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Abstract 

Background:  Respiratory syncytial virus (RSV) causes severe respiratory infection in infants, children and elderly. 
Currently, there is no effective vaccine or RSV specific drug for the treatment. However, an antiviral drug ribavirin 
and palivizumab is prescribed along with symptomatic treatment. RSV detection is important to ensure appropriate 
treatment of children. Most commonly used detection methods for RSV are DFA, ELISA and Real-time PCR which are 
expensive and time consuming. Newer approach of plasmonic detection techniques like localized surface plasmon 
resonance (LSPR) spectroscopy using metallic nanomaterials has gained interest recently. The LSPR spectroscopy is 
simple and easy than the current biophysical detection techniques like surface-enhanced Raman scattering (SERS) 
and mass-spectroscopy.

Results:  In this study, we utilized LSPR shifting as an RSV detection method by using an anti-RSV polyclonal antibody 
conjugated to metallic nanoparticles (Cu, Ag and Au). Nanoparticles were synthesized using alginate as a reducing 
and stabilizing agent. RSV dose and time dependent LSPR shifting was measured for all three metallic nanoparticles 
(non-functionalized and functionalized). Specificity of the functionalized nanoparticles for RSV was evaluated in the 
presence Pseudomonas aeruginosa and adenovirus. We found that functionalized copper nanoparticles were efficient 
in RSV detection. Functionalized copper and silver nanoparticles were specific for RSV, when tested in the presence of 
adenovirus and P. aeruginosa, respectively. Limit of detection and limit of quantification values reveal that functional-
ized copper nanoparticles are superior in comparison with silver and gold nanoparticles.

Conclusions:  The study demonstrates successful application of LSPR for RSV detection, and it provides an easy and 
inexpensive alternative method for the potential development of LSPR-based detection devices.

Keywords:  RSV, Detection, Metallic nanoparticles, LSPR, SERS, Mass spectroscopy, Limit of detection, Limit of 
quantification, Plasmonics, Sensing
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Background
Nanobiotechnology provides interdisciplinary applica-
tions such as detection, sensing, targeting, drug delivery 
and disease treatments [1–11]. Sensing and detection has 
been the subject of research in recent years using local-
ized surface plasmon resonance (LSPR), which provides a 
new and easy method for their applications.

The LSPR are coherent oscillations of conducting elec-
trons on the excited surface of a metal due to the inter-
action with electromagnetic radiation. These oscillations 

provide an extinction band in the range of infrared, vis-
ible and ultraviolet spectra. The spectral position (wave-
length) of these phenomena is highly sensitive and 
particular to the type of metal, size, shape and the sur-
rounding dielectric field [12] and their study is known as 
“plasmonics” [13–15]. The position in the spectra for the 
LSPR can be altered depending on the dielectric constant 
surrounding the metallic nanoparticles. This alteration 
can be observed as a blue-red shift for the LSPR peak, 
and it can be a useful mean for sensing applications [16].

Sensing applications involve the use of plasmon which 
could be enhanced and refined by improving the inter-
actions of the electric field and metallic nanoparticles 
which are proportional. These improvement could help 
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in areas of sensing because of the extraordinary sensitiv-
ity to lower concentration of chemicals [17]. Currently, 
the analytes studied using LSPR are metal ions [18], tox-
ins [19], glucose [20], nucleic acids [21], molecules [22] 
and antigen/antibodies [23, 24]. Plasmonic nanoparticles 
have been used for the detection of bacteria and viruses 
such as Salmonella serovars [25] and HIV-1 [26], respec-
tively. Detection of biological entities of respiratory dis-
eases such as influenza viruses [3, 27] have been carried 
out using nanoparticle-based detection. For RSV detec-
tion, some studies reported use of surface-enhanced 
Raman scattering (SERS) of silver [28] nanoparticles and 
quantum dots (QDs-CdTe) based UV-visible spectros-
copy [29, 30].

