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Abstract

Background: Naturally occurring nanoparticles isolated from English ivy (Hedera helix) have previously been
proposed as an alternative to metallic nanoparticles as sunscreen fillers due to their effective UV extinction
property, low toxicity and potential biodegradability.

Methods: This study focused on analyzing the physicochemical properties of the ivy nanoparticles, specifically,
those parameters which are crucial for use as sunscreen fillers, such as pH, temperature, and UV irradiation. The
visual transparency and cytotoxicity of ivy nanoparticles were also investigated comparing them with other metal
oxide nanoparticles.

Results: Results from this study demonstrated that, after treatment at 100°C, there was a clear increase in the UV
extinction spectra of the ivy nanoparticles caused by the partial decomposition. In addition, the UVA extinction spectra
of the ivy nanoparticles gradually reduced slightly with the decrease of pH values in solvents. Prolonged UV irradiation
indicated that the influence of UV light on the stability of the ivy nanoparticle was limited and time-independent.
Compared to TiO2 and ZnO nanoparticles, ivy nanoparticles showed better visual transparency. Methylthiazol
tetrazolium assay demonstrated that ivy nanoparticles exhibited lower cytotoxicity than the other two types of
nanoparticles. Results also suggested that protein played an important role in modulating the three-dimensional
structure of the ivy nanoparticles.

Conclusions: Based on the results from this study it can be concluded that the ivy nanoparticles are able to maintain
their UV protective capability at wide range of temperature and pH values, further demonstrating their potential as an
alternative to replace currently available metal oxide nanoparticles in sunscreen applications.
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Background
Titanium dioxide (TiO2) and zinc oxide (ZnO) nanopar-
ticles have been widely used as commercial sunscreen
fillers due to their ability to absorb and scatter UV light
[1-3]. TiO2 crystals absorb UVB radiation from 280 to
315 nm, while ZnO crystals absorb UVA radiation from
315 to 400 nm; therefore the combined use of both par-
ticles provides the UV protection in a broad spectra [4].
Later, silicon (Si) nanoparticles were also proposed to
achieve the same purpose [5]. The advantage of using
nanoparticles, as opposed to micro-sized particles, is the
transparency of nanoparticles to visible light, which is
more desirable than the white opaque appearance of
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micron sized metal oxide particles [1,6]. Besides, after re-
ducing size to the nano-scale, the performance (UV attenu-
ation) of these particles can be enhanced, which has been
verified by both theoretical and experimental studies [7-9].
However, in spite of their ability to efficiently block UV
radiation, concerns have been raised about the environ-
mental impact and potential toxicity of these metal oxide
nanoparticles [9,10].
It is well-known that the photocatalytic activity of metal

oxide nanoparticles can result in free radical generation,
which has been proven to damage DNA or tissues
[1,9,11]. Although some metal oxide nanoparticles can be
modified with non-semiconductor materials to reduce
the generation of reactive oxygen species [1,12], other
biosafety concerns, such as uptake and the interaction of
nanoparticles with biological tissues still exist [12]. Though
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significant penetration of nanoparticles contained in sunsc-
reens through the intact epidermal layer of skin has not
been observed till now [1,13], human skin is not an im-
penetrable barrier. Hair follicles and abrasions provide op-
portunities for penetration into the vasculature [9,14]. A
previous study indicated that 40 nm nanoparticles could
penetrate through follicular openings and enter epidermal
cells [15]. The increased use of synthetic nanoparticles has
also been reported as a source of environmental contamin-
ation that may affect the ecosystem. Studies showed that
TiO2 nanoparticles released into the aquatic environment
may have long-term toxic effects due to their prolonged
stability [16,17]. Besides, the toxic bioaccumulation caused
by the transfer of nanomaterials among species raised more
concerns [6,18]. Although many studies have been carried
out to understand the scope and breadth of these potential
hazards, a consensus about nanoparticle toxicity has not
been reached [19,20].
Due to the potential hazards associated with the utiliz-

