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Abstract 

Background:  Chemotherapeutic agents (anti-cancer drugs) are small cytostatic or cytotoxic molecules that often 
bind to double-stranded DNA (dsDNA) resulting in modifications of their structural and nanomechanical properties 
and thus interfering with the cell proliferation process.

Methods:  We investigated the anthraquinone compound mitoxantrone that is used for treating certain cancer types 
like leukemia and lymphoma with magnetic tweezers as a single molecule nanosensor. In order to study the associa-
tion of mitoxantrone with dsDNA, we conducted force-extension and mechanical overwinding experiments with a 
sensitivity of 10−14 N.

Results:  Using this method, we were able to estimate an equilibrium constant of association Ka ≈ 1 × 105 M−1 as 
well as a binding site size of n ≈ 2.5 base pairs for mitoxantrone. An unwinding angle of mitoxantrone-intercalation of 
ϑ ≈ 16° was determined.

Conclusion:  Moreover, we observed a complex concentration-dependent bimodal binding behavior, where mitox-
antrone associates to dsDNA as an intercalator and groove binder simultaneously at low concentrations and as a mere 
intercalator at high concentrations.
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Background
Regarding the high morbidity and mortality rate of can-
cer diseases in the recent decades, the development of 
cytostatic and cytotoxic chemotherapeutics is highly 
promoted. Several types of such anti-tumor agents, e.g. 
anthracycline, bind to DNA polymers in tumor/can-
cer cells and consequently result in an inhibition of cell 
growth (cytostatic/antiproliferative activity) or even 
necrosis (cytotoxic activity). Their heal efficacy depends 
strongly on the binding mode and the nanomechanism 
of the DNA-drug interaction. Therefore, a deep and thor-
ough understanding of these biophysical characteristics 

of chemotherapeutics in the perspective of molecular 
recognition contributes significantly to the medical regu-
lation and optimization of pharmaceutics.

Here, we focused on an anthraquinone derivative 
mitoxantrone (MTX, 1,4-dihydroxy-5,8-bis[2-(2-hy-
droxyethylamino)ethylamino]anthracene-9,10-dione, 
chemical structure see Fig.  1c [1]). The topoisomerase 
II-inhibitor MTX was first synthesized in the late 1970s 
by Zee-Cheng and Cheng and Murdock et  al. indepen-
dently [2–4]. As a promising chemotherapeutics, MTX 
is broadly used in the treatment of different cancers such 
as metastatic breast cancer and acute lymphoblastic leu-
kemia as well as of multiple sclerosis [5–9]. Compared 
to other members of the anthracycline family, MTX has 
a comparable cytostatic activity but lower cardiotoxic-
ity [10–13]. Besides the medical applications, the bind-
ing of MTX to DNA and its corresponding influence on 
the nanomechanical and structural properties of DNA 
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are still not fully understood. MTX was well-known to 
bind to DNA as a classical intercalator. However, sev-
eral publications pointed out an additional groove-
binding of MTX [14–20]. The quantifications of the 
binding mechanism of MTX are also not very consist-
ent. Kapuscinski et  al. reported a binding affinity of the 
MTX-DNA interaction of Ka  ~  105 M−1 [21], whereas 
other research groups estimated the value one order of 
magnitude higher [15, 18, 22–25]. Furthermore, DNA-
untwisting due to MTX-intercalation was hardly studied. 
In this work, we performed single molecule nanosensor 
magnetic tweezers (MT) experiments to investigate the 
association of MTX with dsDNA. By means of extend-
ing and overwinding experiments within a force range of 
0.005–10 pN, we analyzed the effects of MTX-binding on 
the nanomechanical and structural properties of dsDNA 
e.g. elongation, softening and unwinding. As a result, we 
categorized the MTX-dsDNA association as a complex 
concentration-dependent bimodal binding.