Respiratory syncytial virus (RSV) is a paramyxovi-
rus that leads to mild, cold-like symptoms in adults and 
children. However, it can be more serious in infants 
and elderly people. Globally, RSV infection is estimated 
at 64 million cases and 160,000 deaths annually [31]. In 
the USA, the estimated infantile RSV mortality rate was 
shown to be more than that of influenza [32]. Therefore, 
early RSV detection and treatment are extremely impor-
tant. It is commonly seen that RSV infection is associated 
with other respiratory bacterial and viral pathogens. In 
addition, the respiratory disease diagnosis may be diffi-
cult to differentiate between RSV and other microorgan-
isms. The symptoms are confusing and treatment cannot 
be certain as the etiological agent is not known, leading 
to complications. For example, the respiratory infection 
symptoms for RSV and Adenovirus cannot be distin-
guishable during the acute phases of the illnesses [33]. 
RSV is responsible for promoting Pseudomonas aerugi-
nosa infection [34]. In fact, mixed infection is commonly 
observed during respiratory illness.

The most used and commercialized method for detec-
tion of RSV is the direct fluorescence antibody (DFA) that 
is based on the microscopic detection with an antibody 
conjugated to a fluorophore. ELISA is another widely 
used hospital diagnostic assays for RSV detection. Real-
time PCR is used to amplify and simultaneously detect or 
quantify a targeted DNA molecule. It is highly sensitive 
with very low limits of detection but it is an expensive 
method [35].

The biophysical methods, like PCR coupled with elec-
trospray ionization mass spectrometry (PCR-ESI-MS) 
and SERS are used for RSV detection but it is largely lim-
ited for research purpose. PCR-ESI-MS is a highly sensi-
tive and specific method even at strain level, not only for 
RSV but also for multiple pathogens detections [36, 37]; 
however, it is an expensive procedure. On the other hand, 
SERS is a rapid and nondestructive detection method 
with high sensitivity [38, 39], but the disadvantages are 

costs and sample preparations. However, the advantages 
of SERS can be availed by using LSPR spectroscopy, 
which serves an alternative biophysical technique to 
detect RSV. In this study it is showed the LSPR applica-
tion of antibody-functionalized copper, silver and gold 
nanoparticles for the RSV detection and screened their 
cross-reactivity under the influence of other respiratory 
pathogens.

Results
Nanoparticles synthesis and UV‑visible characterization
Metallic nanoparticles were synthesized by reducing 
and stabilizing them with alginate assisted by microware 
radiation. The dry weight for 200 µL of copper, silver and 
gold nanoparticles were 16.9  ±  0.39, 15.7  ±  0.17 and 
8.3 ±  0.3 mg, respectively. The characteristic plasmonic 
absorption of copper, silver and gold nanoparticles was 
620, 400 and 530 nm, respectively (Fig. 1).

Functionalization of nanoparticles for optimum LSPR
All three nanoparticles were functionalized with three 
different volumes (2.5, 5 and 10  µL) of polyclonal anti-
body (4  mg/mL) for screening optimal LSPR that could 
be used for RSV detection. Generally, functionalization 
of nanoparticles reduces LSPR signal, however function-
alization of nanoparticles with antibody increase the RSV 
detection. Therefore, fNP were appropriately selected to 
balance, both these desired qualities. The functionaliza-
tion process was optimized at 5 µL (20 µg) of antibody for 
copper and gold nanoparticles and 10 µL (40 µg) for sil-
ver nanoparticles (Fig. 1). Henceforth, the nanoparticles 
were functionalized with these antibody concentrations 
for RSV detection.

Particle size distribution and zeta potential
The particle size distribution for the non-functionalized 
(NP) and fNP is shown in Fig. 2. Particle size distribution 
(Fig. 2a) for copper nanoparticles was 254 ± 11.11 nm. For 
silver and gold nanoparticles (Fig. 2d, e) there was a simi-
lar distribution with one peak in 10–20 nm and another 
one in 151 ± 0.57 and 185 ± 4.37 nm, respectively. Func-
tionalized nanoparticles (Fig. 2b, e, g) were larger in size  
than NP nanoparticles. For copper and silver nanopar-
ticles, sizes increased up to130  nm approximately, and 
for gold nanoparticles, two peaks of 118  ±  2.82 and 
585 ± 52 nm were observed.