ing of metal oxide nanoparticles in sunscreen products,
new green nanomaterials which are harmless to both
human health and environment while providing similar
UV protective effects are highly desirable. Naturally oc-
curring ivy nanoparticles, which are secreted from the
adventitious roots of English ivy (Hedera helix) [21],
have been proposed for sunscreen applications [6,22].
Inherent properties of the natural organic nanoparticles
usually endow them with less biosafety or environmental
compatibility concerns compared to inorganic counter-
parts. As one special case of naturally occurring nanos-
tructures [23], ivy nanoparticles are secreted from the
root hairs accompanying with the secretion process of
the ivy adhesive [24], forming a matrix with other com-
ponents to support the surface climbing [21,25]. Both
experimental and theoretical studies have shown that ivy
nanoparticles have excellent transparency to visible light,
and a strong ultraviolet extinction potential compared to
TiO2 or ZnO nanoparticles [22]. Moreover, previous
studies have indicated that ivy nanoparticles could be
degraded by proteolytic enzymes, showed low cytotox-
icity to mammalian cells, and had a limited possibility of
penetrating human skin, all of which make ivy nanopar-
ticles a promising candidate for sunscreen fillers [6].
However, before practical application of ivy nanoparti-

cles to cosmetic fields, the physicochemical properties of
these nanoparticles should be investigated. Nanoparticles
behave differently from other micro- or macro-scale
materials, due to the larger surface-to-volume ratio,
which allows more atoms or molecules to be displayed
on the surfaces [12]. The impact of particle size on the
properties of materials can be illustrated by the case of
TiO2 nanoparticles. TiO2 nanoparticles demonstrate ru-
tile phase while particle size is above ~20 nm, whereas
they exist in the form of anatase phase while particle size
is below ~20 nm. [10,26]. Rutile TiO2 nanoparticles are
usually used for sunscreen fillers, while anatase nanopar-
ticles have been applied to self-cleaning glasses. The
anatase-to-rutile phase transition is not only dependent
on the particle size, but also related to other parameters,
such as temperature [27], reaction atmosphere [28], and
synthesis conditions [26,29]. Besides, the final nanomor-
phology of TiO2 depends upon the pH value, and hence
its properties are sensitive to the resultant chemistry at
the surface [26,30]. Therefore, a detailed understanding
of the relationship between the function of nanoparticles
and their physicochemical properties must be carried
out before related products could be produced and com-
mercialized [10]. Moreover, nanoparticles are also
sensitive to the ambient environment. Environmental
changes, such as temperature, pressure, or humidity,
may alter the performance of nanomaterials [10]. For ex-
ample, electromagnetic irradiation can permanently alter
the shape of colloidal silver nanoparticles, thus affecting
the surface plasmon resonances [31,32]. Due to the high
surface-to-volume ratio of nanoparticles, it is challenging
to maintain the stable surfaces of these nanomaterials
both in device and in storage media. Changes of
temperature or pH often influence the surface reactivity
or desorb stabilizing surfactants on the surfaces, and
hence cause the agglomeration of nanoparticles [10]. As
naturally occurring nanoparticles, ivy nanoparticles may
offer more complicated composition than synthetic inor-
ganic nanoparticles. Thus, in-depth investigation on
their physicochemical properties is necessary before
practical applications. This study is not only necessary
for the efficient use of ivy nanoparticles in the sunscreen
industry but also for eliminating potential biosafety con-
cerns about utilizing ivy nanoparticles.
In this study, the UV extinction properties of ivy nano-

particles were measured and analyzed under various
temperatures and pH values. In addition, the influence
of prolonged UV radiation on ivy nanoparticles was also
investigated. Methylthiazol tetrazolium (MTT) assay was
employed to study the cytocompatibility of this naturally
occurring nanomaterial. Different from our early study,
this research focused on the physicochemical properties
analysis of ivy nanoparticles and data from this study
provided a comprehensive understanding about the rela-
tionship between the UV extinction ability and the prop-
erties. Information gained through this study will advance
potential applications of the ivy nanoparticles in sun-
screen products.

Materials and methods
Materials
Juvenile shoots of English ivy were generously donated
from Swan Valley Farms, Seattle. TiO2 and ZnO nanopar-
ticles (diameter of 50 nm, 99% purity) were purchased
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from Nanostructured & Amorphous Materials Inc.,
Houston, TX. Murine melanoma B16BL6 cells, human
non-small-cell lung cancer A549 cell lines were preserved
by our own lab. Fetal bovine serum (FBS) and Dulbecco's
modified Eagle's medium (DMEM) were purchased
from Mediatech, Manassas, VA. Bovine serum albumin
(BSA) was purchased from Sigma-Aldrich, St. Louis, MO.
All other chemicals were purchased from Fisher Scientific,
Pittsburgh, PA. All the water used for sample preparation
and test was purified by a NANO pure Infinity-unit
(Barnstead, Boston, MA).

