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Abstract

We report the first use of inorganic fluorescent lanthanide (europium and terbium) ortho
phosphate [LnPO,H,O, Ln = Eu and Tb] nanorods as a novel fluorescent label in cell biology.
These nanorods, synthesized by the microwave technique, retain their fluorescent properties after
internalization into human umbilical vein endothelial cells (HUVEC), 786-O cells, or renal
carcinoma cells (RCC). The cellular internalization of these nanorods and their fluorescence
properties were characterized by fluorescence spectroscopy (FS), differential interference contrast
(DIC) microscopy, confocal microscopy, and transmission electron microscopy (TEM). At
concentrations up to 50 pug/ml, the use of [3H]-thymidine incorporation assays, apoptosis assays
(TUNEL), and trypan blue exclusion illustrated the non-toxic nature of these nanorods, a major

advantage over traditional organic dyes

Background

Nanotechnology, the creation of new objects in nanoscale
dimensions, is a cutting edge technology having impor-
tant applications in modern biomedical research [1-7].
Because the dimension of nanoscale devices is similar to
cellular components such as DNA and proteins [8,9],
tools developed through nanotechnology may be utilized
to detect or monitor several diseases at the molecular level
[3,10,11]. Bio-imaging with inorganic fluorescent nano-
rods probes have recently attracted widespread interest in
biology and medicine [1-4,12-14] compared to nano-
spheres. According to the reported literature [15], there is
a drastic reduction of the plasmon dephasing rate in
nanorods compared to small nanospheres due to a sup-
pression of interband damping [15]. These rods show very

little radiation damping due to their small volumes. These
findings imply large local-field enhancement factors and
relatively high light-scattering efficiencies, making metal
nanorods extremely interesting for optical applications.
Therefore, we are highly interested to examine the possi-
bility of using inorganic fluorescent nanorods, especially
lanthanide ortho phosphate LnPO, - H,O [Ln = Eu or Tb],
as fluorescent labels in cell biology. On the otherhand, in
comparison to organic dyes (including Fluorescein, Texas
Red™, Lissamine Rhodamine B, and Tetramethylrhodam-
ine) and fluorescent proteins (Green fluorescent protein,
GFP), inorganic fluorescent nanoparticles have several
unique optical and electronic properties including size-
and composition-tunable emission from visible to infra-
red wavelengths, a large stokes shift, symmetric emission
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spectrum, large absorption coefficients across a wide spec-
tral range, simultaneous excitation of multiple fluorescent
colors, very high levels of brightness, [4,13], high resist-
ance to photobleaching, and an exceptional resistance to
photo- and chemical degradation [2-5,13,16,17] ].

Bio-conjugated inorganic nanoparticles have raised new
possibilities for the ultrasensitive and multiplexed imag-
ing of molecular targets in living cells, animal models, and
possibly in human subjects. In this context, lanthanide-
based inorganic fluorescents, especially Eu- and Tb-phos-
phate nanoparticles, have attracted a great deal of atten-
tion in cell biology. Optical properties of europium (Eu)
and terbium (Tb) salts and their chelates have been used
in diverse biomedical applications, namely time-resolved
fluorometric assays and immunoassays [18-26]. Further-
more, there are some previous reports regarding the intro-
duction of inorganic luminescent nanospheres such as
CdSe, ZnS, PbSe, ZnSe, and ZnS into cells [4,27,28]; how-
ever, these compounds are toxic to the cells. As the poten-
tial toxic effects of nanomaterials (nanospheres or
nanorods) is a topic of considerable importance, the in
vivo toxicity of Eu and Tb salts will be a key factor in deter-
mining whether the fluorescent imaging lanthanide
probes could be used in vivo. In our study, lanthanide
phosphate [LnPO,-H,0, where Ln = Eu and Tb] nano-
rods were found to be non-toxic to endothelial cells as
analyzed by cell proliferation assays [29] and the TUNEL
assay. Moreover, to the best of our knowledge, there is no
known report internalization of naked (nanorods without
surface modifications of peptides, organic molecules, or
polymers) fluorescent nanorods (EuPO,-H,O and
TbPO, - H,0) into cells. In order to functionalize the sur-
face of nanorods, we used aminopropyl trimethoxy silane
(APTMS) or mercapto-propyl trimethoxy silane (MPTMS)
as reported in the literature [30]. The functionalization of
these nanorods using the microwave technique [30] is
currently ongoing in our laboratory.

