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Nanotechnology: a promising method 
for oral cancer detection and diagnosis
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Abstract 

Oral cancer is a common and aggressive cancer with high morbidity, mortality, and recurrence rate globally. Early 
detection is of utmost importance for cancer prevention and disease management. Currently, tissue biopsy remains 
the gold standard for oral cancer diagnosis, but it is invasive, which may cause patient discomfort. The application of 
traditional noninvasive methods‑such as vital staining, exfoliative cytology, and molecular imaging‑is limited by insuf‑
ficient sensitivity and specificity. Thus, there is an urgent need for exploring noninvasive, highly sensitive, and specific 
diagnostic techniques. Nano detection systems are known as new emerging noninvasive strategies that bring the 
detection sensitivity of biomarkers to nano‑scale. Moreover, compared to current imaging contrast agents, nano‑
particles are more biocompatible, easier to synthesize, and able to target specific surface molecules. Nanoparticles 
generate localized surface plasmon resonances at near‑infrared wavelengths, providing higher image contrast and 
resolution. Therefore, using nano‑based techniques can help clinicians to detect and better monitor diseases during 
different phases of oral malignancy. Here, we review the progress of nanotechnology‑based methods in oral cancer 
detection and diagnosis.
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Background
Cancer is a critical public health problem worldwide that 
has brought great burden to society. In 2016, an esti-
mated 1,685,210 new cases and 595,690 cancer deaths 
occurred in the United States alone [1]. Oral cancer is 
the sixth most common cancer globally and has a 5-year 
survival rate of around 50% [2]. According to US cancer 
statistics, approximately 31,910 new cases of oral cancer 
and 6490 oral cancer deaths occurred in 2016 [3]. Oral 
cancer is an aggressive cancer that mainly affects oral 
epithelial cells, may develop metastasis, and even results 
in death [4]. The major type of malignancy is oral squa-
mous cell carcinomas (OSCC), which accounts for more 
than 90% of all oral cancers [5]. These tumors may invade 
the mucosa of the tongue, buccal, floor of mouth, alveo-
lar and the hard palate, and the tongue is reported to be 

the most common subsite, with poor prognosis [1, 6]. 
Oral carcinogenesis is often due to long-term exposure 
to various potential risk factors, which may lead to accu-
mulation of multiple genetic mutations [4]. Several major 
risk factors for oral cancer, including smoking, alcohol 
consumption, and human papillomavirus infection, with 
smoking acting as the leading cause of cancer death [3, 
7]. Besides, habitual use of the areca nut is another risk 
factor that closely associated with oral cancer, especially 
in Indian subcontinent [8].

The formation of oral cancer is a multifactorial and 
multistep process [6]. Oral leukoplakia, oral erythropla-
kia, oral lichen planus, oral submucous fibrosis, actinic 
keratosis, and discoid lupus erythematosus are common 
oral potentially malignant disorders (OPMD) that are 
known to have the potential for malignant transforma-
tion [8, 9]. Thus, early detection of OPMD and oral can-
cer is critical for the prognosis of diseases [5]. To date, 
scalpel biopsy and histopathological examinations are 
still the standard diagnostic procedures applied to ascer-
tain the oral potentially malignant and malignant lesions 
[17, 18]. However, the biopsy procedure is often invasive, 

Open Access

Journal of Nanobiotechnology

*Correspondence:  zhangxq@whut.edu.cn; zhougang@whu.edu.cn 
2 School of Chemistry, Chemical Engineering and Life Sciences, Wuhan 
University of Technology, Wuhan 430070, People’s Republic of China
4 Department of Oral Medicine, School and Hospital of Stomatology, 
Wuhan University, Wuhan 430079, People’s Republic of China
Full list of author information is available at the end of the article

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s12951-018-0378-6&domain=pdf


Page 2 of 17Chen et al. J Nanobiotechnol  (2018) 16:52 

which may cause patients anxiety and discomfort [10]. 
The selection of resection margins depends largely on 
the histopathological assessments, and the results can be 
affected by the quality of the specimens and pathologists’ 
subjective judgments [11, 12]. In addition, the assess-
ments are unable to detect small numbers of genetically 
abnormal cells at the margins, thus leaving the risk of 
recurrence [13, 14].

