
Li et al. J Nanobiotechnol          (2020) 18:113  
https://doi.org/10.1186/s12951-020-00670-x

RESEARCH

Magnetic targeting enhances the cutaneous 
wound healing effects of human mesenchymal 
stem cell-derived iron oxide exosomes
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Abstract 

Human mesenchymal stem cell (MSC)-derived exosomes (Exos) are a promising therapeutic agent for cell-free regen-
erative medicine. However, their poor organ-targeting ability and therapeutic efficacy have been found to critically 
limit their clinical applications. In the present study, we fabricated iron oxide nanoparticle (NP)-labeled exosomes 
(Exo + NPs) from NP-treated MSCs and evaluated their therapeutic efficacy in a clinically relevant model of skin 
injury. We found that the Exos could be readily internalized by human umbilical vein endothelial cells (HUVECs), and 
could significantly promote their proliferation, migration, and angiogenesis both in vitro and in vivo. Moreover, the 
protein expression of proliferative markers (Cyclin D1 and Cyclin A2), growth factors (VEGFA), and migration-related 
chemokines (CXCL12) was significantly upregulated after Exo treatment. Unlike the Exos prepared from untreated 
MSCs, the Exo + NPs contained NPs that acted as a magnet-guided navigation tool. The in vivo systemic injection of 
Exo + NPs with magnetic guidance significantly increased the number of Exo + NPs that accumulated at the injury 
site. Furthermore, these accumulated Exo + NPs significantly enhanced endothelial cell proliferation, migration, and 
angiogenic tubule formation in vivo; moreover, they reduced scar formation and increased CK19, PCNA, and collagen 
expression in vivo. Collectively, these findings confirm the development of therapeutically efficacious extracellular 
nanovesicles and demonstrate their feasibility in cutaneous wound repair.
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Introduction
Skin wound healing is a complex physiological process 
that involves inflammation, re-epithelialization, granu-
lation, vascularization, and tissue remodeling [1]. Mes-
enchymal stem cell (MSC) therapy has been reported to 
be a promising therapeutic approach for wound healing 
[2], with an increasing number of studies demonstrating 

that MSCs elicit therapeutic effects neither by replac-
ing damaged cells nor by implanting and differentiating 
[3–5]. Although considerable progress has been made 
in animal models, the clinical application of MSC-based 
therapies has been problematic [6], with the majority of 
the injected cells being washed away or displaying poor 
survival rates at the wound site. Moreover, MSC-based 
therapies must overcome significant regulatory barriers 
and require meticulous handling at all stages of harvest-
ing, processing, and transplantation [7]. Because trans-
planted MSCs display limited viability in severe wound 
environments [8], it is necessary to develop novel strat-
egies that can maximize the skin injury-repairing thera-
peutic effects of MSCs while avoiding the risks associated 
with their direct application.
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Recent studies have shown that the majority of the 
therapeutic benefits of MSCs result from the parac-
rine actions of various cytokines and growth factors 
that affect the biological functions of skin cells, such as 
wound healing, scar formation, and photoaging [9–12]. 
MSC-derived exosomes (MSC-Exos), a type of lipid 
membrane-bound vesicle with a diameter of 30–150 nm, 
are a major component of this paracrine effect and an 
important regulator of intercellular communication 
[13, 14]. Indeed, an increasing number of studies have 
reported that MSC-Exos are highly promising cell ther-
apy candidates for several diseases [15, 16]. Exos play a 
major role in intercellular communication by mediating 
the horizontal transfer of coding and noncoding RNAs 
and proteins to target cells, thereby altering their gene 
and protein expression to regulate their function [9]. 
Importantly, Exos have been reported to display func-
tional properties similar to the MSCs from which they 
are derived without their significant adverse effects, 
such as vascular obstructive risk, malignant transforma-
tion, and immunogenicity, while also exhibiting strong 
cargo-loading and cargo-protective capacities. Thus, 
Exo-based therapies may be safer than the direct use of 
cells and offer a promising alternative to tissue regenera-
tive applications [10–12, 17]. Recent studies have shown 
that many MSC-derived Exos can promote wound heal-
ing and accelerate skin regeneration by enhancing the 
proliferation and migration of related cells, promot-
ing angiogenesis and re-epithelization, and regulating 
immune responses [18–20]. Although Exos may be a 
promising cell-free alternative to MSC therapy, MSC-
Exo technology must be improved for clinical applica-
tion. For instance, MSCs produce only a small number of 
Exos (1–4 μg of Exo proteins from  106 cells per day); [21] 
therefore, a large number of MSCs must be cultured long 
term to produce sufficient MSC-Exos for clinical applica-
tions. However, late-passage MSCs display significantly 