To the best of our knowledge, this is the first report of
inorganic lanthanide phosphate fluorescent nanorods as
fluorescent labels in cell biology. In the present study,
EuPO, -H,0 and TbPO,-H,O nanorods have been pre-
pared by microwave heating and characterized as
described previously [31]. The microwave technique is
simple, fast, clean, efficient, economical, non-toxic, and
eco-friendly [31]. The aim of our study was to investigate
whether these inorganic fluorescent nanorods were capa-
ble of entering the cells and retaining their fluorescent
properties for detection post-internalization. If so, drugs
or biomolecules attached to these nanorods can then be
detected after internalization and benefit future imaging,
therapeutics, and diagnostic purposes. The aim of this
paper is not to compare the toxicity of inorganic fluores-
cent nanorods with other inorganic fluorescent nanopar-
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ticles such as CdSe or CdTe but to explore and find new
inorganic fluorescent materials that can be used as fluo-
rescent labels in cell biology.

Results and discussion

The morphologies of LnPO, - H,O [Ln = Eu and Tb] nano-
materials were further characterized by transmission elec-
tron microscopy (TEM) at different magnifications
(Figure 1A-D). The TEM images of as-synthesized prod-
ucts clearly showed that EuPO, - H,O material (Figure 1A-
B) entirely consists of nanorods [6 to 8 nm in diameter
and 100 to 300 nm in length] and TbPO, - H,O products
(Figure 1C-D) were a mixture of two rod types in microm-
eter size (small rods at 0.5 to 1.5 pm in length and 6 to 8
nm in width and bigger rods at 1.1 to 2.2 pm in length
and 80 to 130 nm in width).

The excitation and emission spectra of LnPO,-H,O are
shown in Fig. 2A-D. The main emission peaks (Fig. 2B)
for EuPO, - H,O were observed at 588 nm, 615 nm, and
695 nm after excitation at 393 nm (Fig. 2A). Similarly, the
main emission peaks (Fig. 2D) for TbPO, -H,O were
observed at 490 nm, 543 nm (major), and 588 nm after
excitation at 378 nm (Fig. 2C). The other excitation wave-
lengths for EuPO, - H,O were 415 nm, 444 nm, 464 nm,
488 nm (week), 525 nm, 535 nm etc (data not shown).
Excitation wavelengths for TbPO,-H,O were 283 nm,
302 nm, 317 nm, 340 nm, 350 nm, 367 nm, 460 nm, 488
nm etc (all are not shown here). Excitation at any of these
wavelengths resulted in similar emission spectra (data not
shown) for EuPO, - H,0 and TbPO, - H,0. The excitation
spectrum of Eu3+ (Fig. 2A) and Tb3+ (Fig. 2C) revealed an
intense band at 393 nm and at 283 nm (due to the f-f tran-
sitions), respectively. The emission spectrum (Fig. 2B) was
composed of aDy-7F; (J = 1, 2, 3, 4) manifold of emission
lines of Eu3+ with the magnetic-dipole allowed >D,-7F,
transition (588 nm) being the most prominent emission
lines. TbPO, - H,0 yielded the characteristic blue >D,-7F;.
(J' = 4,5) emission and the green °D;-7F, (J = 3, 4,5,6)
emission of Tb3+though the 5D,-7F; (543 nm) green emis-
sion was the most prominent band (Fig. 2D). Such fluo-
rescence properties of inorganic nanorods (LnPO, - H,0)
have attracted a great deal of attention in biology because
they have a strong optical emission that exhibits a sharper
spectral peak than typical organic dyes, have a large Stokes
shift, and are minimally influenced by other chemicals.
The emission spectrum has the following salient charac-
teristics: (i) large Stokes shift (615-393 = 222 or 543-283
= 260 dependent upon the emission wavelength of euro-
pium excitation at 393 nm or terbium excitation at 283
nm), (ii) a narrow and symmetric emission at 615 nm for
europium and 543 nm for terbium, and (iii) a long-lasting
existence. Therefore, our nanorods, despite its slightly
larger size, satisfy all the criteria of inorganic fluorescent
nanoparticles.
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Figure |
TEM images of as-synthesized (A-B) EuPO,H,0O nanorods and (C-D) TbPO,-H,O nanorods with different magnifications,
respectively.
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Emission spectra of EuPO, E =393 nm

