
Wang et al. J Nanobiotechnol           (2019) 17:82  
https://doi.org/10.1186/s12951-019-0514-y

REVIEW
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Abstract 

Skin damages are defined as one of most common lesions people suffer from, some of wounds are notoriously 
difficult to eradicate such as chronic wounds and deep burns. Existing wound therapies have been proved to be 
inadequate and far from satisfactory. The cutting‑edge nanotechnology offers an unprecedented opportunity to rev‑
olutionize and invent new therapies or boost the effectiveness of current medical treatments. In particular, the nano‑
drug delivery systems anchor bioactive molecules to applied area, sustain the drug release and explicitly enhance the 
therapeutic efficacies of drugs, thus making a fine figure in field relevant to skin regeneration. This review summarized 
and discussed the current nano‑drug delivery systems holding pivotal potential for wound healing and skin regen‑
eration, with a special emphasis on liposomes, polymeric nanoparticles, inorganic nanoparticles, lipid nanoparticles, 
nanofibrous structures and nanohydrogel.
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Introduction
Skin, the largest organ of human body, functions as a 
pivotal barrier featured with immunologic, sensorial and 
protective capability. Owing to its exposure to the exter-
nal environment, skin is vulnerable to a variety of external 
factors which result in different types of skin damage and 
injury. It should be noticed that the prevalence of peo-
ple suffering from chronic wounds has risen sharply in 
recent years, due to the dramatically increasing incidence 
of obesity and chronic diseases such as diabetes, venous 
and arterial insufficiency [1]. It is estimated that chronic 
wounds affect about 1–2% of the European and United 
states population [2], for example, prevalence of diabe-
tes ulcers alone has already reached as high as 10–22% in 
diabetes patients [3]. However, traditional therapies gen-
erally involve costly and long-lasting treatments with a 
ulcer relapse rate of above 70% [4]. The astonishing num-
bers of patients being eager for better healing quality and 

the staggering budget spent for wound care, which are 
still on the wax, prominently drive the research in fields 
of wound healing and skin regeneration.

Thanks to the innovative and impressive development 
of nanotechnology, numerous nano-drug delivery sys-
tems (nano-DDSs) were invented and introduced into the 
areas relevant to skin regeneration. It is universally testi-
fied that nano-DDSs evidently accelerate wound healing 
and improve the healing quality for the several promi-
nent advantages they enjoy: (1) Nano-DDSs are found to 
be non-toxic, perfectly compatible with skin and favora-
bly create a beneficial moist environment for activation 
and acceleration of wound healing process. (2) Some 
specific nano-DDSs are equipped with ability of enter-
ing into the cytoplasmic space across cellular barriers or 
activating specific transport mechanisms to improve the 
drug retention [5]. (3) When incorporated with bioactive 
molecules, nano-DDSs protect drugs from degradation 
elicited by proteases in wounds, remarkably enhanc-
ing therapeutic effectiveness [6]; (4) The sustained drug 
release also prolongs the maintenance of effective drug 
concentration, reduces the frequency of administration 
and leads to decline of cost as well as improvement of 
compliance.
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This review mainly introduces the wound healing pro-
cess, the current wound treatment and their limitations, 
and the state of the art in nano-DDSs that holds a prom-
ising potential for future application, with a special focus 
on liposomes, polymeric nanoparticles, lipid nanoparti-
cles, nanofibrous structures and nanohydrogel.

Wound categories and wound healing process
Wound categories
Wounds are defined as the breakage or disruption of 
skin caused by trauma or medical/physiological condi-
tions. Under such circumstance, damage to skin anatomi-
cal structure and the loss of skin physiological functions 
occur frequently. The wounds generally fall into two 
categories: acute wounds often result from mechanical 
damage or exposure to extreme heat, irradiation, electri-
cal shock or corrosive chemicals. Such wounds heal in a 
relatively short period of time if supported by appropri-
ate wound management [7]. Chronic wounds normally 
appear to be the complication of some specific diseases 
like diabetes, which is notorious for its horrendous inci-
dence of ulcers. These wounds require for longer time 
to heal and their reoccurrence rates are extremely high 
unless the root diseases are cured [8].