reduced growth factor gene and protein expression [22], 
which would reduce the quantity of therapeutic growth 
factors and their mRNAs in the secreted Exos. Further-
more, because Exos display poor accumulation in the tar-
get organ after systemic administration in vivo, [23–26] 
modifications are necessary.

Superparamagnetic iron oxide nanoparticles (NPs) are 
a type of nanomaterial characterized by easy synthesis, 
superparamagnetism, high saturation magnetization, 
good biocompatibility, and low toxicity [27]. Nowadays, 
NPs are widely used in the biomedical field. For example, 
they can be designed and modified appropriately to serve 
as intelligent nanoprobes, which can respond to specific 
features in the tumor microenvironment to obtain real-
time, high-resolution, cell-level and even molecular-level 
images of the tumor microenvironment [28–30]. As a 
result of their superparamagnetism, NPs can be mag-
netized up to their saturation magnetization by exter-
nal magnetic guidance but display no residual magnetic 
interaction following removal of the magnetic guidance, 
conferring excellent dispersion and targeting capacities 
[31]. Moreover, when the magnetic force exceeds the lin-
ear blood flow rate, the NPs are retained in the required 
area. Owing to their advanced targeting capacities, bio-
compatibility, biodegradability, and low toxicity, NPs are 
considered a promising therapeutic tool [32]. Further-
more, recent studies have shown that Exos endowed 
with magnetic properties can be efficiently modulated by 
magnetic guidance, providing Exos with ideal targeting 
properties for tumor treatment [33, 34]. Therefore, Exos 
modified with targeting NPs may be a potential tool for 
disease treatment.

In the present study, we extracted Exos from NP-
loaded MSCs (MSC-Exo + NPs) to increase the in vivo 
targeting efficiency of MSC-Exos and verified their 
therapeutic cutaneous wound healing effect in  vivo 
(Fig.  1). Moreover, to the best of our knowledge, we 

Fig. 1 Schematic illustration of the preparation of NP-incorporated exosomes (Exo + NPs), from  Fe3O4 NP-labeled MSCs, followed by 
magnet-guided in vivo targeting to the injured skin



Page 3 of 14Li et al. J Nanobiotechnol          (2020) 18:113  

showed for the first time that external magnetic guid-
ance enhances the targeted migration of Exo + NPs 
and increases the number of particles that home to the 
injured site, thereby facilitating skin wound healing by 
promoting collagen synthesis and angiogenesis.

Results
Fe3O4 NP characterization and cellular uptake
The morphology of the synthesized  Fe3O4 NPs was ana-
lyzed using transmission electron microscopy (TEM). 
Figures  2a, b show TEM images displaying the mor-
phology of magnetite NPs and the size distributions 
of  Fe3O4 nanoparticles of < 60  nm, respectively. NPs 
(50  µg/mL) were efficiently internalized into MSCs. 
After Prussian blue staining, NPs were detected in 
MSCs as blue-stained dots (Fig.  2c). Moreover, the 
TEM images of MSCs revealed that the NPs aggregated 
in the cytoplasm, with close examination revealing that 
the aggregates were surrounded by membrane frag-
ments in some images, indicating that they may have 
been in an endosomal compartment (Fig. 2d).