_B o288 nm
ER
L]
2 .
‘w1 615 nm
c L 695 nm
m = 1
E =
=3 687 nm
] 61-_9nm
550 600 850 700 750

Wavelength (nm)
Emission spectra of TbPO,, E =378 nm
543 nm

1D

Intensity (a.u)

588 nm

P g \
- ——

460 480 500 520 540 560 580 600
Wave length (nm)

Excitation (A,C) and emission spectra (B,D) of as-synthesized EuPO,-H,O, TbPO,-H,O nanorods.

In order to determine if the fluorescence activity of these
LnPO, - H,0 nanorods remain unchanged inside the cell,
786-0 cells and HUVEC are incubated for 24 hours with
these nanorods at various concentrations and the emis-
sion (fluorescence) spectra were recorded on a Fluorolog-
3 Spectrofluorometer after extensive washing with PBS
(phosphate buffer saline) and shown in Figure 3A-B. Fig-
ure 3A shows the emission spectra of 786-O cells loaded
with EuPO, - H,O nanorods at different concentrations: 0
pg/ml (curve-a), 50 pg/ml (curve-b), and 100 pg/ml
(curve-c), respectively. Similarly, Figure 3B shows the
emission spectra of HUVEC cells loaded with
TbPO, - H,O nanorods at different concentrations: 0 ng/

ml (curve-a), 20 pg/ml (curve-b), 50 pg/ml (curve-c), and
100 pg/ml (curve-d), respectively. Similar results were
obtained when 786-O cells were treated with TbPO, - H,O
and HUVEC cells were treated with EuPO,-H,O nano-
rods (data not shown). It was observed that with increas-
ing concentrations of LnPO, - H,O nanorods (0 to 100 pg/
ml), the rate of nanorod accumulation inside the 786-O
and HUVEC cells increased as the fluorescence intensity
from curve -a to curve -c¢/d increased (Figure 3A-B). As
these nanorods show their distinct fluorescence properties
inside the HUVEC and 786-O cells, it indirectly proves
that these nanorods are internalized (which is confirmed
by TEM, as discussed later).
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Emission spectra of EuPO,, loaded in 786-O cells, Ex =393 nm
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Emission spectra of (A) EuPO,-H,O nanorods loaded inside 786-O cells treated at various concentrations (a = 0 pg/ml, b = 50
pg/ml, ¢ = 100 pg/ml), (B) TbPO,-H,O nanorods loaded inside HUVEC cells treated at various concentrations (a = 0 pg/ml, b

=20 ug/ml, ¢ = 50 pg/ml, d = 100 pg/ml).
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A number of methods such as differential interference
contrast (DIC) microscopy, confocal microscopy and
transmission electron microscopy (TEM) has been used to
determine cellular trajectories of nanorods and are
described below. Differential interference contrast (DIC)
microscopy pictures of HUVEC (Fig. 4A-F) clearly show a
significant difference in contrast between the untreated
control cells (Fig. 4A), the cells treated with EuPO, - H,O
(Fig. 4B-D), and the cells treated with TbPO, - H,O nano-
rods (Fig. 4E-F) at various concentrations. Similar results
were obtained when 7886-O cells were treated with
LnPO, - H,O nanorods (data not shown). These results
again indirectly prove that these LnPO,-H,O nanorods
are internalized.