The zeta potential for copper nanoparticles was 
−17.2  mV, and upon functionalization the potential 
changed to 10 mV. Silver and gold nanoparticles showed 
a potential of −37 and −40  mV respectively, and after 
functionalization they had potentials of −18 mV for sil-
ver and −20 mV for gold (Fig. 3).
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Determination of antibody functionalized on the 
nanoparticles
The supernatant and washes from the antibody fNP were 
subjected to protein estimation using the BCA (Thermo-
Scientific, NY, USA). The antibody attached to the surface 
of nanoparticles was 18.56 ± 0.38 µg of 20 µg (93.3 %) for 
copper, 33. 60 ±  0.49  µg of 40  µg (84  %) for silver and 
11.04 ± 1.6 µg of 20 µg (55.2 %) for gold.

Field emission‑scanning electron microscopy
FE-SEM micrographs for NP indicate the size of all NPs to 
be less than 100 nm with few visible agglomerations (Fig. 4).

RSV detection
The magnitude of interaction between the RSV and func-
tionalized nanoparticle is reflected as a corresponding 
measurable LSPR shift. The LSPR shifting for NPs and 
fNPs in presence of RSV is compared with the LSPR of 
NPs (see Additional file  1). There was shifting of LSPR 
with all RSV titer for the functionalized copper nanopar-
ticles at 30, 60 and 120 min (Fig. 5). Increasing the time of 
contact between nanoparticles and RSV (all dose) did not 
have significant difference, except at 30  min time point 
for 2000 PFU RSV. The non-functionalized copper nano-
particles did not show significant change in the shifting.

Fig. 1  UV-visible analyses for the synthesized nanoparticles using alginate (black line) and their respective antibody functionalization using 2.5 (red), 
5 (blue) and 10 µL (green) with polyclonal antibody at 3 h for copper (a), silver (b) and gold (c) nanoparticles
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The functionalized silver nanoparticles did not show 
any significant LSPR shifting at 30 and 60 min time point, 
however at 120 min, there was significant shifting at all 
RSV titers. The NP did not any shifting, except an outlier 
for 2000 PFU RSV at 30 min (Fig. 6).

The functionalized gold nanoparticles did not show any 
significant LSPR shifting for 500 PFU RSV at any time 
point and a marginal shift for 1000 PFU RSV at all time 
points. There was a significant shift observed at 2000 
PFU RSV and did not change with the increasing contact 
time (Fig.  7). At all-time points, the non-functionalized 
gold nanoparticles exhibited blue shifting for 500 PFU 
RSV; and also at 60 and 120  min, there was such blue 
shift for 1000 PFU RSV.

Based on these time and dose dependent study for 
RSV detection using fNPs, Pearson’s correlation was 

Fig. 2  Particle size distribution for non-functionalized copper (a), silver (c) and gold (e) nanoparticles, and antibody functionalized (using optimized 
quantity) copper (b), silver (d) and gold (f) nanoparticles. Three separate measurements were recorded for each nanoparticle, represented with red, 
blue and black curves

Fig. 3  Zeta potential for non-functionalized (blue) and antibody 
functionalized copper, silver and gold nanoparticles (red) dispensed 
in water at pH of 6.58 measured at room temperature
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calculated (Table  1) and limit of detection (LOD) and 
limit of quantification (LOQ) values were determined 
(Table  2). The best possible Pearson’s co-efficient for 
functionalized copper and silver nanoparticles was 0.97 
at 120 min and 0.87 at 60 min, respectively. However, for 
gold it was in the range of 0.94–0.97 at all-time points.

Specificity and cross‑reactivity
Based best Pearson’s linearity for the fNPs, the specific-
ity and cross-reactivity were investigated in presence of 
P. aeruginosa and adenovirus. The functionalized copper 
nanoparticles (120  min), silver nanoparticles (60  min) 
and gold nanoparticles (30  min) were interacted with 
RSV and P. aeruginosa or adenovirus.

The non-functionalized and functionalized copper 
nanoparticle did not show any shift in presence of P. aer-
uginosa or RSV and P. aeruginosa together (Fig. 8a). How-
ever, there was no cross-reactivity for adenovirus and the 
fNPs specifically detected RSV in the presence of adeno-
virus (Fig.  9a). In case of silver nanoparticles, the fNP 
showed specificity for RSV in presence of P. aeruginosa 
(Fig. 8b) and adenovirus (Fig. 9b) by exhibiting significant 
LSPR shifting with no cross-reactivity. The non-func-
tionalized and functionalized gold nanoparticles showed 

marginal shifting in for P. aeruginosa and adenovirus, 
suggesting cross-reactivity and lack of specificity towards 
RSV (Figs. 8c, 9c).