Ivy adventitious roots (rootlets) cultivation and
nanoparticle isolation
Collected juvenile Hedera helix shoots were trimmed to
12 cm in length leaving only one piece of foliage on the
head of each shoot fragment. The bottom of the result-
ing shoots were immersed into water for 24 hours, then
incubated in 4.95 mM Indole-3-butyric acid Potassium
(K-IBA) solution, and shaken at 100 rpm for 3 hours.
After rinsing with water twice, shoots were then placed
upright into Magenta GA7 boxes containing 50 ml water
and were grown at 24°C at a 16:8 photoperiod under
82 μmol·m-2·s-1 irradiance. Ivy rootlets appeared at 8~10
days and grew to approximately 3 cm in length after one
more week cultivation. Adventitious roots were then
excised from each ivy shoot carefully to avoid potential
physical damage to root hairs. Collected adventitious
roots were then used immediately for isolation of ivy
nanoparticles. After rinsing with distilled water twice,
the wet ivy rootlets (10 g wet weight, from 200 ivy
shoots) were extracted twice with 25 ml distilled water
at 4°C in a sonicating bath for 1 hour while occasional
mixing. The mixture was centrifuged at 12000 rpm for 1
min to remove chunks of debris and the supernatant
was filtered through a 0.22 μm filter (MillexWGP,
Millipore) to remove impurities. Large agglomerates of
ivy nanoparticles were also removed from the resulting
decentralized solution. The resulting filtrate was then
dialyzed with a 300 kDa cut-off dialysis membrane
(Spectra/PorW Biotech) against distilled water for three
days with five changes to further purify the ivy nanopar-
ticles and homogenize the size. Most of the small mole-
cules such as soluble proteins, pigments and salts, were
removed during dialysis. Isolated ivy nanoparticles were
preserved in distilled water at 4°C for further study. Pro-
tein concentration of ivy nanoparticles was quantitatively
determined by BCA protein assay kit (Thermo, IL).

Influence of temperature variations on ivy nanoparticles
Freshly extracted ivy nanoparticles were diluted 6 times
with distilled water to a final concentration of 500 μg/ml.
4 ml of diluted ivy nanoparticles were then treated at 7 dif-
ferent temperatures (-70°C, -20°C, 0°C, 20°C, 30°C, 40°C,
100°C) for two hours. After returning to room temperature
(20°C), the size distribution, mean size and zeta potential of
differently treated ivy nanoparticles were analyzed using dy-
namic light scattering (DLS, Zetasizer nano series, Malvern)
measurements. The UV extinction spectra of differently
treated ivy nanoparticles were measured using a UV-Vis
spectrophotometer (Thermo Scientific Evolution 600
UV-Visible spectrophotometer, Thermo Fisher Scientific)
from 260 nm to 400 nm. The optical length of the quartz
cuvette was 1 cm. Detailed studies on the influence of an
extreme temperature (100°C) on ivy nanoparticles were
conducted using spectrofluorimetry (LS-50B, Perkin
Elmer). Structural changes or unfolding of the ivy nanopar-
ticles was monitored by changes of intrinsic protein
fluorescence as described [33,34]. Emission spectra were
recorded in triplicate between 260 and 420 nm using an ex-
citation wavelength of 280 nm. The path length of
the microvolume quartz cuvette was 1 cm. Emission
spectra of ivy nanoparticles treated at other 6 temperatures
(-70°C, -20°C, 0°C, 20°C, 30°C, 40°C) were recorded as
the control.

Influence of pH value changes on ivy nanoparticles
Freshly extracted ivy nanoparticles were diluted 6 times
with distilled water and acetate buffer (0.1 M, pH 4.0) or
phosphate buffer (0.1 M, pH 7.4) to a final concentration
of 500 μg/ml. The pH value was adjusted during dilution.
The final buffers used in this study were acetate buffer
(0.02 M) with 3 different pH values (pH 4.0, pH 5.0 and
pH 6.0) and phosphate buffer (0.02 M) with 4 different pH
values (pH 7.4, pH 8.0, pH 9.0 and pH 10.0). Ivy nanopar-
ticles dispersed in each buffer were incubated at room
temperature for 2 hours followed by DLS measurements.
The UV extinction spectra of the ivy nanoparticles at dif-
ferent pH values were measured as described earlier.