Inorganic fluorescent EuPO,-H,O and TbPO,-H,O
nanorods inside the 786-0O cells (Fig. 5) and HUVEC (data
not shown here) were detected by confocal microscopy.
The fluorescence (left column) and their corresponding

Figure 4

DIC microscopy pictures of HUVEC with nanorods and
without nanorods. A: control HUVEC with no treatment, no
nanorods were observed, (B-D): HUVEC treated with
EuPO,-H,0 at different concentrations (B: 20 pg/ml, C: 50
pg/ml and D: 100 pg/ml), and (E-F): HUVEC treated with
TbPO,H,O nanorods at different concentrations (E: 50 pg/
mland F: 100 pg/ml). In few places, nanorods, inside the cells,
were marked by white arrow sign (B-D).
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phase images of untreated control cells (Fig. 5A), cells
treated with EuPO,-H,O nanorods (Fig. 5B), and cells
treated with TbPO, - H,O nanorods (Fig. 5C) were shown.
The EuPO, - H,0 nanorods have a useful excitation region
from 250 to 535 nm with a maximum at 393 nm [26]. In
this study, confocal fluorescence microscopy images and
phase images of cells were collected through the use of a
Zeiss LSM 510 confocal laser scan microscope with a C-
Apochromat 63 X/NA 1.2 water-immersion lens in con-
junction with an Argon ion laser (488 nm excitation). The
fluorescence emission was collected with a 100X micro-
scope objective then spectrally filtered using a 515 nm
long pass filter. Analysis by confocal laser scanning micro-
scopy (excitation at A = 488 nm) shows the presence of
green fluorescent structures scattered in the cytoplasmic
compartments of cells treated with nanorods (Fig. 5B-C).
It was also observed that there were very few green fluoro-
phores (Fig. 5A) inside the cells due to auto-fluorescence
whereas in Fig. 5(B-C), fluorophores were clearly
observed due to the presence of Eu3+and Tb3+ions in crys-
tallized LnPO, - H,O nanorods. Overall, there is a signifi-
cant difference in fluorescence between untreated control
cells (Fig. 5A) and nanorods treated cells (Fig. 5B-C).
These results prove the internalization of LnPO,-H,O
nanorods inside 786-O cells. Similar results were
obtained when HUVEC were treated with LnPO,-H,0O
nanorods (data not shown). On the otherhand, a red
emission was expected from cells treated with
EuPO, - H,0O nanorods. Unfortunately, we could not dis-
tinguish the huge fluorescence intensity between
untreated control cells and nanorod-treated cells when we
collected the emission spectra in red region. Therefore, we
have collected the emission spectra for EuPO,-H,O-
loaded cells in the green emission region (515 nm long
pass filter). However, the confocal experiments for best
fluorescence images are currently under detailed investi-
gations in our laboratory.

Excitation and emission spectra of EuPO,-H,O and
TbPO,-H,0 nanorods were detected at the recom-
mended wavelength by a spectrofluorometer, indicating
that properties of the nanorods remained unchanged
upon internalization into cells (Fig. 3A-B). However, for
confocal microscopy, the same recommended excitation
wavelengths were not available on the instrument. Thus,
we took confocal images after excitation at 488 nm and
collected emission with a 515 nm long pass filter. We
found that after excitation at 488 nm and collected the
emission spectrum with a 515 nm long pass filter, there
was a significant and clear distinction between the fluores-
cence intensity of untreated cells (Fig. 5A) and nanorod-
treated cells (Fig. 5-C). However, after scanning through a
number of different excitation wavelengths as reported in
the literature [26], we could not clearly distinguish
between the fluorescence intensity of untreated cells and
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786-0 Cell

Figure 5
Fluoresence (First column) and their corresponding phase images (Second column) of 786-O cells treated with LnPO,-H,O

nanorods. (A): Control 786-O cells with no treatment, slight green color due to auto fluorescence in (A), (B): 786-O cells
treated with EUPO,-H,O nanorods, and (C): 786-O cells treated with TbPO,-H,O nanorods, taken by confocal microscope. In
few places green fluorescence color of nanorods inside the cells, were marked by white arrow sign.
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nanorod-treated cells. Because this is our first report using
inorganic lanthanide phosphates (EuPO,-H,O and
TbPO, - H,0) as a fluorescent biological label, there is no
evidence to show that an emission is detectable with a 515
nm long pass filter. However, it was reported in the litera-
ture that a 488 nm excitation wavelength [26] was used in
confocal microscopy to detect luminescent properties of
europium (III) nanoparticles.