All the UV-visible analyses of the fNP and NP and 
their interaction with the RSV detection and specificity 
are summarized in the Fig.  10. The UV-visible spectra 
for these experiments are provided as Additional file  2 
and Additional file  3 for P. aeruginosa and adenovirus, 
respectively.

Discussion
The biophysical methods for RSV detection are mainly 
PCR-ESI-MS and SERS, there is need for an alternative 
method to expand the ambit of RSV detection regime. 
The applications of metallic nanoparticles are extensive 
in the field of sensing and nanomaterial based sensors 
are widely used for development of cost-effective detec-
tion devices. SERS and LSPR are the popular sensing 
methods, which exploit the physicochemical peculiarity 
of particular metallic nanomaterials. The SERS utilizes 
metallic nanomaterial for detection of various analytes 
specifically even at extremely low levels, however, it is 
not cost-effective. The advantage of SERS can be offered 
by a simpler technique of LSPR spectroscopy [40]. LSPR 

Fig. 4  Field-emission scanning electron micrographs of non-functionalized copper (a), silver (b) and gold (c) nanoparticles
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based detection methods have been used for detec-
tion of hepatitis B virus [41], human immunodeficiency 
virus [26] and influenza virus [3, 42]. However, this study 
reports the LSPR based RSV detection using anti-RSV 
antibody functionalized metallic nanoparticles.

Generally, functionalization of the nanoparticle 
increases their size and consequently the width of the 
LSPR. Therefore, it is important to determine an opti-
mal functionalization that provides scope for measurable 
LSPR (Fig.  1). The nature of nanoparticles and amount 
of functionalized biomolecules determine the LSPR, 
however the confounder may be non-specific interac-
tions between nanoparticles may lead to agglomeration 
and affect the LSPR pattern (Fig.  1a) [43]. Our alginate 
reduced and stabilized copper, silver and gold nanopar-
ticles size corroborate with the previous reports [44–46], 
as the specific plasmonic absorption relates to the nano-
metric size (Fig. 1). However, the particle size distribution 

indicates agglomeration of NP and fNP (Fig.  2) and as 
expected, the functionalization of nanoparticles reduced 
the zeta potential of the nanoparticles (Fig. 3). This may 
be the result of non-specific interactions (H-bonds, car-
boxyl groups, cross-linking) of alginate or antibody func-
tionalization [47, 48]. We performed FE-SEM analyses to 
confirm the size of nanoparticles and it was found to be 
smaller than 100 nm, however some agglomeration was 
evident (Fig. 4).

Time and titer dependent RSV detection with copper, 
silver and gold nanoparticles showed varied results. The 
interaction of RSV and antibody functionalized copper 
showed highest shifting as compared to silver and gold. 
The shifting was in the range of 45–60  nm at all time 
points (Fig.  5). At 120  min, the functionalized copper 
nanoparticles showed highest linear correlation with the 
RSV titer (Table 1) with a LOD and LOQ of 2.4 and 14, 
respectively (Table 2). The functionalized silver nanopar-
ticles did not interact prolifically with RSV as with the 
copper (Fig. 6). However, there was a shifting specific for 
RSV and at 60 min, the LOD and LOQ values were cal-
culated as 7 and 385 respectively (Tables 1, 2). The gold 
nanoparticles functionalized with antibody resulted in 
shifting of LSPR in response to RSV binding. The shift-
ing was more than silver nanoparticles; however, this sys-
tem was better at higher RSV titer and more contact time 
(Fig. 7). Although, it has a convincing linearity, the LOD 
and LOQ values are 211 and 640, respectively (Tables 1, 
2). The differences in these values of RSV shifting by cop-
per, silver and gold nanoparticles (fNPs) can be due to the 
peculiar LSPR profile and the amount antibody function-
alized on the nanoparticles.