Morphological study of ivy nanoparticles
To study the morphology of the ivy nanoparticles and
the function of protein on maintaining this nano-morph-
ology, atomic force microscopy (AFM) was performed
using an Agilent 6000ILM/AFM (Agilent Technologies,
CA). 10 μg of lyophilized ivy nanoparticles were
dispersed in 400 μl distilled water and treated with an
equal volume of phenol: chloroform: isoamyl alcohol
(25: 24: 1, v/v/v). The mixture was stirred for 5 s and
centrifuged at 12000 rpm for 10 min at room
temperature. The aqueous phase was removed and
stored at 4°C prior to analysis. 20 μl of the resulting ivy
nanoparticles extract was deposited on a freshly cleaved
mica substrate followed by air-drying overnight. Mica
substrates were then stored in a desiccator at room
temperature prior to AFM analysis. Samples were imaged
at room temperature (20°C) using Picoview™ in AC mode.
AFM probes were commercially available silicon
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probes PPP-NCHR-20 (Nanosensors™) with a force
constant of 10-130 N/m and resonance frequency of
204-497 kHz. Scan rate was 0.5 ln/s. Un-treated ivy
nanoparticles at the same concentration were scanned
with the same AFM setting as the control.
Influence of UV radiation on ivy nanoparticles
Freshly isolated ivy nanoparticles were diluted with dis-
tilled water 6 times to a final concentration of 500 μg/ml.
Diluted samples were added to 12-well tissue culture poly-
styrene plates (TCPs, Becton Dickinson) at 2 ml/well.
TCPs were allowed to air-dry overnight at room
temperature. Each well of the TCPs was then covered by
one coverslip. Subsequently, TCPs were placed into a
biological safety cabinet (BSC, 1300 Series A2, Thermo
Scientific) and irradiated with ultraviolet light followed
by removing one column of coverslips at a fixed time (0 h,
8 h, 11 h). The UV source was a USHIO G36T5L 39-W/
UV-C quartz lamp emitting radiation peaking at 253.7
nm. The distance between the TCPs and the ultraviolet
lamp was 75 cm. After 12 h irradiation, ivy nanoparticle
precipitates in each well were re-suspended and dispersed
with 2 ml of distilled water followed by UV-Vis measure-
ments to record the UV extinction spectra of the ivy
nanoparticles under different ultraviolet exposure times.
The BSA with the same concentration was treated based
on the same procedure as the control.
Visual transparency analysis and MTT assay
Lyophilized ivy nanoparticles were dispersed with
distilled water at the concentration of 500 μg/ml,
100 μg/ml and 10 μg/ml. The transparency of dispersed
ivy nanoparticles was visually compared to TiO2 and
ZnO nanoparticles with the same concentration. MTT
assay was also performed to compare the cytotoxicity of
ivy nanoparticles with TiO2 and ZnO nanoparticles.
A549 and B16BL6 tumor cells were cultured in a
DMEM with 10% FBS and an atmosphere of 5% CO2 in
air at 37°C. After incubating with serial diluted nanopar-
ticles for 48 hours, MTT assay was conducted and ab-
sorbance at 570 nm was recorded.
Statistical analysis
All quantitative results are representative of three inde-
pendent experiments. Data were expressed as the mean ±
standard deviation (SD). Statistical analysis was performed
using one-way ANOVA, performed with a computer stat-
istical program (PASW Statistics 18). A value of P < 0.05
was considered to be statistically significant. Tukey post
hoc multiple comparisons were performed to determine
differences between every two groups.
Results and discussion
Ivy nanoparticle isolation and purification
In order to facilitate large-scale applications of ivy nano-
particles in cosmetic products, a convenient and reliable
system for ivy cultivation, nanoparticle isolation and
purification was developed. Different from common tis-
sue culture methods used before [6], this improved culti-
vation system avoids complicated sterilizing procedures,
but uses water alone as the growth source instead of an
organic culture medium. Using this controllable cultiva-
tion system, contamination and environmental influence
was minimized. DLS and AFM studies verified the secre-
tion of ivy nanoparticles from ivy rootlets cultivated by
this system [6,21]. Figure 1 shows the result of the puri-
fied ivy nanoparticles. After isolation and purification,
ivy nanoparticles were distributed on the mica surface.
The size of ivy nanoparticles was around 80 to 140 nm,
which was consistent with previous reports [6]. Isolated
ivy nanoparticles were preserved in distilled water at 4°C
for further study. Freshly isolated nanoparticles were
tested or studied no more than 3 days after isolation.