According to wound depth, the wounds can be classi-
fied as three kinds: superficial wounds (only lose a part 
of epidermis), partial thickness wounds (epidermis and 
deeper dermal layers are affected) and full thickness 
wounds (subcutaneous fat and deeper tissue are dis-
rupted) [9].

Wound healing process
Wound healing is a complex and dynamic physiological 
process involves with various cells, mediators, extracel-
lular matrix (ECM) components, growth factors, and 
proteinases [10]. As showed in Fig. 1, it can be generally 
divided into three overlapping phases including inflam-
matory, proliferative, and re-epithelialization/remodeling 
phase [11, 12].

The inflammatory phase often lasts 2 to 5  days after 
skin damage. When an injury occurs, the hemostasis is 
initiated immediately by intravascular platelets to form 
a clot and stop bleeding [13]. Furthermore, platelets will 
be activated by thrombin and release several growth fac-
tors such as epidermal growth factor (EGF), insulin-like 
growth factor 1 (IGF-1), platelet-derived growth factor 
(PDGF), fibroblast growth factor (FGF), transforming 
growth factor (TGF-α and TGF-β) [14, 15]. These growth 
factors diffuse into wound tissue and serve as biological 
signals to attract neutrophils, monocytes, leukocytes and 
macrophages, which will further mediate the inflamma-
tion, protect skin from infection and secret more growth 
factors to accelerate wound healing [16, 17].

The proliferative phase generally takes 3  days to 
2 weeks after injury, featured with cell proliferation and 
migration [18]. Fostered by proangiogenic factors such as 
PDGF released by platelets and inflammatory cells within 
wound area, new blood vessels and capillaries gradu-
ally take shape [19]. Simultaneously with angiogenesis, 
migration of fibroblasts is also elicited by the stimulation 
of PDGF and FGF from inflammatory cells to form gran-
ulation tissue [20, 21]. With the accumulation and pro-
liferation of fibroblasts, new ECM composed of collagen, 
proteoglycans, and elastin is produced. Some fibroblasts 
even differentiate into myofibroblasts and play a role in 
the contraction of wound area [22]. Moreover, activated 
keratinocytes around wound margin migrate to injured 
area to complete re-epithelialization [23].

Re-epithelialization and remodeling phase varies from 
3 weeks to 2 years post-injury. The collagen III in newly-
synthesized ECM is gradually replaced by collagen I and 
the new born collagen fibers evolve into a more organ-
ized lattice structure, augmenting tensile strength of 
healed skin [24, 25]. Remodeling phase also concerns 
about scar formulation [26].

Current wound treatment
The ultimate goal of the wound management is to prevent 
serious infection, accelerate wound healing and reduced 
scars and pain for patients. Currently, a set of strategies 
are available for wound management mainly including 
debridement, autografts and application of therapeutic 
agents. In addition, some burgeoning new therapies such 
as stem cell therapy, gene therapy, photothermal and 
photodynamic therapy, are playing an increasingly vital 
role in some complicated wound treatment.

Debridement
Conventional debridement removes the necrotic or 
infected tissue that may prolong the inflammatory phase 
and impede wound contraction as well as re-epitheli-
alization, fostering a better wound bed for healing pro-
cess [27]. Debridement, including surgical, autolytic, 
mechanical, maggot, and enzymatic method, usually 
involves with further application of wound dressings [28]. 
Although debridement, especially the sharp debride-
ment, has been well acknowledged as the gold standard 
for rapid removal of necrotic tissue and prevention of 
potential infection, it is still confronted with some limi-
tations: its lasting and significant pain sometimes can 
be unacceptable for patients [29, 30], and it requires for 
experienced clinicians and specific materials in order to 
avoid second trauma. Therefore, applied method should 
be in accordance with the evaluation of wound character-
istics, patient condition, and resources available in treat-
ment [31].
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Autografts and allografts
The use of autografts and allografts remains the gold 
standard for skin regeneration. Autografts and allografts 
approaches mainly harvest full-thickness fascia from 
a donor site of patients or other donators and graft it 
over the target region [32]. Autografts have reputation 
for excellent adhesion to the wound site and better cos-
metic results, conspicuously relieving pain and reducing 
rejection. However, the rigorous requirement of donor 
site limits their usage and such skin grafts also bring the 
undesirable amount of scar and serious skin contrac-
tion in late stage of wound healing, along with the costly 
hospital stay [33]. As for allografts, the major advantage 
is the temporary prevention of wound dehydration and 
contamination, along with the favorable fitness to wound. 
Nevertheless, due to the resource of grafts, the risk of 

disease transmission and higher rate of immune rejection 
are inevitable [34]. It should be noticed that the tissue-
engineered skin substitutes and in  situ biofabrication of 
skin substitutes like cultured epithelial autografts, are 
emerging as promising strategies to overcome the set-
backs of traditional autografts [35].