In the past few decades, a variety of pain-free diag-
nostic strategies have been developed. Non-invasive 
visual tools such as toluidine blue (TB) staining, auto-
fluorescence (VELscope) and chemiluminescence (Vizi-
Lite) have been used solely or in combination as adjuvant 
tests to detect potentially malignant lesions [15–19]. In 
oral epithelial dysplasia cases, the sensitivity and speci-
ficity of TB, VELscope and ViziLite are reported to be 
84.1% and 15.3, 77.3 and 27.8, 56.8 and 65.8%, respec-
tively [15]. Exfoliated cells, serum, and saliva are the most 
commonly used non-invasive samples for oral cancer 
detection since they are easily accessible, convenient, and 
cost-effective [11, 20]. For oral cancer diagnosis, the sen-
sitivity and specificity of exfoliative cytology is reported 
to be 93.5 and 50.6%, respectively [21]. The biomarker 
with high sensitivity and specificity in serum is com-
bined detection of Cyclin D1 and epidermal growth fac-
tor receptor (EGFR), while the reliable marker in saliva is 
CD44 [22, 23]. Imaging techniques are used as diagnostic 
adjuncts to the histopathological assessments since they 
are noninvasive and done in real-time [24]. Radiographic 
imaging modalities-including magnetic resonance imag-
ing (MRI), computed tomography (CT), cone beam 
computed tomography (CBCT), and positron emission 
tomography (PET)-are commonly used for clinical estab-
lishment of oral cancer stages and treatment plans [24, 
25]. Raman spectroscopy, elastic scattering spectroscopy, 
diffuse reflectance spectroscopy, narrow-band imaging, 
and confocal reflectance microscopy are common opti-
cal diagnostic methods that distinguish malignant lesions 
from normal oral mucosa by reflecting changes within 
tissues through returned optical signals [11, 26–32].

However, these noninvasive methods still have some 
limitations [12]. The visual tools are highly subjective and 
depend on the expertise of the investigators [16–18]. The 
main deficiency of exfoliative cytology technology, which 
is based on the quantitative cytomorphometry and DNA 
aneuploidy, is the low detection specificity, resulting from 
the collection of disaggregated cells [12, 33, 34]. Moreo-
ver, the sensitivity for traditional detection methods is 
limited as the biomarkers with low concentrations in the 
tissue samples or body fluids may not be detected [35]. 
Although the imaging methods have provided real-time 
cancer cell morphology, their sensitivity for detecting 
small, earlier intraepithelial lesions are insufficient [36]. 

Thus, novel detection methods need to be explored to 
bring clinical benefits, including (1) accurately predicting 
the malignant risk of OPMDs, (2) specifically detecting 
oral cancer based on molecular targeting, (3) providing 
ultrasensitive detection strategies at nano-scale, (4) mak-
ing real-time suggestions for the extent of surgical resec-
tion margins, and (5) monitoring oral cancer prognosis in 
a convenient way after treatment.

According to the US National Nanotechnology Initia-
tive, nanotechnology refers to the manipulation of matter 
with the length scale of 1–100 nm in at least one dimen-
sion [37, 38]. In the past few decades, nanotechnologies 
have been applied in various fields, especially in the med-
ical field [39]. One of the most hotly researched subfield 
of nanotechnology is nanomedicine, which increases 
the possibility of specific targeted cancer therapy [40]. 
Moreover, nanotechnology is also a useful tool for can-
cer detection, and monitoring the disease as it metasta-
sizes [41–44]. To date, nanotechnology has been applied 
in the detection and diagnosis of various cancers, such as 
cervical cancer, lung cancer, breast cancer, gastric cancer, 
nasopharyngeal cancer, and oral cancer [45–52]. As far as 
we know, the application of nano-based detection meth-
ods for oral cancer has not been systematically reviewed. 
In this review, we highlighted the various nanotechnolo-
gies that have been developed for oral cancer detection 
and diagnosis. The application of nanotechnology for 
in vitro and in vivo bioimaging of oral cancer was shown 
in Fig. 1.

