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Abstract 

Background: So far, how the animals evade the environmental nanomaterials is still largely unclear. In this study, 
we employed in vivo assay system of Caenorhabditis elegans to investigate the aversive behavior of nematodes to 
graphene oxide (GO) and the underlying neuronal basis.

Results: In this assay model, we detected the significant aversive behavior of nematodes to GO at concentrations 
more than 50 mg/L. Loss-of-function mutation of nlg-1 encoding a neuroligin with the function in connecting pre- 
and post-synaptic neurons suppressed the aversive behavior of nematodes to GO. Moreover, based on the neuron-
specific activity assay, we found that the NLG-1 activity in AIY or AIB interneurons was required for the regulation of 
aversive behavior to GO. The neuron-specific activities of NLG-1 in AIY or AIB interneurons were also required for the 
regulation of GO toxicity.

Conclusions: Using nlg-1 mutant as a genetic tool, we identified the AIY and AIB interneurons required for the regu-
lation of aversive behavior to GO. Our results provide an important neuronal basis for the aversive response of animals 
to environmental nanomaterials.
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Background
With the rapid increase in nanotechnology, a larger 
amount of engineered nanomaterials (ENMs) have 
been generated for industrial and medical applications. 
Among these ENMs, graphene nanomaterials have 
attracted massive attention due to their unique mechani-
cal, electronic, and thermal properties [1, 2]. Graphene 
oxide (GO) is a member of graphene nanomaterials, and 
can be potentially used in biomedicine, biosensor, and 
environmental remediation [3–6]. Meanwhile, some evi-
dence from in vivo studies in mammals has demonstrated 
the potential of GO in inducing pulmonary or reproduc-
tive toxicity [7–9]. More recently, it has been further 
demonstrated that GO could cause the neurotoxicity on 

zebrafish [10]. In contrast, how the animals evade the GO 
particles is still largely unclear.

The classic model animal of Caenorhabditis elegans 
has already been widely used in the toxicological study 
[11, 12]. Using C. elegans as an in  vivo assay system, it 
has been shown that GO could result in toxicity on the 
functions of both primary targeted organs, such as intes-
tine, and secondary targeted organs, such as reproduc-
tive organs [13–17]. C. elegans is also a wonderful animal 
model for the study of neurotoxicity of certain toxicants 
[11, 18, 19]. In C. elegans, GO exposure has also been 
found to be neurotoxic for animals [20, 21]. Additionally, 
neuronal ERK- or neuroligin/NLG-1-mediated molecular 
signaling regulated the formation of GO toxicity in nem-
atodes [22, 23].

In organisms, the postsynaptic cell adhesion proteins, 
such as the neuroligins, act as central organizing mol-
ecules to connect pre- and post-synaptic neurons by 
binding to presynaptic proteins, like the neurexins [24, 
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25]. In C. elegans, the single neuroligin gene is nlg-1. In 
this study, we first investigated the aversive behavior of 
nematodes to GO. Interneurons (also called connector 
neurons) establish the link between sensory neurons and 
motor neurons to enable the neuronal communication 
[26, 27]. Moreover, using nlg-1 mutant as a genetic tool, 
we identified the interneurons required for the response 
of nematodes to GO exposure. Our data suggest the cru-
cial role of AIY and AIB interneurons in the regulation 
of aversive response of nematodes to GO. Our results 
provide an important basis for the further elucidation 
of neuronal circuit for the response of nematodes to GO 
exposure.

Methods
Preparation and characterization of GO
GO was prepared from natural graphite powder based 
on the modified Hummer’s method [28]. GO was finally 
obtained by ultrasonication of the as-made graphite 
oxide. Based on analysis of atomic force microscopy 
(AFM, SPM-9600, Shimadzu, Japan), the thickness of GO 
was approximately 1.0 nm in the topographic height, cor-
responding to one layer property (Fig. 1a). After sonica-
tion (40  kHz, 100  W, 30  min), sizes of most of the GO 
were in the range of 40–50 nm based on the analysis of 
Nano Zetasizer (Malvern Instrument Ltd., Malvern, UK) 
(Fig. 1a, b). GO showed the typical G band and D band 
in Raman spectroscopy [29]. The zeta potential of GO 
(100 mg/L) in K-medium was − 21.5 ± 2.6 mV [29].