Exo isolation and characterization
Exos were isolated and purified from the supernatant of 
NP-loaded MSCs (Exo + NPs) and MSCs (Exos). TEM 
revealed that the Exo extracts contained round, cup-
shaped vesicles of 50–150 nm (most were approximately 
90  nm) with clear membrane structures and homoge-
neous size distribution (Fig.  3a). Besides, the TEM of 
Exo + NPs showed that the NPs were coated by mem-
branes with a thickness of 7‒8 nm and that the NPs could 
be seen inside the Exos (Fig.  3b). Western blot analyses 
indicated that the Exos and the Exo + NPs expressed 
exosomal markers such as the Alix and CD9 proteins 
(Fig. 3c). Moreover, nanoparticle tracking analysis (NTA) 
showed that the size distribution peak of the Exos was 
98.5 ± 1.4  nm (Fig.  3d), whereas that of the Exo + NPs 
was 116.7 ± 1.3 nm (Fig. 3e); this slight change in diam-
eter may be related to the cargo inside the Exos. Col-
lectively, these results demonstrated that the Exo + NPs 
maintained the integrity and properties of the Exos. 
Notably, the iron content of the Exo + NPs was markedly 
higher than that of the Exos (Fig.  3f ), at approximately 
12 ng of iron in 1 μg of Exo protein when normalized to 
the amount of protein.

Fig. 2 Fe3O4 nanoparticle (NP) characterization and internalization by mesenchymal stem cells (MSCs). a TEM images of  Fe3O4 NPs. Scale 
bar = 100 nm. b Size distribution of  Fe3O4 NPs. c MSCs were labeled with  Fe3O4 NPs (50 μg/mL) for 16 h to determine the optimal labeling efficiency 
and stained using a Prussian blue iron staining kit. Scale bar = 100 µm. c TEM image of NPs (50 µg/mL) internalized by an MSC. Scale bar = 5 µm. 
Red arrows indicate NPs observed in the MSC cytoplasm
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Exo uptake by human umbilical vein endothelial cells 
(HUVECs)
Next, we investigated whether Exos or Exo + NPs could 
enter HUVECs by performing an in vitro tracking experi-
ment in which Exos or Exo + NPs were labeled with the 
red fluorescent lipophilic dye DiD and incubated with 
HUVECs for 18  h. Fluorescence confocal microscopy 
revealed that the DiD-labeled Exos were transferred into 
HUVECs, with  Fe3O4 NPs visualized as black particles in 
the bright field (Fig. 4). The predominant localization of 
these Exos in the perinuclear region suggested that the 
Exos could enter HUVECs and thereby regulate their bio-
logical behavior.

Exos promoted HUVEC proliferation, migration, and tube 
formation in vitro
To assess endothelial cell proliferation, migration, and 
tube formation capabilities, which are crucial during 
angiogenesis, we performed CCK8, scratch wound, and 
tube formation assays. MSC-Exos significantly enhanced 
the migration of HUVECs (Figs. 5a, b), whereas treatment 

Fig. 3 Mesenchymal stem cell -derived exosome (MSC-Exo) and 
MSC-Exo + NP characterization. Morphology of MSC-Exos (a) and 
MSC-Exos + NPs (b) observed by TEM. The red arrow indicates the 
membrane. c Western blot analysis of MSC-Exo and MSC-Exo + NP 
surface marker proteins (Alix and CD9). Size distribution of MSC-Exos 
(d) and MSC-Exo + NPs (e) determined by NP tracking analysis. f 
Iron content of MSC-Exos and MSC-Exo + NPs detected by ICP-OES 
analysis. ***P < 0.001 vs. MSC-Exos

Fig. 4 MSC-Exo and MSC-Exo + NP internalization. Confocal 
microscopy images showing Exos and Exo + NP incorporation in 
HUVECs. Blue indicates DAPI staining of the nucleus. Red indicates 
DiD-labeled Exos or Exo + NPs. Red arrows show cytoplasmic NPs in 
bright field. Scale bar = 10 μm