Nanotechnology‑based detection and diagnostic 
methods
Nano‑based molecular imaging
Magnetic resonance imaging
Magnetic resonance imaging (MRI) is reported to be 
suitable for the assessment of the primary tumor and 
bone invasion, as well as the outlining of the actual tumor 
borders during surgery [25, 53]. Commonly used positive 
MRI contrast agents-Gd3+ complexed with diethyltri-
amine-pentaacetic acid (Gd-DTPA) or tetra azacyclodo-
decane-1,4,7,10-tetraacetic acid (Gd-DOTA)-can shorten 
tissue longitudinal relaxation times (T1) [54]. However, 
the contrast agents distribute throughout the entire body 
after being intravenously injected, but do not specifically 
accumulate in tumors. In addition, the blood circula-
tion life time for Gd-DTPA or Gd-DOTA is very short, 
approximately only 1–1.5  h [55]. The contrast agents 
usually consist of superparamagnetic nanoparticles with 
coating layers [56].

With the advancement in nanotechnology, various 
types of nanoparticles have been applied as specific MRI 
contrast agents for cancer screening [54]. Nano-contrast 
agents have the ability to recognize unique cell surface 
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Fig. 1 The application of nanotechnology for in vitro and in vivo bioimaging of oral cancer
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markers and prolonged blood circulation half-life, exhib-
iting better MRI contrast properties [57]. The most com-
monly studied superparamagnetic iron oxide (SPIO) and 
ultrasmall superparamagnetic iron oxide (USPIOs) nan-
oparticles, which can shorten T2 and T2*, have already 
been used as negative contrast agents for detecting liver 
and spleen diseases [58].

Nano-contrast agents have also been studied in oral 
cancers. For example, Asifkhan et al. combined the folate 
preconjugated chitosan and magnetic poly (lactide-co-
glycolide) (PLGA) nanoparticles to create an MRI con-
trast agent (Fig.  2) [59]. The overall T2 relaxation time 
was shortened, and the nanoparticle relaxivity was 
enhanced thereby providing better imaging contrast [59]. 
Meanwhile, the folate receptor positive KB oral cancer 
cells showed increased nanoparticle uptake and caused 
significant enhancement in cytotoxicity [59]. This nano 
agent not only provided high contrast cancer imaging but 
also simultaneously provided cancer therapy. Another 
novel magnetic nano-contrast agent was developed based 
on Gd3+ doped amorphous  TiO2 and was suitable for T1 
weighted MRI [60]. The size of this agent was reported 
to be about 25  nm, which is much smaller than SPIO 
(50 nm) [58]. The potential of inducing hemolysis, plate-
let aggregation, and plasma coagulation was studied, and 
no adverse reaction was reported [60]. As a consequent, 
the folic acid conjugated nanoparticles were specifically 
aggregated on the surface of folate receptor positive oral 
cancer KB cells, leaving normal L929 cells unstained [60]. 
Notably, this nano-contrast agent showed enhanced lon-
gitudinal relaxivity, magnetic resonance, and excellent 
biocompatibility for MRI.

Optical coherence tomography
Optical coherence tomography (OCT) is a direct simu-
lation of ultrasound. It produces cross-sectional archi-
tectural images of subsurface tissues, such as epithelial 
layers and basement membranes, using infrared light 
with a penetration depth of about 2 mm, and is suitable 
for early oral cancer detection and oral dysplasia moni-
toring [61]. The resolution of OCT is reported to be 
around 10  μm which is higher than that of other non-
invasive diagnostic techniques, such as CT, MRI, and 
ultrasound [50, 62]. Although OCT is a non-invasive and 
real-time clinical diagnostic method for cell and stromal 
morphology imaging, the contrast remains insufficient, 
especially between neoplastic and normal tissues [63].

Gold nanoparticles are promising OCT contrast 
agents. They are biocompatible, easy to synthesize, 
and can provide localized surface plasmon resonances 
at near-infrared wavelengths that avoid predominant 
absorption in tissues [64]. For example, the EGFR mon-
oclonal antibodies conjugated Au nanoparticles with a 
diameter of 71 nm have been applied to enhance the con-
trast of OCT images of oral dysplasia in a hamster model 
[65]. Meanwhile, microneedles and ultrasound were uti-
lized to overcome the obstacle for Au NP delivery. This 
multimodal delivery was demonstrated to be effective 
in improving OCT penetration depth and resulted in an 
approximately 150% increased contrast level in oral car-
cinogenesis [65].