C. elegans strains
The used nematode strains were wild-type N2, 
mutants of nlg-1(tm474) and nlg-1(ok259), and 
transgenic strains of nlg-1(ok259)Ex(Pttx-3-nlg-1), 

nlg-1(ok259)Ex(Pgcy-28.d-nlg-1), nlg-1(ok259)Ex(Pnpr-
9-nlg-1), and nlg-1(ok259)Ex(Punc-86-nlg-1). Both nlg-
1(tm474) and nlg-1(ok259) are loss-of-function mutants. 
Some of the strains were obtained from Caenorhabdi-
tis Genetics Center. Gravid hermaphrodite nematodes 
were maintained on normal nematode growth medium 
(NGM) plates seeded with Escherichia coli OP50 at 20 °C 
as described [30]. The gravid hermaphrodite nematodes 
were lysed with a bleaching mixture (0.45 M NaOH, 2% 
HOCl) in order to separate the eggs and the animals. Age 
synchronous L1-larvae or L4-larvae populations were 
prepared as described [31].

Aversive response to GO
GO at the used working concentrations (50, 100, and 
200 mg/L) was prepared by diluting stock solution (1 mg/
mL) with K medium. Before the treatment, GO solutions 
were sonicated for 30 min (40 kHz, 100 W). To evaluate 
the aversive responses of nematodes to GO, half of the 
surface of a 6 cm diameter assay NGM plate was added 
with GO solution at different concentrations (region A). 
And then, the examined L4-larvae stage nematodes were 
placed at the center of the assay NGM plate. After 90 min 
treatment, the animals on the region A and on the oppo-
site side (region B) were counted, respectively (Fig.  2a). 
The animals in the middle of the surface of assay NGM 
plate were omitted. The aversive response of nematodes 
to GO was evaluated by the percentage of A/(A + B) 
(Fig. 2a). Forty nematodes were examined per treatment, 
and ten replicates were performed.

Toxicity assessment of GO
In nematodes, prolonged exposure (from L1-larvae 
to young adults) to GO at concentrations more than 

Fig. 1 Physiochemical properties of GO. a AFM analysis of GO. b Size distribution of GO after sonication based on the analysis of Nano Zetasizer
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0.5 mg/L could cause the decrease in locomotion behav-
ior and the induction of intestinal reactive oxygen spe-
cies (ROS) production [14]. The used working solution 
(10 mg/L) was prepaed by diluting stock solution (1 mg/
mL) with K medium. Before the exposure, GO solution 
was sonicated for 30  min (40  kHz, 100  W). Prolonged 
exposure to GO was performed from L1-larvae to young 
adults in 12-well sterile tissue culture plates at 20  °C in 
the presence of food (OP50). After prolonged exposure, 
the GO exposed nematodes were used for the toxicity 
assessment using intestinal ROS production and locomo-
tion behavior as the endpoints.

Intestinal ROS production can be used to reflect the 
functional state of intestine [32]. ROS production was 
analyzed as described previously [33, 34]. The nema-
todes were transferred to 1 μM 5′,6′-chloromethyl-2′,7′-
dichlorodihydro-fluorescein diacetate (CM-H2DCFDA) 
to incubate for 3  h at 20  °C in the dark. The examined 
nematodes were examined at 488 nm of excitation wave-
length and 510 nm of emission filter under a laser scan-
ning confocal microscope (Leica, TCS SP2, Bensheim, 
Germany). Relative fluorescence intensity in intestine 
was semi-quantified, and the semi-quantified ROS was 
expressed as relative fluorescence units (RFU) and nor-
malized to the autofluorescence. Fifty nematodes were 
examined per treatment.

Head thrash and body bend were used to reflect the 
locomotion behavior [35]. These endpoints were ana-
lyzed under dissecting microscope as described [36, 37]. 
A head thrash is defined as a change in the direction of 
bending at the mid body, and a body bend is defined as a 
change in the direction of the part of the nematodes cor-
responding to the posterior bulb of the pharynx along the 
y axis, assuming that nematode was traveling along the x 
axis. Fifty nematodes were examined per treatment.