Topical drug application
Application of topical drugs, which mainly focuses 
on promoting healing process and preventing infec-
tion, still plays an indispensable role in treatment 
for all types of wounds. Hence, a large demand still 
exists in exploring novel therapeutic agents for topi-
cal wound therapy. Topical therapeutic agents consist 
of growth factors and antimicrobial agents being cru-
cial for the wound treatment and skin regeneration. 

Fig. 1 Illustration of wound healing process
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Growth factors are biologically active polypeptides 
which regulate cell growth, differentiation, and migra-
tion and exert an impact on all stage of wound heal-
ing. It has been confirmed in some clinical researches, 
growth factors exert amazing effects on wound healing 
promotion and skin function restoration without any 
obvious side effects. The clinical used growth factors 
are listed in Table 1.

Owing to infection being a leading cause of mortality 
and horribly delaying the wound healing, antimicro-
bial agents are generally administrated both topically 
and systemically. The choice of antimicrobial agents 
strongly depends on the microbiological analysis for 
species and susceptibility of microorganisms. The 
most commonly used antimicrobial agents are listed in 
Table 2.

Nano‑drug delivery system in wound treatment 
and skin regeneration
Nano-DDSs hold immense potential in enhancement of 
drug therapeutic efficacy for their capability of preventing 
drug degradation and sustaining drug release. Numerous 
nano-DDSs carrying therapeutic agents are springing up 
unprecedentedly and adopted in promoting wound heal-
ing and skin regeneration, mainly including liposomes, 
polymeric nanoparticles, inorganic nanoparticles, lipid 
nanoparticles, nanofibrous structures and nanohydro-
gel [36–38] (Fig. 2). Recent researches of nano-DDSs are 
listed in Table 3.

Liposomes
Liposomes are bilayer vesicles built by amphiphilic 
molecules such as phospholipids, emerging as one of 
promising nano-carriers for topical drug delivery [39]. 
They are nontoxic, biodegradable, biocompatible with 
skin, and capable of accommodating both hydrophilic 

Table 1 Growth factors in clinical application

Growth factor Target cells Administration Function Refs.

EGF Fibroblasts
Keratinocytes

Topical Promote cell proliferation, differentiation and migration; accelerate epidermal 
regeneration

[93]

PDGF Neutrophils
Macrophages
Fibroblasts
Smooth muscle cells

Topical Increase the structural integrity of vessels; promote cell proliferation, ECM Depo‑
sition and re‑epithelialization

[94]

bFGF Keratinocytes
Fibroblasts

Topical Promote collagenase production, ECM deposition and re‑epithelialization [95]

GM‑CSF Keratinocyte
Endothelial cells
Macrophages Eosinophils

Topical/sub‑
cutaneous 
injection

Promote local recruitment of inflammatory cells, stimulate cell proliferation and 
differentiation and wound contraction

[96]

TGF‑β Keratinocytes
Macrophages
Lymphocytes
Fibroblasts

Topical Promote granulation tissue formation; re‑epithelialization; matrix formation and 
remodeling

[97]

Table 2 Most commonly used antimicrobial agents in wound treatment

Antimicrobial agents Administration Spectrum References

Gentamicin Systemic/topical Gram‑positive bacteria [98]

Tetracycline Oral/topical Gram‑positive and Gram‑negative bacteria [99, 100]

Ciprofloxacin Oral/systemic Gram‑positive and Gram‑negative bacteria especially Gram‑negative bacilli [101, 102]

Vancomycin Systemic Gram‑positive bacteria especially MRSA [103]

Penicillin G Systemic Non‑β‑lactamase‑producing Gram‑positive bacteria, anaerobes [104]