Photoacoustic imaging
Photoacoustic imaging is a new emerging optical 
diagnostic technology. By using a short laser pulse, it 

Fig. 2 Representation of the magnetic core–shell hybrid nanoparticles for receptor targeted MRI (Reprinted with permission from [59]. Copyright 
2017 Journal of Colloid and Interface Science)
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generates ultrasound transients from tissues, thereby 
causing transient thermoelastic expansions after opti-
cal absorption [66–68]. These photoacoustic waves 
are being then transformed into photoacoustic images 
according to their arrival times after collected by an 
ultrasound transducer [69, 70]. The ultrasound pro-
vides high spatial resolution for structural phenotyping 
and is a useful tool for assessing lymph nodes follow-
ing a radical surgery [71, 72]. Consequently, the optical 
contrast can be significantly improved while maintain-
ing the high spatial resolution of ultrasound [73]. Com-
pared to conventional optical imaging, photoacoustic 
imaging has improved imaging depth, about 6 cm [69]. 
Though various exogenous contrast agents-such as 
methylene blue, ICG, and GNs-have been used to 
enhance the photoacoustic imaging contrast, the gold 
nanoparticles are considered a more attractive contrast 

agent due to their ability to conjugate biomolecules and 
their production of stronger photoacoustic imaging 
signals [67, 69, 74]. To date, photoacoustic imaging has 
demonstrated great potential in brain, breast, and pros-
tate cancer diagnosis [67, 73, 75, 76].

Luke et  al. introduced ultrasound-guided spectro-
scopic photoacoustic imaging technology for detecting 
lymph node micrometastases in a metastatic murine 
model of OSCC (Fig. 3) [77]. Using anti-EGFR antibody 
conjugated molecularly activated plasmonic nanosen-
sors (MAPS), the study showed that the MAPS shifted 
their absorption spectrum to the near-infrared region 
[77]. In addition, large ultrasound-guided spectroscopic 
photoacoustic signals appeared in micrometastases as 
small as 50  mm within 30  min after MAPS injection 
[77]. These findings offer an alternate to sentinel lymph 
node biopsy analysis of oral cancer resection.

Fig. 3 Representation of the photoacoustic imaging using anti‑EGFR antibody conjugated molecularly activated MAPS. a A schematic of the 
EGFR‑targeted MAPS; b optical spectra obtained hyperspectral dark‑field microscopy; c, f cancer cells in the absence of gold nanoparticles; d, g cells 
in the presence of nonspecific AuNPs; e, h cells labeled with MAPS (Reprinted with permission from [77]. Copyright 2014 Cancer Research)
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Surface plasmon resonance scattering
Surface plasmon waves are formed by collective oscil-
lation of conduction electrons in noble metals [78]. 
Recently, gold nanoparticles have been commonly 
applied for surface plasmon resonance scattering since 
they can resonantly scatter visible and near-infrared light 
due to their surface plasmon oscillation [78]. In addi-
tion, they are easy to prepare, readily bioconjugated, and 
have low cytotoxicity, making them suitable for biomo-
lecular labeling and targeting [79]. It is reported that the 
conjugated nanoparticles tended to aggregate together, 
inducing a greatly enhanced surface plasmon resonance 
scattering compared to unconjugated nanoparticles [80].

El-Sayed et  al. recorded surface plasmon resonance 
scattering images and surface plasmon resonance 
absorption spectra after cell incubation [81]. Light-scat-
tering images showed that the EGFR conjugated nano-
particles bind specifically to the surface of the cancer 
cells with high concentration, while the binding to non-
cancerous cells was nonspecific and random [81]. Micro 
absorption spectra showed that the absorption maxi-
mum for conjugated nanoparticles was 545 nm, without 
aggregation tendency, while unconjugated colloidal gold 
nanoparticles accumulated inside cells and aggregated 
with an absorption maximum around 552 nm [81]. As a 
result, the anti-EGFR antibody conjugated nanoparticles 
showed 600% greater affinity to malignant oral epithelial 
cell lines HOC 313 clone 8 and HSC 3 than to the non-
malignant cell line HaCaT [81]. In addition, the surface 
plasmon resonance property of gold nanoparticles was 
shown to have the ability to increase Raman scattering 
in saliva samples of oral cancer patients [63, 78]. High 
optical signals were produced by enhanced surface plas-
mon resonance when the gold nanoparticles gathered 
around the target cancerous cells, due to their conjuga-
tion with anti-EGFR [63]. The sensitivity was observed to 
be around 70% of the current technique, which needs to 
be further improved [63].