For development of effective detection method, it is 
important to evaluate the cross-reactivity and specific-
ity of the system. Therefore, we assessed fNP against 
respiratory pathogen P. aeruginosa and adenovirus for 
cross-reactivity and RSV specificity. We found that the 
fNP did not cross-react with the P. aeruginosa (Fig. 8) and 
adenovirus significantly (Fig. 9). However, the non-func-
tionalized gold nanoparticles interacted marginally with 
P. aeruginosa and adenovirus as a result of non-specific 
interactions between the alginate coated nanoparticles 
and P. aeruginosa mucoid cell wall and adenovirus.

The specificity of our nanoparticles system to detect 
RSV in presence of P. aeruginosa and adenovirus is one 
of the highlights of the study. Functionalized copper 
and silver nanoparticles were able to specifically detect 
RSV even in the presence of P. aeruginosa and adeno-
virus, however the gold nanoparticles showed non-
specific shifting (Figs.  8, 9). It should be noted that the 
size of but P. aeruginosa is (1.5–3.0  µm ×  0.5–0.8  µm), 
almost 10 times bigger than RSV (150–300  nm). The 
titer of P. aeruginosa (1 − 5 × 102 CFU) and Adenovirus 

Fig. 5  Graph illustrates the LSPR shifting at different titres of RSV at 
30 min (a), 60 min (b) and 120 min (c) for antibody-functionalized 
(red) and non-functionalized (blue) copper nanoparticles. The asterisk 
symbol represents the significance p < 0.05
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(2.7 ×  104  –  11 ×  104 PFU) for the specificity experi-
ments is considerably large. These factors adversely 
impact the LSPR shifting. However, we could still detect 
RSV and it shows the potential of LSPR detection system.

Overall, our study shows that metallic nanoparti-
cles could be fabricated specifically for RSV detection; 
however, it is important to consider factors like suitable 
material, size, shape, contact time and LSPR behavior of 
nanoparticles for customized applications.

Conclusions
There is need for development of easy and rapid detec-
tion devices for respiratory pathogens like RSV, con-
sidering the fact that cost-effective and early detection 
of etiological agent results in effective treatment. 
Our results demonstrated the efficacy of antibody 

Fig. 6  Graph illustrates the LSPR shifting at different titres of RSV at 
30 min (a), 60 min (b) and 120 min (c) for antibody-functionalized 
(red) and non-functionalized (blue) silver nanoparticles. The asterisk 
symbol represents the significance p < 0.05

Fig. 7  Graph illustrates the LSPR shifting at different titers of RSV at 
30 min (a), 60 min (b) and 120 min (c) for antibody-functionalized 
(red) and non-functionalized (blue) gold nanoparticles. The asterisk 
symbol represents the significance p < 0.05

Table 1  Pearson correlation coefficient for  RSV titer 
(PFU) and  time for  antibody functionalized copper, silver 
and gold nanoparticles

FNP Time (min) Pearson’s R

Cu 30 −0.76

60 −0.79

120 0.97

Ag 30 0.50

60 0.87

120 0.50

Au 30 0.97

60 0.94

120 0.97
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functionalized metallic (copper, silver and gold) nanopar-
ticles for detected RSV using a simple and easy procedure 
of UV-visible spectroscopy. Detection of RSV in the pres-
ence of non-specific entities shows the potential of the 
LSPR based detection systems. Thus, LSPR is an easy and 
rapid alternative method for development of new detec-
tion devices for RSV.

Methods
Synthesis of metallic nanoparticles
The synthesis of metallic nanoparticles (NP) was car-
ried out following a modified methodology from Kalwar 

Table 2  Limit of  detection and  limit of  quantification val-
ues for RSV detection using antibody functionalized nano-
particles

fNP Time (min) LOD (PFU) LOQ (PFU)

Cu 120 2.4 14

Ag 60 7 385

Au 120 211 640

Fig. 8  Graph illustrates the evaluated cross-reactivity and specificity 
of antibody functionalized nanoparticles in presence of P. aeruginosa 
(100, 250 and 500 CFU) against the chosen best Pearson’s linearity, 
using 1000 PFU of RSV for copper at 120 min (a), silver at 60 min (b) 
and gold nanoparticles at 30 min (c). The experimental setup was viz., 
non-functionalized nanoparticles and P. aeruginosa (blue), (ii) antibody 
functionalized nanoparticles and P. aeruginosa (green), (iii) antibody 
functionalized nanoparticles, RSV and P. aeruginosa (red). NP and fNP 
represent the non-functionalized and functionalized nanoparticles 
respectively and Bc the bacteria. The asterisk symbol represents the 
significance p < 0.05