DNA constructs and germline transformation
Promoter region for ttx-3 gene specially expressed in 
AIY interneurons, gcy-28.d gene specially expressed in 
AIA interneurons, npr-9 gene specially expressed in AIB 
interneurons, or unc-86 gene expressed in AIZ interneu-
rons, was amplified by PCR from wild-type C. elegans 
genomic DNA. These promoter fragments were inserted 
into pPD95_77 vector in the sense orientation. nlg-1/
C40C9.5e cDNA was amplified by polymerase chain reac-
tion (PCR), and inserted into corresponding entry vector 
carrying the ttx-3, gcy-28.d, npr-9, or unc-86 promoter 
sequence. Germline transformation was performed as 
described by coinjecting testing DNA at the concentra-
tion of 10–40 μg/mL and marker DNA of Pdop-1::rfp at 
the concentration of 60 μg/mL into the gonad of nema-
todes [38]. The related primer information for DNA con-
structs is shown in Additional file 1: Table S1.

Statistical analysis
Data in this article were expressed as mean ± standard 
deviation (SD). Statistical analysis was performed using 
SPSS 12.0 software (SPSS Inc., Chicago, USA). Differ-
ences between groups were determined using analysis 
of variance (ANOVA), and probability levels of 0.05 and 
0.01 were considered statistically significant.

Results
Aversive behavior of wild‑type nematodes to GO
On normal NGM plates without the addition of GO, 
the wild-type nematodes will run randomly, and would 
be distributed equally on the surface of NGM plates 
(Fig.  2b). In the aversive behavior assay model, we 
observed the significant aversive behavior of wild-type 
nematodes to GO at concentrations of 100 or 200 mg/L 
after 90  min treatment (Fig.  2b). We also detected the 
moderate but significant aversive behavior of wild-type 

Fig. 2 Aversive behavior of wild-type nematodes to GO. a Assay model for aversive behavior of nematodes to GO. b Aversive behavior of wild-type 
nematodes to GO at different concentrations. Control, without GO treatment. Bars represent mean ± SD. *P < 0.05 vs control, **P < 0.01 vs control
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nematodes to GO at the concentration of 50 mg/L after 
90 min treatment (Fig. 2b). In contrast, after 90 min treat-
ment, we did not observe the obvious aversive behavior 
of wild-type nematodes to GO at concentrations less 
than 50 mg/L (data not shown).

nlg‑1 mutation suppressed the aversive behavior 
of nematodes to GO
Considering the important function of neuroligins in 
connecting pre- and post-synaptic neurons [24, 25], 
we next examined the effect of nlg-1 mutation on aver-
sive behavior of nematodes to GO. We focused on the 
analysis of aversive behavior of nematodes to GO at the 
concentration of 100  mg/L (Fig.  3a). On normal NGM 
plates, both wild-type and nlg-1 mutant (nlg-1(ok259) 
or nlg-1(tm474)) nematodes were observed to be dis-
tributed equally on the surface of NGM plates (Fig. 3b). 

In the aversive behavior assay model, both nlg-1(ok259) 
mutant and nlg-1(tm474) mutant showed the increased 
index for assessing aversive behavior to GO (100 mg/L) 
compared with wild-type nematodes after 90 min treat-
ment (Fig.  3b). Therefore, nlg-1 mutation may suppress 
the aversive behavior of nematodes to GO in nematodes.