Fig. 5 Effects of MSC-Exos or MSC-Exo + NPs on HUVEC proliferation 
and migration. Light microscopy images (a) and migration rates (b) 
of HUVECs into scratched monolayer areas following growth in fresh 
serum-free culture medium containing 50 μg/mL Exos or Exo + NPs 
for 6, 12, or 24 h. Scale bar = 200 μm. c Proliferation of HUVECs grown 
in medium containing 50 μg/mL Exos or Exo + NPs detected over 
5 days using a cell counting kit. *P < 0.05, and ***P < 0.001
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with both Exos and Exo + NPs (50  μg/mL) markedly 
enhanced their proliferation capability (Fig. 5c). Moreo-
ver, improved tube formation was observed in the Exo 
and Exo + NP groups, as characterized by an increased 
number of tubes and complete tubular structures com-
pared to those of the control group (Fig. 6a). In vitro tube 
formation assays were performed to evaluate the effect of 
Exos on HUVEC angiogenesis. As expected, the number 
of closed tubular structures increased by almost two-fold 
in the Exo and Exo + NP groups after 6 and 8 h of incu-
bation, respectively, suggesting that Exos and Exo + NPs 
continuously promoted angiogenesis (Figs. 6b, c).

Exos increased the S‑phase fraction (SPF) and proliferation 
index (PIndex) of HUVECs
Cell cycle analysis revealed that Exos and Exo + NPs 
increased the percentage of S-phase HUVECs compared 
to that of the controls (Fig. 7a). Moreover, Exo treatment 
significantly increased the SPF and PIndex of HUVECs 
compared to those of the controls (Fig. 7b), with no sig-
nificant difference between the Exo and Exo + NP-treated 
groups. The results suggested that Exos and Exo + NPs 
could improve the proliferation capability of HUVECs by 
increasing the SPF and PIndex.

Exos upregulated HUVEC proliferation‑, migration‑, 
and angiogenesis‑related proteins
Next, we examined whether Exos could regulate protein 
expression associated with regenerative phenotypes. 
Western blot analyses revealed that Cyclin D1, Cyclin 

Fig. 6 Pro-angiogenic effects of MSC-Exos or MSC-Exo + NPs on HUVECs. a HUVEC tube formation was studied by growing cells in Matrigel 
medium containing 50 μg/mL MSC-Exos or MSC-Exo + NPs. Scale bar = 200 μm. Quantitative analysis of the total tube length (b) and branch points 
(c) of HUVECs following growth in medium containing 50 μg/mL MSC-Exos or MSC-Exo + NPs for 6 or 8 h (n = 3 per group). *P < 0.05
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A2, VEGFA, and CXCL12 were all upregulated after Exo 
or Exo + NP treatment (Fig. 8a, b). These results showed 
that Exo and Exo + NPs increased HUVEC proliferation, 
migration, and angiogenesis capabilities through upregu-
lation of the associated proteins.

Exo transplantation promoted cutaneous wound healing 
in rats
We evaluated wound healing in four groups of rats 
injected with phosphate-buffered saline (PBS) (untreated 
group), Exos (Exo group), Exo + NPs (Exo + NP group), 
or Exo + NPs + MAG (Exo + NP with magnetic guidance 

group) via their tail veins. The Exo and Exo + NP groups 
had similar wound closures at weeks 3 and 5 post-
wounding. Wound closure was greater in the rats treated 
with Exos or Exo + NPs than in the untreated groups 
at weeks 3 and 5 post-wounding. However, the animals 
in the Exo + NPs + MAG group showed the greatest 
wound closure (Figs.  9a, b), with their original wound 
area significantly smaller than that of the animals in 
the Exo- or Exo + NP-treated groups at weeks 3 and 5 
post-wounding.