Temperature effect
Previous studies indicated that ivy nanoparticles show
increased extinction spectra in the UVA/UVB range and
decreased absorbance in the visible region when com-
pared to TiO2 nanoparticles, which endow ivy nanopar-
ticles with a greater UV protective potential and allow
them to be transparent to visible light. In the meantime,
previous report also mentioned the possibility of investi-
gating the UV extinction property of ivy nanoparticles
from a protein perspective [6]. By BCA quantification,
the concentration of protein in ivy nanoparticles was
around 58%. In this study, factors which may have a pos-
sible impact on the morphology and surface reactivity of
ivy nanoparticles, especially the influence on protein sta-
bilities, were investigated. The influence of temperature
variation on the morphology of ivy nanoparticles and on
the UV extinction capability was evaluated by DLS and
UV-Vis spectrophotometry. Freshly isolated ivy nanopar-
ticles were treated at 7 different temperatures for 2 hours
followed by DLS measurements to obtain the particle
size distribution, mean size and zeta potential variations
[35,36]. The mean from three separate trials was com-
pared to determine the standard deviation from experi-
ment to experiment. Results from the measurement
show that the mean size of the extracted ivy nanoparticles
preserved at room temperature was 115.50 ±1.9 nm
(SD stands for the standard deviation of three mean sizes
getting from three independent trials, Figure 2b), while
90.3% of the nanoparticles were between 70.90 to 255 nm
(Figure 2a). The lowest mean size (109.17 ±1.3 nm) was
obtained by the ivy nanoparticles treated at 100°C,
whereas ivy nanoparticles treated with other temperatures



Figure 1 AFM images of purified ivy nanoparticles and schema of UV protection provided by ivy nanoparticles. The scale bars represent
1 μm in image a, and 250 nm in image b.
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showed little difference in the mean size (Figure 2b). After
treating at 100°C for 2 hours, 1.1% of ivy nanoparticles were
agglomerated to larger than 4 μm, and 5.2% were in the
form of small (11.61~32 nm) nanostructures (Figure 2a).
As shown in Figure 2a, ivy nanoparticles demonstrated
great temperature tolerance over a wide range of variation.
Even treated with the extreme temperature for a long time,
most ivy nanoparticles still maintained stable nanostruc-
tures and steady dispersive state. The temperature-tolerant
behavior of ivy nanoparticles was consistent with the
physiological characteristics of this plant, which can survive
in a wide range of ambient temperatures. Ivy nanoparticles
were indicated to participate in the climbing process
[21,24,25], in which tolerance over a broad temperature
range is an important feature. Zeta potential analysis
revealed that the ivy nanoparticles treated at 100°C demon-
strated a slightly increased zeta potential compared to other
samples, which suggested an increasingly unstable disper-
sive state of nanoparticles at this temperature (Figure 2b).
Subsequently, the influence of temperature on the UV

extinction spectra was further evaluated by UV-Vis spec-
trophotometry. 3 ml aqueous solutions of ivy nanoparti-
cles treated at different temperatures were added to quartz
cuvettes, and the absorbance was recorded. Figure 2c
shows that the ivy nanoparticles demonstrated strong ex-
tinction spectra from 260 to 400 nm (UVA/UVB range),
which was consistent with previous reports [6]. However,
the UVA/UVB extinction spectra of ivy nanoparticles trea-
ted at 100°C displayed a distinct increase compared to
other samples. Compared to the results obtained from
DLS, this increased absorbance was attributed to the 5.2%
small nano-groups (11.61-32 nm) caused by partial
decomposition of the ivy nanoparticles after treating at
100°C. The increased surface-to-volume ratio is believed
to enhance the UV absorption of this sample.
The structural changes of ivy nanoparticles treated at

100°C were examined by spectrofluorimetry. Intrinsic
fluorescence of protein was usually used to observe the
denaturation or unfolding of macromolecules [34,37,38].
Fluorescence measurements monitor the state of aro-
matic side chains within the protein (usually tryptophan
due to its strong quantum yield), and intrinsic protein
fluorescence can be measured at approximately 350 nm
after exciting with 280 nm ultraviolet light while the ac-
tual emission wavelength can vary depending on the po-
larity of the environment. Comparing to the folded state,
the quantum yield may be either increased or decreased
by the unfolding because the fluorescence of the aromatic