Fig. 9  Graph illustrates the evaluated cross-reactivity and specificity 
of antibody functionalized nanoparticles in presence of Adenovirus 
(2.7 × 104, 5.5 × 104, 11 × 104 PFU) against the chosen best Pearson’s 
linearity using 1000 PFU of RSV for a copper at 120 min, b silver at 
60 min and c gold nanoparticles at 30 min with adenovirus. The 
experimental setup was viz., (i) non-functionalized nanoparticles and 
adenovirus, (ii) antibody functionalized nanoparticles and adenovi-
rus, (iii) antibody functionalized nanoparticles, RSV and adenovirus. 
NP and fNP represent the non-functionalized and functionalized 
experiments respectively and AD for Adenovirus. The asterisk symbol 
represents the significance p < 0.05
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et  al. [49]. Briefly, in a beaker, 9  mL of ethylene glycol, 
0.6 mL of sodium alginate (10 mM) and 0.3 mL of NaCO3 
were added (0.1  M), mixed and the pH was adjusted at 
11, 10 and 12.5 for copper, silver and gold nanoparticles 

synthesis, respectively. To this, 1  mL of 10  mM of 
CuSO4·5H2O, 1.8 mg of AgNO3 and 1 mL of HAuCl4 was 
added to respective beakers for copper, silver and gold 
nanoparticles synthesis. Then, the beakers were placed 

Fig. 10  Schematic overview of current study showing the LSPR behaviour of metallic nanoparticles upon surface modification with antibody. The 
interactions of functionalized nanoparticles with RSV and under the influence of microbial organism (MO: Pseudomonas aeruginosa and adenovirus) 
related to the shifting of UV-Vis spectra
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in the microwave (MW) for 3, 1 and 1  min for copper, 
silver and gold, which results the solutions to change the 
color to reddish, grey and purple for each system, respec-
tively. At that point, the solutions were centrifuged at 
10,000 rpm for 30 min for copper and silver and for gold 
NPs were centrifuged at 8000 rpm for 30 min. The nano-
particles were then washed with distilled water 3 times 
using the same corresponding centrifuge conditions as 
mentioned above. Pelleted nanoparticles were suspended 
in distilled water (for copper and gold 0.5 mL water and 
2 mL for silver).

Functionalization of nanoparticles with antibody
The functionalization was done using 1-Ethyl-3-(3-
dimethylaminopropyl) carbodiimide (EDC) chemis-
try. Filter sterilized 200 µL of EDC (1 mg/ml), 200 µL of 
nanoparticles (16.9 ± 0.39, 15.7 ± 0.17 and 8.3 ± 0.3 mg) 
were placed in microcentrifuge tubes, and then 2.5, 5 
and 10 µL of polyclonal antibody (4 mg/mL) was added. 
The different amount of antibody was used to optimize 
the LSPR for each nanoparticle system. The solution was 
vortexed for 10 s and then placed on a titer plate shaker 
at room temperature for 3 h. Microcentrifuge tubes were 
centrifuged at 8000 rpm for 30 min and the supernatant 
was removed and stored (to be used for protein estima-
tion). This process was repeated two more times and the 
pellet (nanoparticles) was re-suspended in 200 µL of dis-
tilled water.

Non-functionalized (NP) and functionalized nano-
particles (fNP) were sonication for 10  s and analyzed 
by UV-visible spectroscopy (Beckman Coulter DU 800 
Spectrophotometer), by taking 10  µL of nanoparticles 
and making the volume to 50 µL using distilled water.

Particle size distribution and zeta potential
The particle size distribution and zeta potential of non-
functionalized and fNP were measured using a Zetasizer 
(Nano-ZS; Malvern Instruments Ltd, Malvern, UK). The 
nanoparticle solutions were diluted in distilled water, 
placing 50 µL of the sample in 2 mL of distilled water (pH 
of 6.58 ± 0.23). The measurements for each sample were 
repeated three times.