The TEM image of 786-O cells treated with EuPO,-H,O
nanorods was shown in Fig. 6. This figure clearly indicated
that in most of the cells, uptake of these nanorods
occurred. Fig. 7A-C and Fig. 7D-F represent the TEM
images of HUVEC cells treated with EuPO,-H,O nano-
rods and with TbPO, - H,O nanorods, respectively, illus-
trating that both nanorods could enter the cytoplasmic
compartments. The morphology of these cells also clearly
demonstrated that they were healthy after internalizing
these materials (Fig. 6 and Fig. 7) though their spherical
shape was due to trypsinization, neutralization with TNS,
and fixation in Trumps solution for TEM. Similarly, the
morphology of the fluorescent nanorods remained
unchanged after internalization. Similar results were
obtained when the 786-O cells were treated with
LnPO, - H,O nanorods (data not shown). From the com-
bination of Fig. 1D and Fig. 7F, it appears that the small
rods seen in Figure 1D were not internalized by the
endothelial cells as illustrated with TEM (Fig. 7F). How-
ever, other than the larger TbPO,-H,O nanorods, some
aggregated rods were visible in the cytoplasm. It is possi-
ble that these smaller rods aggregate similar to cadmium-
based salts [32] but are notably less toxic when taken up
by endothelial cells.

Considering our results from fluorescence spectroscopy,
DIC, confocal, and TEM, we've shown that these fluores-
cent nanorods can be internalized in a cellular system and
are readily visualized by microscopy. These nanorods then
offer a useful alternative as fluorescent probes for target-
ing various molecules to specific cells. The exact mecha-
nism for internalization of these nanorods still remains
unclear but is under investigation in our laboratory.

Since these inorganic nanorods show distinct fluorescence
activity upon cellular internalization, we have decided to
use these materials as a fluorescent label for HUVEC and
786-0 cells. We examined their in vitro toxicity with [3H]-
thymidine incorporation assays [29] on normal endothe-
lial cells (HUVEC) and found them to be non-toxic (Fig.
8A-B). Although there were indications that exposure to
certain nanomaterials might lead to adverse biological
effects, this appears to dependent upon the chemical and
physical properties of the material [4,27,28]. The poten-
tial toxicity of inorganic fluorescent nanoparticles has
recently become a topic of considerable importance and
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discussion, especially since in vivo toxicity is likely to be a
key factor in determining whether fluorescent probes will
be approved by regulatory agencies for human clinical
use. HUVEC proliferation [29] was clearly not affected
from internalization of materials up to 50 mg/ml com-
pared to control samples (Fig. 8A-B); however, at concen-
trations greater than 50 mg/ml, nanorods were detected to
be toxic. Experiments were repeated in triplicate and
results were reproducible.

To observe viability, HUVEC were treated with 50 pg/ml
of europium and terbium phosphate nanorods for 24-48
hours. There was no difference in cell death between
untreated control cells (no treatment) and nanorod-
treated cells as assessed by trypan blue (data not shown).
These results illustrate a biocompatibility between the
nanorods and the cells.