Figure 2 Temperature influence on ivy nanoparticles. a Size distributions of ivy nanoparticles treated with different temperatures: (a) -70°C,
(b) -20°C, (c) 0°C, (d) 20°C, (e) 30°C, (f) 40°C, (g) 100°C, b Mean sizes and zeta potentials of ivy nanoparticles treated with 7 different temperatures,
and c UV extinction spectra of ivy nanoparticles treated with 7 different temperatures. The panel is the amplification of the corresponding area
at 280 nm.
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residues varies in somewhat unpredictable manner in
various proteins. Accordingly, an unfolded protein can
have either greater or less fluorescence than the folded
form [39]. In this study, aqueous solution of ivy nano-
particles treated at 100°C was excited at 280 nm and
emission spectra were recorded from 260 to 420 nm.
As shown in Figure 3, ivy nanoparticles preserved at room
temperature demonstrated an emission wavelength of
around 375 nm. This small drift from the theoretical value
(350 nm) was attributed to the interference of other
chemical components in ivy nanoparticles. The emission
spectra noticeably decreased after treating at 100°C, which
indicated the partial denaturation of proteins occurring
in ivy nanoparticles. Comparatively, ivy nanoparticles trea-
ted with other temperatures didn’t show any significant
difference in the emission spectra with each other.
Together with results from DLS measurements, it was
evident that the degradation and agglomeration process of
ivy nanoparticles were accompanied by the partial unfold-
ing process of proteins, which implied that proteins played
an important role in maintaining the three-dimensional
structures of ivy nanoparticles.

Stability of ivy nanoparticles to pH
The sensitivity to pH value was also an important factor
when evaluating the application of ivy nanoparticles in
sunscreen products [40]. Investigation of the influence
of pH variation on the stability and agglomeration of ivy
nanoparticles was not only useful for manipulation but
also valuable for practical utilizing. In this study, ivy
nanoparticles were dispersed in buffers with 7 different
pH values followed by DLS measurements and UV-Vis
analysis. Results show that ivy nanoparticles demon-
strated diverse mean sizes after dispersing in buffers



Figure 3 Intrinsic fluorescence of protein in ivy nanoparticles. Emission spectra of ivy nanoparticles with an excitation of 280 nm. Ivy
nanoparticles were treated under -70°C, -20°C, 0°C, 20°C, 30°C, 40°C and 100°C respectively.
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with different pH values (Figure 4b). The mean size
increased from 120.7 ±2.7 to 132.4 ±2.6 nm (SD stands
for the standard deviation of three mean sizes getting
from three independent trials) accompanying with the
decrease of pH values (Figure 4b), which implied that ivy
nanoparticles were more stably dispersed in alkaline
environments than in acidic ones. Ivy nanoparticles
showed more degradation and agglomeration while
dispersing in acidic environments (pH 4.0, pH 5.0 and
pH 6.0) (Figure 4a). For example, 3.2% of ivy nanoparti-
cles were in very small sizes (17.6~22.5 nm) and 3.9%
were agglomerated to larger than 4 μm while dispersing
in acetate buffer (0.02 M, pH 4.0) (Figure 4a). These
results collectively suggested that ivy nanoparticles were
more sensitive to acidic solutions than alkaline ones. As
discussed before, protein played an important role in
adjusting three-dimensional structures of ivy nanoparti-
cles, thus should be sensitive to pH variations. It was
also noticed that the mean size for ivy nanoparticles dis-
persed in buffers was larger than nanoparticles dispersed
in distilled water (Figure 2b, 4b). This difference was
attributed to the interference of salt ions.
The UV extinction spectra of ivy nanoparticles dispersed

in buffers at different pH’s were also recorded using
UV-Vis spectrophotometry. As shown in Figure 4c, the
UV extinction spectra were measured from 260 to 400 nm.
Within the wavelength between 260 and 320 nm (UVB),
no distinct spectral difference was observed among diffe-
rent pH values, whereas the UV extinction spectra from
320 to 400 nm (UVA) decreased significantly accompa-
nying with the decrease of pH values. This sub-regional
extinction decrease may be attributed to agglomeration of
the ivy nanoparticles (Figure 4b). Reduced surface-to-
volume ratio may lower the absorption of ultraviolet light.
However, the difference between UVA and UVB regions
needs to be further investigated. Also, this sub-regional
absorbance difference provided a unique channel to utilize
ivy nanoparticles in sunscreen products.