Determination of antibody functionalized on the 
nanoparticles
The BCA protocol was used to quantify the antibody 
attached to the nanoparticles following manufactur-
er’s instructions (Thermo Fisher Scientific, NY, USA). 
Briefly, 150 µL of each standard (bovine serum albumin) 
and samples (washes from the fNPs) were placed into a 
microplate. Then, 150  µL of the working reagent was 
added to each well and mixed thoroughly for 30  s. The 
microplate was covered and incubated at 37  °C for 2  h. 

Then, the absorbance was measured at 562 nm on a plate 
reader.

FE‑SEM analysis
For FE-SEM analysis, an aluminum substrate previously 
polished and washed with distilled water and acetone for 
three times was used. A drop of the nanoparticle’s solu-
tion was placed on the substrate and it was allowed to 
evaporate at room temperature and imaged using JEOL 
JSM-7401f microscope (JEOL USA, Inc. MA, USA).

RSV, Adenovirus and Pseudomonas aeruginosa
Human respiratory syncytial virus (ATCC® VR-26™), 
human adenovirus 5 ATCC® VR-5™ and P. aeruginosa 
(Schroeter) Migula (ATCC® 39324™) a mucoid strain 
were procured from American Type Culture Collection 
(ATCC) and maintained as instructed by ATCC. RSV and 
adenovirus were obtained in eagle’s minimum essential 
medium supplemented with 2  % FBS. While, P. aerugi-
nosa was grown overnight in LB broth, pelleted, washed 
and suspended in sterile distilled water.

LSPR based RSV detection
The detection of RSV was performed using 10  µL of 
LSPR optimized fNPs (5  µL of Ab for copper and gold 
and 10  µL for silver) to which 2.5  µL (500 PFU), 5  µL 
(1000 PFU) and 10 µL (2000 PFU) of RSV was added and 
incubated at room temperature on a shaker for 30, 60 
and 120 min. Distilled water was then adding to tubes to 
make up the volume of 60 µL and analyzed using a UV-
vis spectrophotometer. Similarly, 10 µL of NPs were also 
interacted with RSV as control.

Evaluating the specificity and cross‑reactivity of fNPs
In order to assess the specificity of RSV detection for 
copper, silver and gold fNPs, the LSPR shifting was meas-
ured under the influence of P. aeruginosa and Adenovi-
rus. The cross-reactivity of fNP was tested by observing 
the shifting upon P. aeruginosa and Adenovirus addition. 
Therefore, the experimental setup was (i) NPs + P. aer-
uginosa, (ii) fNPs + P. aeruginosa, (iii) fNPs + RSV + P. 
aeruginosa. Similar experimental setup was designed 
for Adenovirus. The dose of P. aeruginosa used for this 
experiments was 1  µL (100  CFU), 2.5  µL (250  CFU) 
or 5  µL (500  CFU); and 2.5  µL (2.7 ×  104 PFU), 5  µL 
(5.5 × 104 PFU) or 10 µL (1.1 × 105 PFU) of the Adeno-
virus. Based on the best linearity (Pearson’s R) of the cor-
responding nanoparticles (fNPs) the time and titer (RSV) 
were selected.

The LSPR was measure using UV-visible spectroscopy 
as described earlier in the RSV detection section. Briefly, 
in a microcentrifuge tube, 10 µL of the NPs/fNPs and P. 
aeruginosa were allowed to interact and also in the other 
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tube, fNPs were allowed to incubate with RSV and P. aer-
uginosa together. Finally, the volume was increased to 
60 µL and absorbance was measured. In the same man-
ner, specificity and cross-reactivity of fNPs in presence of 
adenovirus was evaluated.

Statistical analysis
All the experiments were performed in triplicates and the 
results were analyzed using OriginLab™ 9 software and 
presented as mean ± standard deviation. Results were sub-
jected to two-way ANOVA, and a Tukey test was applied 
for RSV detection and specificity experiments. The differ-
ences were significant at p < 0.05 (*).

The limit of detection and quantification were calcu-
lated for the experiments at different times which had the 
best linearity (120 min for copper, 60 min for silver and 
30 min for gold) using the following equation [50]:

(1)	LOD = 3.3 (σ(x, y)/slope)
(2)	LOQ = 10 (σ (x, y)/slope)
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