Methods
For the performance of MT-experiments (Fig. 1a/b), we 
used a commercial MT system (PicoTwist, Lyon, France) 
with a self-made microfluidic flow cell. The experimental 
setup and flow cell assembly were previously described in 
detail [26–31]. In brief, the surface of the flow cell was 
covalently coated with sigmacote (Sigma-Aldrich, Ham-
burg, Germany) for a homogeneous hydrophobic surface 
and subsequently functionalized with anti-digoxigenin 
(200 μg/ml, Roche, Penzberg, Germany). For MT experi-
ments, we prepared λ-dsDNA fragments which were 
functionalized at one end with several biotins (Biotin-
14-dCTP, Metabion, Steinkirchen, Germany) and with 
several digoxigenins (Dig-11-dUTP, Roche, Penzberg, 
Germany) at the other end according to a published 

protocol [29, 32, 33]. The 11.8  kbp fragments, corre-
sponding to a contour length of about 4 µm, were sepa-
rated by gel electrophoresis. Via the specific bonds, single 
dsDNA molecules were attached between the anti-dig 
functionalized surface and streptavidin coated super-
paramagnetic beads with a diameter of 1 µm (Dynabeads 
MyOne, Thermo Fisher Scientific, Waltham, USA). As 
a reference and control for each investigated DNA mol-
ecule, we verified its contour- and persistence length by 
means of stretching experiments and approximation 
of the force-extension curves to the worm-like-chain 
(WLC) polymer elasticity model [34, 35]:

Here, F, P, L(c), kBT and d represent the applied force, 
dsDNA persistence length, dsDNA contour length as 
functions of the drug concentration c, thermal energy 
and molecular extension of the dsDNA (end-to-end dis-
tance), respectively. Furthermore, we acquired reference 
“hat curves” via overwinding dsDNA to verify the nick-
free structure of probed molecules.

All experiments were performed at 25  °C with MT 
buffer consisting of 10 mM phosphate buffered saline 
(PBS, with 137  mM NaCl + 2.7  mM KCl, pH 7.4 @ 
25  °C) with 0.1  mg/ml additional bovine serum albu-
min (BSA, Sigma-Aldrich, Hamburg, Germany) and 
0.1% TWEEN 20 (Sigma-Aldrich, Hamburg, Germany) 
inhibiting possible unspecific bonds. The cytostatics 
MTX was supplied by Baxter Oncology GmbH (Halle 
Westphalia, Germany), dissolved in PBS as stock 
solution (1  mM) and for further experiments diluted 
with MT buffer to concentrations from 10  nM up to 
30  µM. 0.2  nM dsDNA was incubated with MTX for 
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Fig. 1  Schematic of the MT assays for a extending and b overwinding a single dsDNA molecule (hat curve). Blue dashed lines divide the hat curve 
into two regions where a dsDNA polymer exhibits different torsional behaviors. The rotation number at the transition point is referred to as buckling 
number (for details see main text); c chemical structure of MTX
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2 h to reach the thermodynamic equilibrium and sub-
sequently gently flushed into the chamber. MT force-
extension experiments were performed with forces 
up to 10  pN after verifying the thermodynamic equi-
librium binding state (data not shown, see Additional 
file 1). All experiments were repeated with at least 10 
individual single molecules for each MTX concentra-
tion. Moreover, we replaced the complete flow cell 
after every statistical measurement series. The data 
were approximated with the WLC model and the 
dsDNA contour- and persistence length were fitted. In 
addition, by applying the transformed noncooperative 
McGhee-von-Hippel binding model for thermal equi-
librium [36–38]:

the relation between the fractional elongation of dsDNA 
γ and drug concentration c was determined. Ka denotes 
the equilibrium constant of association for intercalation, 
Δx is the dsDNA elongation due to one intercalated agent 
molecule, xbp represents the reference distance between 
two base pairs (xbp = 0.34 nm). n is the binding site size 
per drug molecule referring to the average length of base 
pairs, which are responsible for the intercalation. The 
fractional elongation γ can be expressed as

where L0 is the contour length of a bare dsDNA. The fit-
ting errors of L(c) and L0 contribute to the uncertainty 
of γ, Δx, Ka and n via propagation of uncertainty. All 
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overwinding experiments were performed with a preset 
force of 0.2 pN where MTX was immersed with stepwise 
increasing concentrations.

Results and discussion
Extension‑experiments
We used MT based extension and overwinding experi-
ments to investigate the influence of the MTX associa-
tion on the nanomechanical properties of dsDNA. Firstly, 
we conducted stretching experiments while the dsDNA 
remained in the torsionally relaxed state exposing its 
maximum end-to-end length. The force-extension curves 
of MTX-dsDNA mix are presented in Fig.  2a. The con-
tour- and persistence length of the investigated dsDNA 
molecules were estimated via approximating the data to 
the WLC-model.

