFA (250 μL)
and a loosely packed cell pellet was allowed to form by
storage at 4°C (>2 days). For confocal laser scanning mi-
croscopy (CLSM), cells were cultured on coverslips. After
incubation with the liposome formulations, cells were
fixed with 4% PFA (20 min). Finally cells were washed
with and stored in phosphate bufferd saline (PBS).

Association of PS-containing liposomes with H5V cells
To confirm that PS-containing liposomes were not taken
up by endothelial cells, H5V cells were incubated with
PC-L, PS-6-L, PS-12-L and PS-37-L for 2 h at 37°C
(1 mM total lipid). For MRI, cells were washed with
medium (37°C) and PBS (37°C). Afterwards, cells were
harvested with trypsin/EDTA, fixed with 4% PFA and a
loosely packed pellet was allowed to form. For CLSM,
cells were cultured on gelatin-coated coverslips and
handled as described above.
Divalent cation dependency of liposome association with
RAW cells
The association of liposomes to RAW cells under differ-
ent calcium and magnesium concentrations was studied.
RAW cells were incubated with PC-L and PS-6-L (2 h,
37°C, 1 mM total lipid) in Hank’s buffered salt solution
(HBBS) containing 1.26 mM Ca2+ and 0.90 mM Mg2+

(HBSS+), HBSS without Ca2+ and Mg2+ (HBSS-) and
RPMI medium (0.424 mM Ca2+ and 0.407 mM Mg2+).
Afterwards, cells were harvested by scraping, washed in
the appropriate medium (HBSS+, HBSS- or RPMI, 37°C),
fixed in 4% PFA (20 min) and stored in 0.01% sodium-
azide in PBS for FACS.
To investigate possible clustering of PC-L and PS-6-L

under high calcium and magnesium concentrations, lipo-
somes were incubated in HBSS+ or HBSS- (2 h, 37°C).
Changes in hydrodynamic number-weighted diameter
and size distribution were measured with DLS as
described above at 37°C.
Binding versus internalization
To evaluate phagocytosis of PS-containing liposomes by
macrophages, RAW cells were incubated with PC-L or
PS-6-L at 4°C or at 37°C (1 mM total lipid in HBSS+,
2 h). Incubation at 4°C inhibits phagocytosis. For FACS,
cells were incubated with liposomes in HBSS+ and har-
vested and washed as described above. For CLSM, cells
were cultured and incubated with liposomes in micros-
copy chambers (Ibidi GmbH, München, Germany).
Afterwards, cells were washed with HBSS+ (4°C or 37°C),
fixed with 4% PFA (20 min), washed and stored in PBS.
Cellular relaxation rates and relaxivities
The cellular relaxation rates of cell pellets (R1 and R2)
were determined at 9.4 T using the MRI protocol as
described above. Furthermore, the cell pellet volume was
determined using a 3D FLASH sequence with the follow-
ing parameters: TR 25 ms, TE 3.7 ms, α 30o, NEX 1,
FOV 25.6x25.6x25.6 mm3 and matrix 256x256x256. Cell
pellets were segmented with OsiriX Imaging Software
(www.osirix-viewer.com) and pellet volumes were calcu-
lated. The Gd content of cell pellets was determined with
ICP-MS (DRCII, Perkin Elmer, Waltham, USA) after de-
struction in nitric acid and perchloric acid (1:2 v/v) at
180°C. Next, gadolinium concentrations were derived
using the cell pellet volume. Cellular relaxivities were cal-
culated from Ri = Ri,0 + ri�[Gd], with i = 1,2, and Ri,0 the
relaxation rate of untreated cells.

http://www.osirix-viewer.com
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Cellular fluorescence quantification
The fluorescence intensity of NIR664-lipids, present in
the liposomes associated with RAW cells, was quantified
by fluorescence activated cell sorting (FACS) on a Guava
Easycyte 8HT (Millipore, Billerica, USA). NIR664 was
excited with a 640 nm laser and detected using a 661/19
nm band-pass filter. Mean cellular fluorescence intensity
was calculated with GuavaSoft 1.0 software (Millipore)
and was corrected for autofluorescence as detected by
measurement of untreated cells.

Cellular CLSM
The cellular distribution of liposomes was studied with
CLSM. Cell membranes of RAW cells were labeled with
rat anti-mouse CD68-fluorescein isothiocynate (CD68-
FITC, 4 μg/mL, AbD Serotec, Dusseldorf, Germany). H5V
cells were labeled with rat anti-mouse CD31 (10 μg/mL,
BioLegend, Uithoorn, The Netherlands) conjugated to
goat anti-rat FITC (Invitrogen, Bleiswijk, The Netherlands).
Nuclei were stained with 406-diamidino-2-phenylindole
dihydrochloride (DAPI, 0.1 μg/mL, Invitrogen).
A Zeiss LSM META system (Carl Zeiss BV, Sliedrecht,

the Netherlands) was used for acquisition of CLSM
images. NIR664 present in liposomes was excited with a
633 nm HeNe laser (5.0 mW) and the emission was fil-
tered with a 680/60 nm band-pass filter. Cell membranes
labeled with FITC were excited with a 488 nm Ar laser
and the emission was filtered with a 525/50 nm band-
pass filter. For two-photon excitation of DAPI, a Ti:Sap-
phire laser tuned to 780 nm was used and emission was
captured with a 460/50 band-pass filter. All images were
acquired with a 63x/1.4 oil immersion objective, a matrix
of 2048x2048, resulting in a resolution of 0.07x0.07 μm2,
and 4 averages.

Statistics
All data are presented as mean ± standard error of the
mean (SEM). To test for significant differences between
groups, one-way analysis of variance (ANOVA) with
Bonferroni correction for multiple group comparisons or
a Student’s t-test for independent samples was applied.
All statistical analyses were performed in PASW Statistics
18.02 (IBM Corporation, Armonk, NY, USA) and P <0.05
was considered significant.
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