Surface‑enhanced Raman spectroscopy
Raman spectroscopy is a vibrational spectroscopic tech-
nique based on inelastic interactions between light and 
matter [82]. The normal, premalignant, or malignant 
lesions are distinguished by inelastic scattering of light, 
which can be a laser in the visible, near-infrared, or 
near-ultraviolet range [83]. The signals in normal tis-
sues are homogeneous but heterogeneous in malignant 
cells, reflecting the changes in chemical characteriza-
tion and molecular structure of the lesions [84]. Raman 
spectroscopy is a near-field effect and has a low penetra-
tion depth. Its clinical application has been limited by the 
weak Raman signal intensity and the slow speed of spec-
trum acquisitions [78, 83].

Recently, nanoparticles have been applied as exog-
enous contrast agents, in order to acquire Raman signal 
with high speed and resolution [85–87]. After directly 
adsorbed on the nanoparticle surface, the molecules emit 
an amplified Raman scattering intensity, known as sur-
face-enhanced Raman scattering (SERS) [83, 88]. A study 
introduced small, spherical, near-infrared region sensi-
tive and SERS active gold nanoparticles with highly nar-
row intra-nanogap structures for single oral cancer cell 
HSC-3 imaging (Fig. 4) [89]. The gold nanoparticles can 
selectively target intracellular organelles and were specif-
ically distributed in cytoplasm, mitochondria, and nuclei. 
Finally, high speed Raman imaging was achieved within 
30 s with a high resolution of 50 × 50 pixels [89].

Nanospheres, nanorods, nanocubes, nanobranches, 
and nanobipyramids are different shapes of gold nano-
particles [90, 91]. Gold nanorods (GNRs) have received 
much attention for molecular imaging because of their 
advantage of higher index sensitivity over spherical and 
cubic gold nanoparticles, which means minor changes in 
the surrounding environment of GNRs can result in sig-
nificant longitudinal surface plasmon resonance (LSPR) 
peak wavelength variation [90, 92]. Since the index 
sensitivities and longitudinal plasmon wavelengths of 
nanorods increase with aspect ratios, the use of nanorods 
with large aspect ratios can provide near-infrared region 
plasmon wavelengths and high index sensitivity for opti-
cal techniques [90, 91].

Wang et  al. conjugated GNRs with rose bengal (RB), 
a specific probe for oral cancer cell target, and moni-
tored optical absorption in the near-infrared region [93]. 
The RB molecules have the ability to bind with the pro-
tein or nucleic acid of cancer cell lysate, whereafter the 
RB-GNR probes aggregated, inducing red-shift in the 
near-infrared absorption wavelength [93]. This RB-GNR 
platform provided a specific and quantitative method for 
oral cancer cell lysate analysis with a detection sensitivity 
of 2000 cells/ml [93]. Liu et al. described a paper-based 
SERS technology in combination with exfoliative cytol-
ogy for screening of exfoliated cells from oral cancer 
patients and healthy individuals [94]. Cells were placed 
on a plasmonic paper with GNRs adsorbed on it, and 
spectra were acquired afterward. Sensitivity and speci-
ficity were both 100% for distinguishing exfoliated cells 
from normal and cancer tissues, based on the  I1600/1440 
and  I1440/1340 peak ratios of the spectra values [94]. This 
paper-based SERS platform has overcome the drawbacks 
of traditional exfoliative cytology, such as low sensitivity 
and subjective cytologic interpretation [94].

Diffusion reflection imaging
In diffusion reflection imaging, a small portion of the 
white light entering the tissue is absorbed or transmitted, 
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while the rest undergoes multiple elastic scattering and 
gets diffusely reflected [95]. The reflected light is greatly 
affected by cytologic and morphologic changes during 
epithelial tissue cancerization, including nuclear size, col-
lagen content, extracellular matrix structure, epithelial 
thickness, and blood flow variation [28, 96]. It is reported 
that recording diffuse reflectance images can help to 
determine surgical margins and is a useful tool to differ-
entiate normal mucosa, OPMD, and oral cancer [96–98].