Neomycin Systemic/topical Aerobic Gram‑negative bacilli and Gram‑positive aerobes [105]

Polymyxin B Systemic Gram‑negative bacteria [106]

Mupirocin Topical Gram‑positive bacteria especially MRSA, some Gram‑negative flora [107]

Amphotericin B Systemic/topical Fungi [108]

Silver sulfadiazine Topical Gram‑positive, most Gram‑negative bacteria, and some fungal forms [109]

Mafenide acetate Topical Gram‑negative bacilli, anaerobes [110]
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drugs (e.g. growth factors) in inner water cavity and 
hydrophobic agent in bilayer [40, 41]. In this way, 
liposomes provide protection for encapsulated drug 
and sustain the drug release. Furthermore, liposomes 
effectively cover wound and create moist environment 
on wound surface after application, which is very con-
ducive to wound healing [42]. Taking advantage of all 
these merits, liposomes have been universally applied 
in wound treatment and skin regeneration. Xu et  al. 
[43] prepared a novel liposome with hydrogel core of 
silk fibroin which effectively encapsulated bFGF. The 
vehicles remarkably improved the stability of bFGF in 
wound fluids and maintained cell proliferation activ-
ity with respect to traditional liposomes. Furthermore, 
the liposomes with hydrogel core efficiently accelerated 
wound healing, particularly in inducing angiogenesis. 
Nunes et  al. [44] evaluated the promoting effect of a 
gelatin-based membrane containing usnic acid-loaded 
liposome on wound healing. The experiments on a 
porcine model indicated that the liposomal membrane 
conspicuously controlled the secondary infection. In 
addition, more exuberant and cellularized granulation 
tissue with better collagen deposition was observed in 
the liposomal membrane treated group, therefore the 
special membrane boasted a comparable capacity to 

commercial product DuoDerme with regard to enhance 
maturation of granulation tissue and scar repair.

Presented as a new generation of liposomes, deform-
able liposomes, also called transfersomes, mainly consist 
of phospholipids and an edge activator (such as sodium 
cholate, sodium deoxycholate and Tween-80) [45], bring-
ing new insight into topical drug delivery. These novel 
carriers not only integrate the benefits of traditional 
liposomes, but show more merits in topical application. 
The presence of edge activator renders high flexibility 
of deformable liposomes and enables them to across the 
stratum corneum and reach the viable epidermis [46]. Uk 
Choi et  al. [47] conjugated low-molecular-weight pro-
tamine (LMWP) to the N-termini of EGF, PDGF-A and 
IGF-1, these molecules were subsequently complexed 
with hyaluronic acid and eventually incorporated into 
cationic deformable liposomes. The results showed that 
the cationic elastic liposomes containing the growth fac-
tor complex significantly accelerated the wound closure 
rate in the diabetic mouse model, with the maximal 
shrink of wound size by 58% compared with the native 
growth factor complex. It was fully confirmed that the 
elastic liposomes cooperated with growth factor com-
plex, synergistically exerting both rapid and prolonged 
effects on promoting chronic wound healing. A new 

Fig. 2 Nano‑drug delivery systems in skin regeneration and wound treatment
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self-assembling core–shell gellan-transfersome loading 
baicalin was designed by Manconi et al. [48], they found 
out that novel transfersomes showed a relatively high 
skin drug deposition, about 11% of baicalin was retained 
in the whole skin, 8% of which was in the dermis, con-
sidered to be quite efficient. Daily application of baicalin 
transfersomes in mice model brought about complete 
skin restoration and inhibition of inflammatory markers 
such as oedema, TNF-α and IL-1β. Kianvash et  al. [49] 
also noticed that their newly prepared propylene glycol 
nanoliposomes containing curcumin not only featured by 
preferential physiochemical properties (small size, sus-
tained drug release, good stability and biocompatibility), 
but promoted second degree burns in rat model in terms 
of avoiding infections and elevating wound contraction.

Nevertheless, liposomes also exhibit some demerits in 
application: drug leakage in liposomes sometimes can be 
unavoidable and rapid [50, 51]; the low reproducibility 
and stability of liposomes remains a major obstacle for its 
expansion in clinical use [52, 53].