To investigate whether uptake of these nanorods induce
apoptosis, we assayed endothelial cells treated with
LnPO4.H20 nanorods using two apoptotic methods: (i)
fluorescence microscopy using the In Situ Cell Death
Detection Kit, TMR red (Roche, Cat. No.#12 156 792 910)
and (ii) flow cytometry using Annexin V-FITC Apoptosis
Detection Kit (Biovision, Cat. No. K101-100). The TUNEL
assay detects apoptosis-induced DNA fragmentation
through a quantitative fluorescence assay and was per-
formed according to the manufacturer's instructions. In
tunnel assay, the positive control apoptosis has been
induced in cells using camptothecin (~2.5 mM) for 4 h of
incubation (Fig. 9(A-A2)). The red-colored (TMR red-
stained nuclei) apoptotic cells (Fig. 9A) were visualized
under a microscope, counted (6 fields per sample), and
photographed using a digital fluorescence camera. The
DAPI-stained nuclei appeared blue in Fig. 9.A1 and Fig.
9.A2 shows the merged images of TMR- and DAPI-stained
cells. The results of the TUNEL assay for the untreated con-
trol HUVEC and HUVEC cells treated with LnPO,-H,0O
nanorods are shown in Fig. 9B-D. In the first column (B-
D) of Figure 9, no nuclei of TMR red-stained HUVEC cells
were detected due to the absence of apoptotic cells. Blue
DAPI-stained nuclei are in the second column (B1-D1)
and the third column (B2-D2) shows the merged images.
There was no difference in the number of apoptotic cells
(~0%) detected in the untreated control experiment (First
row: B, B1 and B2) nor cells treated with EuPO,-H,0O
nanorods (second row: C, C1 and C2) and TbPO,-H,0
nanorods (third row: D, D1 and D2). The results of Fig. 6
and Fig. 9 clearly indicate that these nanorods were not
toxic to endothelial cells. Similarly, flow cytometry analy-
sis yielded no difference in the number of apoptotic cells
bewteen untreated controls and nanoparticle-treated
(data not shown).
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Figure 6
EuPO4-H,O fluorescent nanorods, were visualized by TEM inside the cytopplasmic compartments of 786-O cells. In few places,
EuPO4H,0O nanorods, inside the cells, are marked by white arrow signs.
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Figure 7
Fluorescent LnPO,-H,O nanorods were visualized by TEM inside the cytoplasmic compartments of HUVEC. (A-C)

EuPO,'H,0 nanorods and (D-F) TbPO,H,0 nanorodsare observed inside the HUVEC with increasing magnifications. B was
the enlarge picture of white block in A, C was the enlarge picture of white block in B. Similarly, E was the enlarge picture of
white block in D and F was the enlarge picture of white block in E.
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Effect of fluorescent nanorods (EuPO, and TbPO,) with different concentrations to normal HUVEC was observed by [3H]thy-
midine incorporation asssay. A serum-starved HUVEC was treated with (A) EuPO,H,O nanorods and (B) TbPO,:H,O nano-
rods at the concentration range of 1-100 pg/mL [Eul = | pg/ml, Eu50 = 50 pug/ml, Eul00 = 100 pg/ml. Similarly, Tbl = | pg/ml,
Tb50 = 50 pg/ml, Tb100 = 100 pug/ml]. Average of three independent experiments, each was done in triplicate.
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Figure 9

TUNEL assay apoptosis of HUVEC. First row: positive control experiment, second row: untreated control experiment, third
row: HUVEC treated with EuPO,-H,O at 50 pg/ml for 20 h of incubation at 37°C and fourth row: HUVEC treated with
TbPO4H,O at 50 pg/ml for 24 h of incubation at 37°C. TUNEL assay apoptosis of HUVEC using camptothecin (4 h incubation
at 37°C) as positive inducer (First row). A: TMR red -stained nuclei of HUVEc appear in red color due to presence of apop-
totic cells, Al: The DAPI-stained nuclei appear in blue and A2: merged picture of A and Al. First Column: The nuclei of
HUVEC were stained with TMR red (B-D), red staining was not observed due to absence of no apoptotic cells. Second col-
umn: The DAPI-stained nuclei appear in blue (BI-D1), and Third column: merged picture of first and second column (B2-D2).
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Parak et al. [32] has indicated that the cellular toxicity of
stable nanomaterials is primarily due to aggregation
rather than the release of Cd elements. However, in our
case, since these nanorods are based on an entirely differ-
ent material than cadmium, their mechanism is likely to
be different than Cd-based materials. Therefore, if the tox-
icity of Cd-based materials is due to an aggregation of ion,
that may not be the case for nanorods as supported by our
data.

While there is no direct evidence for the effect of nanopar-
ticle size on internalization and toxicity, some reports
indicate that nanoparticle size is involved [28,32,33]. In
our case, we are currently studying in detail the cytotoxic-
ity and mechanism for the cellular internalization of these
nanorods. Finally, we should mention in our experi-
ments, the correct control would be a non-fluorescent lan-
thanide phosphate compound instead of untreated cells.
We are currently working on the synthesis of such a rea-
gent. Along with this work, we are also determining: (a)
the mechanism of internalization; (b) the cytotoxicity of
these materials; (c) the photostability and quantum effi-
ciency of these materials; (d) the surface functionalization
of these materials; (e) drug delivery using these nanorods
after surface modifications; and (f) the comparison
between the fluorescent and non-fluorescent lanthanide
phosphate compounds in all experiments.