In oral cancer, 14.3% of tumor margins after surgical 
excision were identified to have residual carcinoma [99]. 
Accurate determination of tumor margins is critical for 

complete surgical resection of residual diseases in oral 
cancer and may reduce the high rate of recurrence [100]. 
The accuracy of routine microscopic examination after 
frozen sections is limited by the 30.7–47.3% shrinkage 
of the frozen tissues [101]. Meanwhile, for the paraffin-
embedded tissue section, results are only available after 
the operation, making the intraoperative identifica-
tion challenging [101]. Thus, efforts should be made to 
achieve a real-time and high sensitive way for more com-
plete tumor resections.

Ankri et al. conjugated GNRs to monoclonal antibod-
ies against EGFR and evaluated the margins of human 

Fig. 4 Graphical representation of the SERS active gold nanoparticles for oral cancer cell HSC‑3 imaging. a synthetic scheme of Raman dye 
(44DP)‑coded Au‑NNPs using four different kinds of DNA‑AuNPs as core particles. b the solution color and HR‑TEM image of 44DP‑coded Au‑NNPs. 
c, d Raman spectra of 44DP‑coded Au‑NNP solution prepared from four different spacer DNA with an excitation of 633 (c) and 785 nm (d) 
(Reprinted with permission from [89]. Copyright 2015 Nano Letters)
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OSCC specimens by diffusion reflection imaging [102]. 
Air scanning electron microscopy was used to visualize 
the nanorods in tissues, showing the GNRs-EGFR spread 
a distance of 1  mm between the tumor and the healthy 
regions. Diffusion reflection imaging was then performed 
in a resolution of 1 mm, suggesting that the tumor edge 
is in the region of 4–5  mm, which is consistent with 
the commonly used cutoff of 5  mm for a close margin 
[100]. This study group has also tested diffusion reflec-
tion imaging of GNRs-EGFR on a mice OSCC model 
induced by 4-nitroquinoline-N-oxide [103]. GNRs specif-
ically attached to areas histologically identified as OSCC, 
with high reflectance at 780 nm over 17 intensity units. 
The overall specificity and sensitivity was 97 and 87%, 
respectively [103]. Moreover, the reflectance spectrum 
at 780  nm was found to be moderate in areas of carci-
noma in situ, but absent in normal epithelium. The opti-
cal properties showed significant changes-more than 80% 
of the invasive cancer and more than 30% of carcinoma 
in situ [103]. The group has also found that this modal-
ity is suitable for discriminating benign from malignant 
oral lesions since the reflectance intensity increased as 
the dysplastic changes increased [104]. Thus, the group 
has demonstrated that diffusion reflection imaging is a 
promising technique for the screening of malignant oral 
lesions and detecting residual disease during operation.

Quantum dots imaging
Quantum dots are nanometer-sized semiconductor crys-
tals that luminesce through quantum confinement effects 
[105, 106]. Quantum dots have several advantages that 
could overcome the limitations of conventional fluores-
cent dyes, such as size-tunable emission, wide excita-
tion spectra, strong luminescence and excellent stability 
against photobleaching [106–108]. In addition, chang-
ing the size and composition of quantum dots allows for 
obtaining a wide range of spectrum, from ultraviolet to 
the near infrared [109, 110].

Currently, quantum dots have been applied in the 
molecular and cell imaging of OSCC both in  vitro and 
in  vivo. It has been demonstrated that quantum dots 
have high fluorescence intensity, low nonspecific binding, 
and good stability against photobleaching for the in vitro 
imaging of human oral cancer cells Tca8113, SCC-25 and 
BcaCD885 [111–114]. Most of the quantum dots used for 
in vivo imaging were linked to molecules with the ability 
to target cancer cells [115]. Recently, it was reported that 
the near-infrared quantum dots with an emission wave-
lengths range of 700–900 nm have strong tissue penetra-
tion and are not harmful in vivo [114, 115]. Meanwhile, 
quantum dots with emission wavelengths between 400 
and 600  nm are able to avoid the interference of tissue 
autofluorescence, making them suitable for bioimaging 

[116, 117]. Studies have proven that quantum dots with 
an emission wavelength of 800 nm conjugated with EGFR 
monoclonal antibodies or arginine–glycine–aspartic 
acid sequence can generate high quality images of OSCC 
(Fig. 5) [117–119]. The technique also offers great poten-
tial in personalized therapy for OSCC [117–119].