Polymeric nanoparticles
Polymeric nanoparticles are biocompatible colloidal 
systems drawing increasing attention in both biomedi-
cine and bioengineering fields [54]. When embedded or 
conjugated with these polymeric devices, drugs are pro-
tected from degradation by the proteases presenting in 
the wound and released in a controlled manner so as to 
reduce administration frequency. The need of effectively 
delivering biomolecules such as antimicrobial agents, 
growth factors and genes, will be met with aid of nano-
particles [55, 56]. Currently most polymeric nanoparti-
cles are prepared by poly lactic-co-glycolic acid (PLGA, 
crowned as the mostly used polymers), alginate, gelatine, 
chitosan, as well as other polymer combinations [57, 58].

Many researches focus on developing polymeric nano-
particles encapsulating antimicrobial agents. Chereddy 
et  al. [59] reported a PLGA nanoparticle loaded with 
antimicrobial peptide LL37 (PLGA-LL37 NPs) could be 
a biodegradable drug delivery system that accelerated 
healing process. It displayed antimicrobial activity on 
Escherichia coli and induced promoted cell migration 
while lifting no effect on proliferation of keratinocytes. In 
full thickness excisional wound model, PLGA-LL37 NP-
treated group exhibited advanced granulation tissue 
formation, characterized by significant higher collagen 
deposition, re-epithelialized composition and neovascu-
larization. Furthermore, it improved angiogenesis and 
modulated the inflammatory wound response by up-reg-
ulation of interleukin-6 (IL-6) and vascular endothelial 
growth factor (VEGF). Dave et al. [60] prepared a lipid-
polymer hybrid nanoparticle formulation which was 
able to sustained drug release to 24 h with favorable skin 

permeation and reduced the frequency of application. 
Norfloxacin -loaded nanoparticles still performed well in 
antimicrobial efficacy test against Staphylococcus aureus 
and Pseudomonas aeruginosa. Therefore, it was consid-
ered to hold a broad prospect in treating burn-induced 
infections.

To reduce high cytotoxicity of Amphotericin B and 
improve the patient appliance, Sanchez et al. [61] incor-
porated Amphotericin B into a silane-based hydrogel 
nanoparticles to replace the traditional intravenous injec-
tion infusion. Amphotericin B nanoparticles resulted in 
equivalent or enhanced killing efficacy with 72.4–91.1% 
by 4 h for Clinical strains. It also contributed to statisti-
cally significant reduction of fungal biofilm metabolic 
activity ranging from 80 to 95%. In a murine full-thick-
ness burn model, Amphotericin B nanoparticles cleared 
fungi in a more rapid manner versus free drug solu-
tion within 3 days while their wound healing rates were 
similar.

Performance of nanoparticles also exceeds expectation 
in gene therapy related to skin regeneration. To over-
come the setbacks of insufficient expression of angio-
genic factors and low cell viability after transplantation, 
biodegradable nanoparticles were developed to deliver 
hVEGF gene to human mesenchymal stem cells and 
human embryonic stem cell-derived cells [62]. hVEGF 
production, cell viability, and engraftment into target tis-
sues of stem cells were prominently enhanced. The scaf-
fold seeded with genetically modified stem cells directly 
achieved 2–4 fold higher vessel densities 2  weeks post-
implantation versus control cells or cells transfected with 
hVEGF gene by Lipofectamine 2000. When intramuscu-
larly injected into mouse ischemic hindlimbs, cells pre-
treated with nanoparticles still facilitated angiogenesis 
and limb salvage, meanwhile, reducing muscle degenera-
tion and tissue fibrosis.

Inorganic nanoparticles
Inorganic nanoparticles refer to nanoparticles deprived 
from inorganic materials, including the metallic nanopar-
ticles, carbon based nanoparticles, ceramic nanoparticles 
etc. [63]. Benefiting from its intrinsic nature of materials, 
inorganic nanoparticles exhibit both the similar mer-
its in wound healing treatment and strong antibacterial 
effect, for example, silver nanoparticles are often applied 
as antimicrobial agents. Therefore, the combination of 
inorganic nanoparticles is more preferred in research to 
achieve synergistic promoting effect of both materials 
and drugs.