Neuron‑specific activity of NLG‑1 in the regulation 
of aversive behavior of nematodes to GO
In C. elegans, AIY, AIA, AIB, and AIZ interneurons are 
main classes of integrating neurons between sensory 
neurons and motor neurons (Fig. 4a) [39]. After 90 min 
treatment, we found that expression of nlg-1 in AIA 
interneurons or AIZ interneurons could not rescue the 
deficit in aversive behavior to GO (100  mg/L) in nlg-
1(ok259) mutant nematodes (Fig.  4b). In contrast, after 
90 min treatment, neuron-specific expression of nlg-1 in 

Fig. 3 Effect of nlg-1 mutation on aversive behavior of nematodes to GO. a Assay model for aversive behavior of nematodes to GO (100 mg/L). b 
Effect of nlg-1 mutation on aversive behavior of nematodes to GO. Control, without GO treatment. Bars represent mean ± SD. **P < 0.01 vs wild-type 
(if not specially indicated)

Fig. 4 Identification of interneurons required for the aversive response of nematodes to GO. a A diagram showing the association of interneurons 
with sensory neurons and motor neurons. b Neuron-specific activity of NLG-1 in the regulation of aversive behavior of nematodes to GO 
(100 mg/L). Control, without GO treatment. Bars represent mean ± SD. **P < 0.01 vs wild-type (if not specially indicated)
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AIY interneurons or AIB interneurons could significantly 
decrease the index of aversive behavior to GO (100 mg/L) 
in nlg-1(ok259) mutant nematodes (Fig.  4b). Therefore, 
neuron-specific expression of nlg-1 in AIY interneurons 
or AIB interneurons can rescue the deficit in aversive 
behavior to GO in nlg-1(ok259) mutant nematodes.

Neuron‑specific activity of NLG‑1 in the regulation of GO 
toxicity
We further determined the roles of these four classes 
of interneurons in the regulation of GO toxicity. Using 
intestinal ROS production and locomotion behav-
ior as the toxicity assessment endpoints, we observed 
that expression of nlg-1 in AIA interneurons or AIZ 
interneurons could not obviously affect the GO toxicity 

in inducing intestinal ROS production and in decreasing 
locomotion behavior in nlg-1(ok259) mutant nematodes 
(Fig. 5). In contrast, expression of nlg-1 in AIY interneu-
rons or AIB interneurons significantly suppress the GO 
toxicity in inducing intestinal ROS production and in 
decreasing locomotion behavior in nlg-1(ok259) mutant 
nematodes (Fig.  5). Therefore, both AIY interneurons 
and AIB interneurons are also required for the regulation 
of GO toxicity in nematodes.

Discussion
Caenorhabditis elegans is a useful model for toxic-
ity assessment of environmental toxicants [11, 12]. 
In this study, using the in  vivo assay system of C. ele-
gans, we observed the obvious aversive behavior of 

Fig. 5 Neuron-specific activity of NLG-1 in the regulation of GO toxicity. a Neuron-specific activity of NLG-1 in the regulation of GO toxicity in 
inducing intestinal ROS production. b Neuron-specific activity of NLG-1 in the regulation of GO toxicity in decreasing locomotion behavior. GO 
exposure concentration was 10 mg/L. Prolonged exposure was performed from L1-larvae to young adults. Bars represent mean ± SD. **P < 0.01 vs 
wild-type (if not specially indicated)



Page 6 of 8Xiao et al. J Nanobiotechnol  (2018) 16:45 

nematodes to GO particles (Fig.  2). Moreover, we also 
observed the significant aversive behavior of nematodes 
to  TiO2-nanoparticles  (TiO2-NPs, 10  nm),  Al2O3-NPs 
(60 nm), multi-walled carbon nanotubes (MWCNTs), or 
thiolated GO (GO-SH) in nematodes (Additional file  1: 
Fig. S1). The detailed information on the physicochemi-
cal properties of examined  TiO2-NPs,  Al2O3-NPs, MWC-
NTs, or GO-SH is available in the references [40–43]. 
These observations imply that the nematodes have the 
potential ability to avoid the environmental ENMs once 
percept the existence of ENMs in the environment. This 
observed aversive response enables the environmental 
animals a protection mechanism to reduce the possible 
toxicity of environmental ENMs. Nevertheless, the exam-
ined GO at environmentally relevant concentrations may 
not be able to induce the aversive behavior of nematodes 
after 90 min treatment.