Nano‑based ultrasensitive biomarker detection
Currently, plenty of novel proteomic, genomic, and tran-
scriptomic biomarkers are being researched. Exploration 
of tumor molecular biomarkers-such as tumor necrosis 
factor-alpha (TNF-α), vascular endothelial growth fac-
tor (VEGF), EGFR, and interleukin 6 (IL 6)-holds great 
promise for early cancer detection and diagnosis [22, 
120, 121]. Routine measurement methods-including 
enzyme-linked immunosorbent assay (ELISA), immu-
nohistochemistry, Western Blot, and polymerase chain 
reaction-still bear a limited detection sensitivity ranging 
from pM to fM  (10−12 to  10−15  M) concentration lev-
els [22, 23, 35]. The application of nanotechnology may 
enhance the detection sensitivity for biomarkers with low 
concentrations in the tissue samples or body fluids [122, 
123].

The saliva peptide finger print technique is a useful tool 
for salivary proteomics analysis and can predict potential 
biomarkers valuable for cancer diagnosis [124]. A study 
utilized matrix-assisted laser-desorption ionization-time-
of-flight mass spectrometry (MALDI-TOF–MS) for ana-
lyzing the expression spectrum of salivary peptides in 40 
OSCC patients and 23 normal controls [125]. Nanomate-
rial-based magnetic beads were used for selective enrich-
ment of low-molecular-mass peptides. It is noteworthy 
that 50 proteins expression levels were significantly dif-
ferent between OSCC patients and healthy controls. As 
a result, the mass peaks of 1285.6 and 1432.2 Da, which 
were both identified as histatin-3, were correlated with 
OSCC progression. This study introduced a novel high-
throughput, non-invasive strategy for valuable oral 
cancer biomarkers screening [125]. The specific advan-
tages of magnetic beads constructed on nanomaterial 
over other types of separation beads have not yet been 
illustrated.

A nano-based single biomarker detection method 
has also been utilized for oral cancer detection. A 
study detected TNF-α by gold protein chip method 
using a total internal reflection fluorescence micros-
copy (TIRFM) [35]. A 4 × 5 nanoarray incorporating 
500  nm diameter gold spots was achieved on 10  mm 
square glass substrates. The TNF-α detection sensitiv-
ity was reported to be at the attomolar (aM) concen-
tration level (× 10−18), enabling ultra-sensitive oral 
cancer detection [35]. However, this method could 
not be used for precise quantitative analysis. Another 
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study described the analysis of oral cancer bio marker 
EGFR with exfoliative cytology specimens of 41 OPMD 
or OSCC patients and 11 healthy volunteers, using 
a nano-bio-chip sensor technique [126]. A total of 51 
measurement parameters were collected, and biochem-
ical and morphologic changes were further analyzed. 
The EGFR expression level-along with nuclear area, 
nuclear diameter, and nuclear-to-cytoplasmic ratio-
was significantly altered in oral lesions with diagnosed 
squamous cell carcinoma or dysplasia [126]. Using 
ultra-sensitive atomic force microscopy (AFM) and 
field emission scanning electron microscopy (FESEM) 
with high resolution (~ 1 nm), another study exhibited 
the substructure of single human saliva exosomes and 
interpreted the nanoscale structures of exosomes under 
varying forces, revealing reversible mechanical defor-
mation [127]. Further, cell-type specific marker CD63 
was detected by using 10 nm gold beads on individual 
exosomes. The nanoscale biomechanical, morpho-
logical, and surface biomolecular properties of saliva 
exosomes are found to be critical for the oral cancer 
diagnosis [127]. Although these two systems have made 
it possible for the quantitative analysis of cellular bio-
markers, the systems described above can only be used 
for single biomarker analysis.