Jun et  al. [64] investigated the promoting wound-
healing effect of silver nanoparticles and its mechanism 
were systematically revealed in burn wound and chronic 
wound model. Dose-dependent rapid healing and 
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improved superficial wound appearance were observed 
and further studies demonstrated that the relatively 
prompt wound healing and reduced wound inflamma-
tion may be mediated by elevation of TGF-β, VEGF, IL-6 
induced by silver nanoparticles.

Ali et al. [65] designed and synthesized  ZnO2 nanopar-
ticles by co-precipitation method. This kind of nanopar-
ticles is an efficient inorganic material with antibacterial 
properties.  ZnO2 nanoparticles had good antibacterial 
activity for pseudomonas aeruginosa and aspergillus iso-
lated from wound infected tissues of burn patients. The 
results of histopathological evaluation confirmed that 
 ZnO2 nanoparticles could accelerate the healing of skin 
wounds in animal models in vivo.

Thrombin is a widely used drug for topical hemosta-
sis and wound healing. With the aim of overcoming the 
weak stability of drug, a thrombin-bounded maghemite 
 (Fe2O3) nanoparticle were fabricated and its therapeu-
tic effect were evaluated via application on an incisional 
wound model [66]. The results illustrated that the nano-
particle-treated group characterized by fewest inflamma-
tory cells, smallest amount of granulation tissue along the 
surgical scar and highest values of skin tensile strength. 
All the evidences supported that thrombin-bounded 
maghemite nanoparticle remarkably advanced the wound 
healing stage and achieved better healing quality.

Studies have been extended to the blending applica-
tion of different inorganic nanoparticles to render a bet-
ter efficacy. Thanusha et  al. [67] developed a hydrogel 
co-encapsulated with asiatic acid and nanoparticles (zinc 
oxide and copper oxide) for second burn wound heal-
ing. Physicochemical studies showed the formulation 
was characterized by porous morphology, large water 
uptake, excellent tensile strength and good anti-bacterial 
capacity. Thanks to the co-loaded nanoparticles, in vivo 
study of therapeutic efficiency demonstrated that DNA, 
total protein, hexosamine and hydroxyproline content of 
wounds in hydrogel treated group were all raised signifi-
cantly; re-epithelialization, collagen fibers arrangement 
and angiogenesis were confirmed to be more supe-
rior than the group treated with commercial available 
products.

Lipid nanoparticles
Solid lipid nanoparticles (SLNs) and nanostructured lipid 
carriers (NLCs) were representatives of lipid nanoparti-
cles introduced to overcome the limitation of liposomes. 
Lipid nanoparticles were generally prepared with physi-
ological lipids or lipid molecules and their preparation 
process requires no involvement of any potentially toxic 
organic solvents [68]. Their nontoxic colloidal dimen-
sions contribute to the controlled release of drug and 
versatility of administration [69, 70]. The potential of 

lipid nanoparticles for topical therapeutic or cosmetic 
purposes has been partially exploited as a market prod-
uct loaded with Q10 is available (NanoRepair  Q10®, Dr. 
Rimpler) [71].

Gainza et al. [72] reported both SLNs and NLCs load-
ing with rh-EGF for treatment of chronic wounds. Both 
of the nano-formulations were prepared through emul-
sification-ultrasonication method, but the preparation 
process of NLCs involved no organic solvent and char-
acterized by much higher encapsulation efficiency. The 
results of the effectiveness of nano-formulations showed 
that both of them equipped with superior capability on 
promoting cell proliferation compared with free rh-EGF, 
and significantly improved healing in terms of wound 
closure, restoration of the inflammatory process, and re-
epithelialization when applied on full-thickness wound 
model in db/db mice.

Fumakia et  al. [73] fabricated SLNs loading with an 
elastase inhibitor serpin A1 and antimicrobial peptide 
LL37 to achieve synergistic effect on wound healing. 
Making the most of the synergistic effect of drugs and 
extraordinary characteristics of SLNs, the formulation 
promoted wound closure in fibroblast cells and keratino-
cytes. In addition, it simultaneously enhanced antibacte-
rial activity against S. aureus and E. coli compared with 
the group treated with LL37 or A1 alone.