Nanorods are stable at room temperature indefinitely. We
have performed chemical characterizations (XRD, TGA,
DSC, TEM, fluorescence properties) on samples that are
4-5 months old and have detected no difference between
freshly prepared nanorods and older samples including
the absence of any agglomeration.

Conclusion

A novel alternative to conventional organic dyes, we have
reported the use of inorganic fluorescent EuPO, - H,O and
TbPO, - H,O as a fluorescent label in biomedical research.
We have shown internalization of EuPO,-H,O and
EuPO, - H,0 nanorods by both 786-O cells and HUVEC
using fluorescence spectroscopy (FS), DIC, confocal
microscopy, and TEM. The nanorods were observed to
localize mainly in the cytoplasmic compartments of cells
and did not appear to detrimentally affect cell viability
nor induce any toxicity after internalization. These unique
fluorescent nanorods offer new advancements in the
detection and diagnosis for cancer therapy at an early
stage and we are currently working on functionalizing
these nanorods as well as utilizing them as specific vehi-
cles for drug delivery.

http://www.jnanobiotechnology.com/content/4/1/11

Experimental procedures

Materials
Europium (III) nitrate hydrate [Eu(NO;);-xH,0,
99.99%], terbium (1I) nitrate  hexahydrate

[Tb(NO;);-6H,0, 99.999%], ammonium dihydrogen-
phosphate, [NH,H,PO, 99.999%], were purchased from
Aldrich, USA. [3H]-Thymidine was purchased from Amer-
sham Biosciences, Piscataway, NJ. 786-O cells were pur-
chased from American Type Culture Collection (ATCC,
TIB-186, Rockville, MD). Dulbeco's Modification of
Eagle's Medium (DMEM, 1X) was purchased from Cell-
gro, Mediatech, Inc, Herndon, VA, USA. Endothelial Cell
Basal Medium (EBM), human umbilical vein endothelial
cells (HUVEC) were obtained from Cambrex Bio Science
alkersvile, Inc, MD, USA.

Microwave-assisted synthesis of lanthanide ortho
phosphate hydrates (LnPO H,0)

The inorganic fluorescent nanoparticles (LnPO,-H,0)
were synthesized using microwave techniques as reported
in the literature [31]. In a typical synthesis, 20 ml 0.05(M)
of aqueous NH,H,PO, were added to 20 ml 0.05 (M) of
an aqueous solution of Ln(NO;), (Ln = Eu and Tb) in a
100 ml round-bottomed flask. The pH of the solution
before and after the reaction was in the range of 1.8 - 2.2.
The sample was irradiated for 20 min with 50% of the
instrument's power. The microwave refluxing apparatus
was a modified domestic microwave oven (GOLD STARR
1000W with a 2.45 GHz), described previously [34]. In
the post-reaction treatment, the resulting products were
collected, centrifuged at 36303 g (20,000 rpm with r,, =
8.125 cm), washed several times using ethanol and dis-
tilled water, and then dried overnight under vacuum at
room temperature. The yield of the as-prepared products
is more than 95%.