Morphological study
Previous AFM studies indicated that the morphology of
ivy nanoparticles was stable but could be digested by
Proteinase K [6]. Since proteins may play an important
role in modulating the three-dimensional structures of
the ivy nanoparticles, a harsh treatment (phenol-chloro-
form extraction) was employed to eliminate most of the
proteins from the nanoparticle structures followed by
AFM analysis. Un-treated ivy nanoparticles at the same
concentration were scanned with AFM as a control. As
shown in Figure 5, natural ivy nanoparticles displayed
spherical ordered structure and were densely distributed
on the mica surface. The morphology was similar to
previous reports [21,25]. However, after applying phenol-
chloroform-isoamyl alcohol, the three-dimensional struc-
ture of ivy nanoparticles was distinctly affected. Small
debris appeared on the surface of mica instead of uniform
nanoparticles and was displayed by irregular forms. The
size of these residues was much smaller than that of intact
nanoparticles. Remaining components of the debris on
the mica substrate were speculated to be polysaccharides
and/or plant secondary metabolites, which needed further
chemical analysis. This morphological change verified the



Figure 4 The influence of pH on ivy nanoparticles. a Size distributions of ivy nanoparticles dispersed in buffers with different pH values: (a)
pH 4.0, (b) pH 5.0 (c) pH 6.0, (d) pH 7.4, (e) pH 8.0, (f) pH 9.0, (e) pH 10.0, b Mean sizes of ivy nanoparticles dispersed in buffers with 7 different pH
values, and c UV extinction spectra of ivy nanoparticles dispersed in buffers with 7 different pH values. The panels are the amplification of the
corresponding areas of the UV extinction spectra.

Figure 5 AFM study on the morphology of ivy nanoparticles. a AFM image of ivy nanoparticles on the surface of mica, and b AFM image of
ivy nanoparticles’ residues after extracting with phenol-chloroform-isoamyl alcohol. The scale bar represents 250 nm for both images.
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protein as a necessary component to maintain the struc-
ture of ivy nanoparticles.

UV irradiation influence
Since ivy nanoparticles were proposed to be a suitable
substitute for metal oxide nanoparticles in sunscreen
products [6,22], more detailed studies on the influence
of UV irradiation on nanoparticle itself became particu-
larly important. It was reported that after irradiation
with a conventional 40-W fluorescent light for 70 hours,
silver nanospheres showed a concomitant growth of
three new bands and a decrease of the characteristic
band at 400 nm in the UV-Vis spectroscopy [31]. Since
ivy nanoparticles are regulated by their protein structure,
they may be more sensitive to UV-irradiation as proteins
are usually more fragile to UV irradiation. Oxidative
damage to the collagen protein caused by UV radiation
Figure 6 UV irradiation influence on ivy nanoparticles. a Schema of UV
at scheduled time (0 hour, 8 hours and 11hours), and b UV spectra of ivy n
with the same concentration was treated based on the same procedure as
has also been widely studied [41-43]. The UV radiation
could reduce fibrillogenesis level while cleaving peptide
bonds of collagen randomly. In our study, ivy nanoparti-
cles were air-dried in the wells of TCPs followed by UV
irradiation with 4 different time scales (0 hour, 1 hour,
4 hours, 12 hours). A 39-W UV light source from a
BSC, which emitted radiation peaking at 253.7 nm was
used as the UV radiation source. The irradiation time
was well controlled by removing the covered glass sheets
at scheduled times (Figure 6a) since all UV light below
300 nm could be blocked by the cover glass [44-46]. The
BSA was utilized as the control. After irradiation, ivy
nanoparticles treated with different radiation durations
were re-suspended and dispersed with distilled water
and the UV extinction spectra were recorded to evaluate
the influence of UV irradiation on nanoparticles. Results
show that the extinction spectra of ivy nanoparticles
irradiation test. Irradiation time was controlled by removing coverslips
anoparticles after treatment with different UV irradiation time. The BSA
the control.
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displayed a slight decrease from a wavelength of 350 to
400 nm after treatment with UV irradiation, but this im-
pact was time-independent (Figure 6b). However, the UV
extinction spectra of the BSA demonstrated a clear vari-
ation with the change of UV irradiation time. Untreated
BSA showed a characteristic band at 280 nm. After UV ir-
radiation for 1 hour, the overall UV extinction spectra
increased; however, the band at 280 nm became broader.
With an increasing duration of UV irradiation, the UV
extinction spectra gradually decreased and almost disap-
peared at 12 hours. We believed that this variation was
attributed to the intramolecular disordered movement
and the breaking of aromatic groups caused by the
consistent absorbing energy under UV radiation. This
study indicated that ivy nanoparticles were relatively stable
and reliable to serve as a UV filter substrate.