In another related study, andrographolide-loaded lipid 
nanoparticles were developed, optimized, then success-
fully incorporated into a chitosan-HA scaffold [74]. This 
scaffold exhibited appropriate porosity, suitable swelling 
ratio and a controlled drug release behavior up to 72 h. 
When applied to second degree burn wounds, it nota-
bly reduced scar formation and improved healing qual-
ity, which could be explained by anti-inflammatory and 
antioxidant effect of chitosan, HA and nanoparticles. 
Therefore, this scaffold would be a potential candidate for 
wound healing treatment.

Nanofibrous structures
Nanofibers are fabricated from natural and synthetic 
continuous polymer chains which are able to subse-
quently act as nanofibrous sheets or 3D-scaffolds applied 
in tissue engineering [75, 76]. These nanofibrous struc-
tures are designed to mimic the ECM, provide favora-
ble condition for cell attachment and elevate cell-drug 
interaction, serving as a replacement for artificial dermal 
analogues [76, 77]. Electrospinning is the most widely-
adopted technique for production of nanofibers. An elec-
trical charge is taken as driving force to draw fibers from 
a polymer solution so as to fabricate nanometric continu-
ous fibers [78]. Due to its high area to volume ratio, the 
nanofibers enhance transfer of a variety of therapeutic 
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agents including diverse antimicrobial agents, growth 
factors and even nucleic acids [79].

Adeli-Sardou et al. [80] electrospun lawsone into poly-
caprolactone-gelatin (PCL/Gel) polymers in core–shell 
architecture, so as to produce special nanofibers for skin 
tissue regeneration. In addition to boosted cell attach-
ment and proliferation brought along by nanofibers, 
results of RT-qPCR revealed that in vitro gene expression 
of TGF-β1, collagen and EGF was impressively elevated 
in the nanofiber-treated cells. Furthermore, 1% lawsone 
PCL/Gel had the best impact on wound healing of rats, 
especially in the acceleration of re-epithelialization. Shan 
et  al. [81] prepared astragaloside IV loaded silk fibroin/
gelatin nanofibrous dressing via electrospinning nano-
technology. The nanofibrous dressing was equipped with 
excellent biocompatibility, significantly improving cell 
adhesion and proliferation in  vitro, accelerating wound 
healing and inhibiting scar formation in vivo. Results also 
found out that the nanofibrous dressing exerted positive 
impacts on angiogenesis, collagen production and colla-
gen organization.

Combined with stem cell therapy, Ramasatyaveni et al. 
[82] attached mouse bone marrow stem cells to a porous 
polyethylene glycol-polyurethane (PEG-PU) scaffold to 
better fulfill differentiation potential and wound healing 
capability of stem cells. The results of in vivo observations 
depicted significant increase in fibroblast proliferation, 
collagen deposition and anti-oxidant enzyme activity, 
with obvious decreased expression of pro-inflammatory 
cytokines (IL-1β, TNF-α, IL-8, etc.) and concomitant 
increase in anti-inflammatory cytokines (IL-10, IL-13) at 
an early healing stage. Furthermore, enhanced engraft-
ment and vascularity were detected to provide evidences 
for an accelerated wound tissue closure.

In some cases, nanofibrous structures were simultane-
ously integrated with other nano-formulations to achieve 
a synergic impressive effect on skin regeneration. Zulki-
fli et  al. [83] fabricated the hydroxyethyl cellulose-silver 
nanoparticles into scaffold to endow it with anti-micro-
bial capability. Fibroblast cells were able to adhere onto 
the surface of scaffolds after co-incubation, indicating 
that it is a potential substrate with high biocompatibility 
for biomedical applications, especially in the wound heal-
ing and tissue engineering field. According to report of 
Fan et al. [84], a nanofibrous scaffold carrying with nano-
TiO2 hydrosol was designed for better skin repair. The 
results of physicochemical properties revealed the good 
permeability and stability, which offer a humid environ-
ment for wound healing and met the requirement of 
wound coverage protection. Due to the embedment of 
nano-TiO2, the scaffold strongly inhibited the growth of 
Staphylococcus aureus and induced red blood cell aggre-
gation to stop bleeding. In another study, magnetic iron 

oxide nanoparticles were incorporated into three-dimen-
sional fibrous scaffolds to form a novel formulation and 
its physicochemical properties and cell biocompatibility 
in  vitro were investigated [85]. It turned out that mag-
netic iron oxide nanoparticles were successfully loaded 
into scaffolds while maintaining magnetic behavior. It 
was also a suitable scaffold for cell adhesion with low 
cytotoxicity, thus having prominent advantages in skin 
tissue engineering, particularly in the treatment that may 
encounter magnetic field.