In C. elegans, it has been shown that NLG-1/neuroligin 
is required for the control of synaptic function, a subset 
of sensory behaviors and sensory processing, longevity, 
and oxidative stress or stress response [23, 44–47]. In this 
study, we further found a novel function of NLG-1 in the 
regulation of aversive behavior to GO. Loss-of-function 
mutation of nlg-1 significantly suppress the aversive 
behavior to GO (Fig. 3), implying that NLG-1/neuroligin 
is required for the formation of normal aversive behavior 
to GO. Because the neuroligins act as a link to connect 
pre- and post-synaptic neurons in organisms [24, 25], our 
results suggest that a certain neuronal circuit connected 
by NLG-1/neuroligins may exist to regulate the aversive 
behavior of nematodes to GO.

We further provide the evidence to demonstrate the 
crucial function of interneurons in the regulation of aver-
sive behavior to GO. Among the main classes of interneu-
rons with the function to integrate sensory neurons with 
motor neurons [39], we observed that only expression 
of nlg-1 in AIY interneurons or AIB interneurons could 
recover the deficits in aversive behavior to GO in nlg-1 
mutant nematodes (Fig. 4). In contrast, the neuron-spe-
cific activity of nlg-1 in AIA or AIZ interneurons was not 
required for the function of NLG-1 in the regulation of 
aversive behavior to GO (Fig. 4). These results imply that 
AIY and AIB interneurons are involved in the regulation 
of aversive behavior to GO (Fig. 6). Because the integra-
tion between sensory neurons and motor neurons by 
interneurons is conserved between the nematodes and 
the mammals or the human, our results further imply 
the crucial role of interneurons in the perception of toxic 
ENMs in mammals or in human.

In C. elegans, genetic or laser ablation of AIY interneu-
rons caused the abnormal spontaneous reversal rate, 
odorant chemotaxis, and salt chemotaxis [48–50]. Addi-
tionally, genetic or laser ablation of AIB interneurons 

caused the abnormal odorant chemotaxis, and salt 
chemotaxis [49, 50]. Our results imply the novel function 
of AIY and AIB interneurons in the control of aversive 
behavior of nematodes to environmental toxicants. In C. 
elegans, it was repotted that genetic or laser ablation of 
AIY interneurons can enhance the spontaneous reversal 
rate [48]. Therefore, the identified interneurons may not 
only mediate a certain neuronal circuit to regulate the 
aversive behavior to GO, but also be able to directly par-
ticipate in the regulation of aversive behavior themselves.

Our previous study has identified the neuron-specific 
activity of nlg-1 in the AIY interneurons in the regulation 
of GO toxicity [23]. In this study, we further found the 
neuron-specific activity of nlg-1 in the AIB interneurons 
in the regulation of GO toxicity (Fig. 5). These results all 
imply the crucial function of NLG-1 in interneurons in 
the regulation of GO toxicity (Fig. 6). In C. elegans, AIY 
interneurons act as the output of ASE, AWC, AFD, and 
AWA sensory neurons, and AIB interneurons act as the 
output of ASE, AWC, ASI, ASH, ASK, ADL, AFD, and 
ASG sensory neurons [38]. In C. elegans, the neurexin 
gene is nrx-1. The further examination of neuron-specific 
activities of NRX-1 will be helpful for final identification 
of neuronal circuit required for the control of aversive 
behavior to GO in nematodes.

Conclusions
In this study, we investigated the aversive response of ani-
mals to GO using the in vivo assay system of C. elegans. 
We observed the obvious aversive behavior of nematodes 
to GO at concentrations more than 50  mg/L. In nema-
todes, mutation of nlg-1 encoding a neuroligin disrupted 
this aversive behavior to GO. Using nlg-1 mutant as a 
genetic tool, we identified the AIY and AIB interneurons 
to be required for the regulation of aversive behavior to 
GO based on a series of rescue assays. Our results pro-
vide the important neuronal and molecular basis for the 
aversive response of animals to GO. Moreover, we found 
that both the AIY interneurons and the AIB interneurons 
were also required for the regulation of GO toxicity in 
nematodes.

Fig. 6 A diagram showing the functions of AIY and AIB interneurons 
in the regulation of aversive behavior to GO and GO toxicity
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