At low MTX concentrations up to 3 µM, we discovered 
successive shifts of the force-extension curves indicat-
ing larger dsDNA contour lengths. Interestingly, at the 
same time the persistence length decreased from about 
50 ± 2 to 42 ± 2 nm. Further increasing the drug concen-
tration, merely an increment of the contour length was 
detected. At a drug concentration of 15 µM, we found a 
dsDNA-elongation of 27%. In previous work, we were 
able to categorize the binding mode of a dsDNA-binding 
agent by its influence on the nanomechanical properties 
of the host molecule, i.e. an intercalator elongates the 
dsDNA virtually without affecting the bending stiffness; 
in contrast, a groove binder only softens the dsDNA [33]. 
That leads to the conclusion that MTX-dsDNA associa-
tion exhibits a concentration-dependent bimodal binding 
mechanism. Primarily, MTX intercalates and groove-
binds to dsDNA simultaneously, i.e. the planar anthraqui-
none ring interacts with the dsDNA base pairs in both 
intercalating and groove-like binding modes. Moreover, 
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Fig. 2  a dsDNA extension-experiments with different MTX concentrations. Open circles show the experimental data and solid lines represent the 
fitting to the WLC model. b Persistence length P of dsDNA in dependence of drug concentrations (green dots). The zones below and beyond the 
threshold concentration were approximated by a straight line (< 3 µM) and a zero slope line (> 3 µM), c plot of fractional elongation of DNA γ with 
drug concentrations. Green dots show the experimental data that were approximated to the McGhee-von Hippel model (solid line)
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the aminoethylamino side chains bind electrostatically 
to the negatively charged phosphate backbones strength-
ening the MTX-dsDNA interaction. This matches with 
the results from the earlier reports [14–19, 22, 39–41]. 
Beyond the threshold concentration of 3 µM, the interca-
lation becomes dominant. Notably, in the case of bimodal 
binding, it is still not clear in which groove the electro-
static interaction occurs. Lown et al. and Wang et al. sug-
gested that two aminoethylamino chains fit to the major 
groove by electrochemical experiments and a high-field 
1H-NMR analysis, respectively [14, 18, 20]. In contrast, 
Mazerski et  al. reported a minor-groove association of 
both side chains [17]. Several other work found that the 
helically shaped chains of MTX can associate in both 
grooves. However, the interaction in the minor groove 
was found less favorable and sequence-selective [15, 16, 
19].

Determination of binding mechanism
In addition, we approximated the fractional elongation 
data to the non-cooperative McGhee-von Hippel binding 
model (Fig.  2c) and obtained an elongation per interca-
lated drug molecule of ∆x = 0.37 ± 0.02 nm, correspond-
ing to a rise of a B-DNA base pair (0.34 nm). The binding 
site size n was determined as n = 2.51 ± 0.11 bp, which is 
typical for a monointercalator and conforms to the “near-
est neighbor exclusion principle” [42–44]. This matches 
very well with previous results [18, 21, 40] although ear-
lier Kapuscinski et al. also reported a n-value of 5 bp for 
MTX [39]. Analogously, we calculated an equilibrium 
constant of association of Ka = (0.98 ± 0.06) × 105  M−1, 
which is consistent with the results of Kapuscinski et al. 
of Ka = 2.5 × 105  M−1 [21] but somewhat lower than 

published by other groups [15, 18, 22–25, 39]. However, 
since MTX apparently presents a more complex bimodal 
binding mode, the theoretical model might be of a some-
what limited applicability.

Overwinding‑experiments
In order to determine the unwinding angle of the MTX-
intercalation, we performed overwinding-experiments 
that allowed us to twist individual nick-free dsDNA mol-
ecules in a well-defined manner. The pulling force was 
preset to 0.2 pN. The resulting supercoiling states were 
recorded as so called “hat curves” (Fig. 3a). At such small 
forces, a bare dsDNA molecule exhibits a symmetric 
torsional behavior. The peak positions of these curves 
describe the rotationally relaxed state of the dsDNA dou-
ble helix. Starting from here, a hat curve can be divided 
into two phases (Fig.  1b, blue dashed line). In the first 
phase, the dsDNA length hardly changes upon twisting 
where the mechanical torque on dsDNA is released along 
the double strands. In the second phase, the dsDNA end-
to-end distance decreases linearly with the number of 
added turns where plectonemes are formed [33, 45–47]. 
The buckling number N defines the crossover regime of 
these two phases (Fig.  1b). In contrast, a multiple rota-
tion of a nicked dsDNA molecule causes no under- or 
overwinding since the single strand can rotate around the 
phosphodiester bond in idle state [48]. Such structural 
characteristics of dsDNA polymers can be used to study 
dsDNA unwinding induced by drug-intercalation. The 
local unwinding generates positive supercoilings which 
can be detected as a sudden dsDNA length decrement or 
a shift of hat curves [31, 33, 46, 49–52].