Nanohydrogel
Nanohydrogel is the three-dimensional polymeric net-
works considered as ideal formulation for wound man-
agement: the porous three-dimensional structure endows 
it with the ability of aqueous fluid absorption [86], pre-
venting wound dehydration and creating a beneficial 
moist environment for wound healing [87]; its non-
adhesive nature allows it to preserve the wound bed 
while maintaining the penetration of oxygen, which is 
necessary for wound healing [88]; soft texture of nano-
hydrogel provides comfortable experience in the course 
of treatment [89]. Furthermore, nanohydrogel is able to 
encapsulate many related drugs with perfect compat-
ibility and efficacy, exerting an impressive effect on skin 
regeneration.

A gellan-cholesterol nanohydrogel embedding baica-
lin was introduced to speed up wound healing process 
[90]. Characterized by proper viscosity, improved skin 
retention and preferable biocompatibility, it was further 
applied to a cutaneous inflammation mice model induced 
by a phorbol ester. The baicalin-loaded nanohydrogel 
exhibited optimal performance for a complete skin res-
toration and inhibition of specific inflammatory mark-
ers (i.e., myeloperoxidase, tumor necrosis factor-α and 
oedema) were realized in  vivo. Xi Loh et  al. [91] found 
that a newly-produced bacterial nanocrystal cellulose/
acrylic acid hydrogel could rapidly adhere to fibroblasts, 
maintain the activity and morphology of human dermal 
fibroblasts, limit cell migration, promote rapid cell pro-
liferation, and affect 9 gene expression related to wound 
healing like IL-6, IL-10, GM-CSF, TGF-β and matrix 
metalloproteinase-2 (MMP-2). Thus this hydrogel was 
regarded as playing a pivotal role in skin regeneration.

Besides, the versatile administration of nanohydrogel 
has received considerable interest, with the special focus 
on injectable nanohydrogel. Giriraj et  al. [92] reported 
a nanocomposite hydrogel consisted of natural poly-
saccharide, κ-carrageenan and nanosilicates. This spe-
cially designed nanohydrogel was confirmed to feature 
with high mechanical stiffness and good porosity with 
an interconnected network. With the addition of VEGF, 
VEGF-loaded nanohydrogel significantly enhanced cell 
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adhesion and spreading, reduced blood clotting time and 
facilitated in vitro tissue regeneration. However, the fur-
ther investigation in  vivo is required to fully reveal the 
therapeutic efficacy of this novel formulation on wound 
healing.

Conclusion
The treatment of chronic wounds or ulcers remains a 
thorny and daunting challenge because current therapies 
mostly failed to provide favorable outcomes of wound 
healing. Nevertheless, the progressive expansion of 
nano-DDSs in recent years has brought new insight for 
skin regeneration of wounds: these drug carriers pro-
long drug release, protect drug from degradation and 
improve skin retention, so as to realize augment of the 
therapeutic power of biological and synthetic molecules 
(e.g. reduction or eradication of the wound bacterial load 
and improvement of re-epithelialization). Moreover, vari-
ous combinations of nano-DDSs are served as synergis-
tic platforms for delivery, some of which even mimic and 
offer perfect physiological environment for the healing 
process. Despite the enormous potential of nano-DDSs, 
these systems also have exposed some limitations in 
researches such as lack of international standards and 
evaluation methods on their toxicology, biocompat-
ibility and targeting efficiency, as well as the undeniable 
restriction of industrial production for their complicated 
preparation procedures. However, it is an inevitable and 
unstoppable trend for researchers to further exploit the 
full potential of nano-DDSs, overcome the technical dif-
ficulties and bring tangible benefits for the patients suf-
fered from wounds, nano-DDSs are bound to constitute 
the most promising and cost-effective therapies to boost 
the wound healing and skin regeneration.
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