Cell culture experiments

HUVEC and 786-0O cells were cultured at 10° cells/2 ml in
six well plates for ~24 h at 37°C and 5% CO, in EBM and
DMEM complete media. For investigating the cellular
localization (using confocal microscope), cells were
plated on glass cover slips and grown to 90% confluence,
and then incubated with LnPO, - H,O nanorods at a con-
centration of 50-100 pg/ml. After 20 h of incubation, the
cover slips were rinsed extensively with phosphate buff-
ered saline (PBS) and cells were fixed with freshly pre-
pared 4% paraformaldehyde in PBS for 15 min at room
temperature and then re-hydrated with PBS. Once all the
cells were fixed, the cover slips were mounted onto glass
slides with Fluor Save mounting media and examined
with DIC and confocal microscopy. For detection of apop-
tosis using the TUNEL assay (Roche, USA, Cat. No. # 12
156 792 910), cells were mounted onto glass slides with
mounting media containing DAPI (4'-6-Diamidino-2-
phenylindole).
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In another set of experiments, 786-O and HUVEC cells
(105 cells/2 ml) were cultured in six well plates and treated
with LnPO, - H,O nanorods in corresponding DMEM and
EBM complete media without cover slips. After 20 h of
incubation with the nanorods, the cells were washed with
PBS, trypsinized, and neutralized. The cells were washed
by centrifugation and re-suspended in PBS and analyzed
with fluorescence spectroscopy, TEM, and flow cytometry
(for detection of apoptosis of cells using annexin-FTIC-PI,
Bio Vision, USA, catalog # K101-100). Cell viability for
another set of cells was determined through staining with
trypan blue and cells were counted using a hemocytome-
ter.

Cell proliferation assay

Cell proliferation to measure in vitro toxicity was per-
formed with the [3H]|-thymidine incorporation assay
according to the reported literature [29]. Briefly, endothe-
lial cells (HUVEC; 2 x 104) were seeded in 24-well plates,
cultured for 2 days in EBM, serum-starved (0.1% serum)
for 24 hours, and then treated with different concentra-
tions (1-100 pg/mL) of LnPO, - H,O (Ln = Eu, Tb). After
20 hours, 1 pCi [3H] thymidine was added to each well.
Four hours later, cells were washed with cold PBS, fixed
with 100% cold methanol, and collected for the measure-
ment of trichloroacetic acid-precipitable radioactivity
[29]. Experiments were repeated in triplicate and all
results were reproducible.

Apoptosis assay

Cells were seeded into 6-well plates at a density of 2 x 105
/2 ml of medium per well and grown overnight. After
appropriate treatment with these nanorods (50 pg/mL),
cells were extensively washed with PBS and tested with the
Annexin V-FITC Apoptosis Detection Kit (Biovision, Cat.
No. #K101-100) per the manufacturer's instructions. In
addition, apoptosis was also determined by the TUNEL
assay using the In Situ Cell Death Detection Kit, TMR red
(Roche, Cat. No. #12 156 792 910). The red apoptotic
cells were visualized on a microscope, counted (6 fields
per sample), and photographed using a digital fluores-
ence camera.

Characterization techniques

Transmission electron microscopy study

Particle morphology (microstructures of the samples) was
studied with TEM on a FEI Technai 12 operating at 80 KV.
To visualize the internalization of particles inside the
cells, we have folllowed the published literature proce-
dures [35,36].

Fluorescence microscopy
The excitation and emission (fluorescence) spectra were
recorded on a Fluorolog-3 Spectrofluorometer (HORIBA

http://www.jnanobiotechnology.com/content/4/1/11

JOBINYVON, Longjumeau, France) equipped with a
xenon lamp as the monochromator excitation source.

Differential interference contrast microscopy (DIC)

After fixation of cells on cover slips, the cells were
mounted onto glass slides with Fluor Save mounting
media and examined for DIC. Pictures were captured with
AXIOCAM high-resolution digital camera using an AXIO-
VERT 135 TV microscope (ZEISS, Germany).

Confocal fluorescence microscopy

Two dimensional confocal fluorescence microscopy
images were collected through use of LSM 510 confocal
laser scan microscope (Carl Zeiss, Inc., Oberkochcn, Ger-
many) with C-Apochromat 63 X/NA 1.2 water-immersion
lense, in conjunction with an Argon ion laser (488 nm
excitation). The fluorescence emissions were collected
through a 515 nm long pass filter.

After mounting the cells onto glass slides with DAPI,
images were collected through a LSM 510 confocal laser
scan microscope (Carl Zeiss, Inc., Oberkochcn, Germany)
with a C-Apochromat 63 X/1.2 na water-immersion lens.
The fluorescence emissions were collected through a 385-
470 nm band pass filter in conjunction with an argon ion
laser excitation of 364 nm for DAPI. The fluorescence
emissions were collected through a 560-615 nm band
pass filter in conjunction with a HeNel ion laser excita-
tion of 543 nm for TMR red.
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