The overwinding experiments were recorded with 
added MTX concentrations up to 28 µM. The hat curve 
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of bare dsDNA was taken as reference (black curve, 
Fig. 3a). By increasing the MTX concentration, an obvi-
ous shift of the hat curves to negative rotation numbers 
was observed, indicating a DNA unwinding and further 
supporting the intercalative binding mode of MTX [44]. 
In addition, a height increment of the hat curves implies 
an intercalation induced dsDNA elongation that is fully 
consistent with our extension experiments [44].

Moreover, we evaluated and plotted the change in the 
rotation number ΔR and the elongation of the dsDNA 
contour length ΔL (Fig. 3b). The linear approximation of 
the data gave us a slope of 0.121 ± 0.002 turns/nm.

According to the following correlation

the unwinding angle per intercalated MTX molecule θ 
can be calculated combining the slope of the linear fit 
and the previously determined elongation per drug mol-
ecule Δx [31, 33, 49]. As a result, we obtained an unwind-
ing angle of 0.045 ± 0.003  turns/drug corresponding to 
θ = 16 ± 1°/drug. This result is in full accordance with 
the reported value of Lown et al. from their independent 
viscosity and topoisomerase assays (17.5°, [15]), but con-
siderably lower compared to the report from Kapuscinski 
et al. (26.5°, [39]).

Conclusion
In summary, we investigated the nanomechanical bind-
ing mechanism of MTX to dsDNA at room tempera-
ture in PBS buffer by employing a MT single molecule 
nanosensor. As a conventional mono-intercalator, MTX 
displayed a fast equilibrium assembly compared with 
bis-intercalators and threading intercalators [53–58]. 
By means of extending and overwinding individual 
DNA molecules, we observed an elongation, softening 
and untwisting of the DNA double helix upon MTX 
binding in a concentration dependent manner. Based 
on earlier findings [33], we identified a bimodal asso-
ciation mode, i.e. MTX exhibits simultaneously an 
intercalative and groove-binding behavior. In addition, 
we determined a threshold concentration of 3  µM at 
which the primary bimodal association declines and 
mere intercalation becomes dominant. Furthermore, 
we estimated a binding site size of n ≈ 2.5  bp, which 
corresponds to the results of previous reports (n = 2.6–
3.0  bp) [18, 21, 40]. An elongation of Δx ≈ 0.37  nm 
induced by each drug molecule was estimated, which is 
typical for a mono-intercalator, since the bond between 
the drug molecule and DNA base pairs is stabilized 
through π-stacking. Moreover, we found that each 
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intercalated MTX molecule unwinds the native DNA 
helix with an angle θ of about 16°, compensating the 
elongation-induced tension. Finally, the equilibrium 
constant of association of MTX-dsDNA interaction 
was determined to be about Ka ≈ 1 × 105 M−1, which is 
significantly lower than in previous reports [15, 18, 22–
25, 39]. However, other anthraquinone derivates like 
DRAQ5 were found to occupy a similar binding affin-
ity to DNA [33, 59–63]. The results of this work help to 
further characterize and quantify the biophysical bind-
ing mode of mitoxantrone to dsDNA and in turn sup-
port the medical regulation processes.

Additional file

Additional file 1. Force clamp experiments of dsDNA molecule with 3 µM 
MTX at different forces. dsDNA was incubated with 3 µM Mitoxantrone for 
2 h in the relaxed state. The forces 0.1, 1, 5 and 10 pN were successively 
applied to the bead so that the DNA molecule was stretched. After a delay 
of 10 s, which was as well included in the force-extension measurements, 
the DNA extensions were recorded as a function of time. The constant 
DNA lengths in a large time scale (10 min) indicate that the mitoxantrone 
already equilibrated its association to the DNA before the force measure-
ments were taken and displayed a fast equilibrium assembly. Here, d/L0 is 
the normalized end-to-end distance of the DNA molecule and L0 repre-
sents the DNA contour length in the absence of mitoxantrone.
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