It is well-known that single oral cancer biomarkers 
cannot provide reliable diagnoses [128]. Multiplexed 
biomarker detection can minimize false positives and 
negatives arising from single biomarker analysis [128]. 
A multiplexed biomarker detection approach meas-
ured a four-protein panel of biomarkers using an ultra-
sensitive electrochemical microfluidic array [129]. The 
microfluidic device contained an array of nanostructured 
sensors, and plenty of magnetic beads were labeled. The 
four-protein panel-including interleukin-6, interleu-
kin-8, VEGF, and VEGF-C-was analyzed in 78 oral can-
cer patient serum samples and 49 controls, and showed 
a clinical diagnostic sensitivity and specificity for 89 
and 98%, respectively [129]. The study provided a low-
cost, easily fabricated method for accurate clinical oral 
cancer diagnosis. Another study analyzed proteins bio-
markers in conditioned media of oral squamous cell 
lines HN12, HN13, OSCC-3 and CAL27 by utilizing a 
nano ultra-performance liquid chromatography (nano-
UPLC) ion-mobility mass spectrometry [130]. A total of 
approximately 952 proteins-including known cancer bio-
marker proteins IL-6, IL-8, VEGF-A, and VEGF-C were 
identified. This nano-UPLC-Q-TOF assay provided a 
high-throughput approach to quantify proteins and com-
pare protein expression levels across different samples, 

Fig. 5 Schematic illustration of surface modification, bioconjugation, and theranostic application of  Ag2Se QDs coupled with cetuximab (Reprinted 
with permission from [117]. Copyright 2017 Small)
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without the need for stable isotope labeling. The identifi-
cation of peptides was unlimited with the fragmentation 
technique [130].

Conclusion and perspective
Ranking as one of the top 10 cancers worldwide, oral can-
cer has a poor prognosis and a high recurrence rate, and 
the time and accuracy of diagnosis directly affects disease 
outcomes [131]. In the past few decades, nanotechnol-
ogy has brought new techniques to cancer diagnosis [36, 
38, 132, 133]. The performance parameters of nanopar-
ticles-such as biocompatibility, function-specific size and 
shape, blood circulation half-life, and targeting to specific 
cell surface molecules-can be controlled by modulating 
their fabrication materials, methods or surface chemistry, 
making nanoparticles a promising diagnostic material 
[79]. The present review article has critically introduced 
nano-based detection strategies for oral cancers, and 

summarized various kinds of nanomaterials, sample 
types, and the characteristic of each technique in Table 1. 
The pros and cons of each nanotechnology for bioimag-
ing and molecular detection of oral cancer were shown in 
Fig. 6. In the oral cavity, the use of nanoparticles has not 
only achieved noninvasive real-time diagnosis with high 
sensitivity and specificity but also assisted with accurately 
identifying surgical margins, indicating the potential to 
reduce the reliance on tissue biopsy and histopathologi-
cal assessment in many cases.

Nano-based contrast agents for MRI, OCT and pho-
toacoustic imaging have lower toxicity, prolonged blood 
circulation half-life, and the ability to target unique cell 
surface molecules. Compared to routine contrast agents, 
nano agents exhibit better image contrast properties 
and improved penetration depth. In optical imaging, 
nanoparticles enable sufficient signals and sub-cellular 
spatial resolution. They can generate surface plasmon 
resonance at near-infrared wavelengths, gathered around 

Fig. 6 The pros and cons of different nanotechnology for bioimaging and biomarker detection of oral cancer
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the targeted cell surface, and the optical resonance prop-
erties of nanorods can be regulated over a broad range 
by adjusting their sizes and shapes. Quantum dots with 
size-tunable emission, wide excitation spectrum, high 
intensity of luminescence, and excellent photochemical 
stability have overcome the disadvantages of traditional 
fluorescence markers. As for cancer biomarker detection, 
nano-based materials-such as nano beads, gold nanoar-
ray, and nano-bio-chips-offer high throughput screen-
ing for potential biomarkers and have brought the level 
of detection sensitivity to the nanoscale. Therefore, the 
small and earlier intraepithelial lesions missed by com-
mon techniques can potentially be detected by nanotech-
nologies, making oral diseases more readily cured.

Nano-based diagnostic methods act as a promising 
tool to provide real-time, convenient, and cost-effec-
tive diagnosis for oral cancer detection and diagnosis. 
They can provide molecular targeted imaging, analyze 
biomarkers at nano-scale, enable intraoperative identi-
fication of surgical resection margins, and monitor oral 
cancer prognosis after treatment. Although these tech-
nologies have been studied in ex vivo studies of tissue 
and saliva samples and in vivo studies in animal models, 
further efforts should be employed before these strate-
gies can be successfully applied in clinical diagnosis.
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