Nanoparticles transparency analysis and cytocompatibility
Visual transparency is a vital merit for nanoparticles to
be used as sunscreen fillers. In this study, the visually
transparent property of ivy nanoparticles was compared to
TiO2 and ZnO nanoparticles after dispersing in distilled
water. Results indicated that ivy nanoparticles presented
Figure 7 Visual transparency analysis and cytocompatibility study. a
ZnO) dispersed in distilled water with three different concentrations (500 μg/m
cytotoxicity of three different nanoparticles (ivy, TiO2, ZnO). Nanoparticles wer
0.2 μg/ml, 0.04 μg/ml and 0.008 μg/ml.
better transparency in liquid solution (Figure 7a). MTT
assay was also performed to evaluate the cytotoxicity of
three different nanoparticles. Ivy nanoparticles showed
lower cytotoxicity to A549 and B16BL6 tumor cells com-
pared to TiO2 and ZnO nanoparticles (Figure 7b). For
concentrations above 5 μg/ml, metal oxide nanoparticles
showed distinct cytotoxicity, whereas ivy nanoparticles
had little effect. Better cytocompatibility suggested the in-
herent advantages of naturally occurring nanomaterial.

Conclusions
Ivy nanoparticles have been proposed as a potential substi-
tute for metal oxide nanoparticles in sunscreens due to
their effective UV extinction potential, low toxicity, and
biodegradability [6]. In this study, the stability of the ivy
nanoparticles, specifically their UV protective capabilities,
to changes in temperature, pH, and prolonged UV expos-
ure were investigated. Results showed that ivy nanoparti-
cles demonstrated relatively strong temperature, pH and
UV irradiation tolerance. However, at 100°C, ivy nanopar-
ticles were partially degraded and displayed increased
agglomeration, which were modulated by partial protein
unfolding. This degradation led to an increase in the UV
Visual transparency comparison of three different nanoparticles (ivy, TiO2,
l, 100 μg/ml and 10 μg/ml), and b MTT assay to compare the

e gradiently diluted to 100 μg/ml, 50 μg/ml, 25 μg/ml, 5 μg/ml, 1 μg/ml,
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extinction spectra of ivy nanoparticles. Considering that
100°C falls well outside of the range necessary for a sun-
screen product, the stability analysis from -20°C to 40°C
shows that the ivy nanoparticles meet the criteria neces-
sary for stable sunscreen filler. Since high temperatures
may still be encountered in the process of manufacturing
a sunscreen product incorporating the ivy nanoparticles,
such as the sterilization of the ivy nanoparticles using
autoclaving, this study had certain guiding significance to
the practical operation. Results about the influence of pH
variation on ivy nanoparticles showed that the UVA ex-
tinction spectra slightly decreased with a decrease of pH
values. Nanoparticles were more stable in alkaline solu-
tions than in acidic environments. It was also observed
that protein played an important role in modulating three-
dimensional structures of ivy nanoparticles. The morph-
ology study showed that after removing most protein from
ivy nanoparticles, there were still some small residues
which displayed irregular and asymmetric structures on
the surface of mica. Furthermore, the influence of UV
irradiation on the ivy nanoparticles was evaluated by
UV-Vis spectroscopy and the results indicated that the
impact was small and time-independent. In summary, ivy
nanoparticles demonstrate the necessary stability to be
used as sunscreen filler, with advantages over currently
used metal oxide nanoparticles. The increased visual
transparency and safety of these nanoparticles make them
an attractive candidate to replace metal oxide nanoparti-
cles, leading to less concern over the environmental im-
pact of these nanomaterials. Future studies will focus on
isolation and identification proteins from ivy nanoparti-
cles. The practical application of ivy nanoparticles for UV
protection will also be evaluated.
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