Combined with the properties of NPs, magnetic target-
ing for increasing the accumulation of NPs in cutaneous 
wounds potentially improve the delivery and retention of 
Exos in the wound microenvironment. The distribution 
of NP-labeled Exos was histologically evaluated by Prus-
sian blue staining. The short-term distribution of NPs in 
rat cutaneous wound tissues was assessed after 24 h. As 
shown in Fig.  9c, the skin tissues of the magnetic field-
exposed group exhibited higher iron density than did 
those of the Exo + NP-only group; most of the Exo + NPs 
moved toward the direction of the magnetic region. 
These findings suggested that external magnetic guidance 
promotes the homing of Exo + NPs to burn injury sites 
in vivo.

Reduced scar width and increased collagen matu-
rity are indicators used to assess the degree of wound 
healing and regeneration. As shown in Figs.  10a–c, 
wound re-epithelialization was markedly enhanced, 

Fig. 7 MSC-Exos increase HUVEC SPF and PIndex. HUVECs were cultured for 24 h with 50 µg/mL of MSC-Exos or MSC-Exo + NPs. The DNA content 
of the HUVECs was measured by propidium iodide staining using flow cytometry. a FACS plots representative of one of three experiments. b 
Averaged SPF and PIndex of three independent experiments. Bar = SD. *P < 0.05 vs. HUVEC group

Fig. 8 MSC-Exo treatment upregulated proteins associated with 
HUVEC proliferation, migration, and angiogenesis. Expression levels 
of cell cycle-, migration-, and angiogenesis- regulating proteins 
detected by western blot (a). GAPDH was used to normalize 
protein levels. b Quantification of Cyclin A2, Cyclin D1, VEGFA, and 
CXCL12 protein levels compared to the levels in the control group 
(mean ± SD; n = 3). **P < 0.01, ***P < 0.001 vs. control group
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and wound edges were significantly narrower in the 
Exo + NPs + MAG group than in the Exo + NPs, 
Exo, and control groups at week 5 post-wound-
ing. Moreover, greater and better-organized colla-
gen deposition was observed in the wounds of rats 
in the Exo + NPs + MAG group than in those of the 
Exo + NPs, Exo, and control groups (Figs.  10d, e). To 
confirm the role of Exos in re-epithelialization, we 
detected the expression of CK19, an epithelial marker, 
using immunofluorescence staining. CK19 expres-
sion was markedly higher in the Exo, Exo + NPs, and 
Exo + NPs + MAG groups than in the control group 
5  weeks post-wounding (Fig.  10f ). Furthermore, 
the CK19-positive areas of the wounds in the Exo, 
Exo + NPs, and Exo + NPs + MAG groups had formed 
complete epidermal structures, unlike those of the 
control group. Collectively, these data indicated that 
Exo + NPs + MAG treatments significantly acceler-
ated wound re-epithelialization and collagen deposi-
tion, and thus promoted wound healing. Moreover, 

increased Exo + NP retention at injury sites was asso-
ciated with enhanced wound healing.

Exo transplantation promoted angiogenesis and cellular 
proliferation in the wound sites of rats
The vascularization of newly formed tissues is an essen-
tial step in the wound healing process. In the present 
study, we identified newly formed and mature vessels 
at wound sites by CD31 staining or co-staining against 
CD31 and alpha-smooth muscle actin (α-SMA) (Fig. 11a), 
respectively, and then quantified the average vessel den-
sity and the number of mature vessels (Figs. 11b, c). We 
found that the number of newly formed and mature ves-
sels increased during the healing process in all groups, 
with the Exo + NPs + MAG group displaying the great-
est vessel density and number of mature vessels at week 
5 and the Exo-treated group or Exo + NP-treated group 
having a higher vessel density and number of mature ves-
sels than the control group. Furthermore, cellular pro-
liferation was markedly enhanced in the groups treated 

Fig. 9 Macroscopic appearance of cutaneous wounds treated with PBS, Exos, Exo + NPs or Exo + NPs + MAG. a Gross view of wounds treated with 
PBS, Exos, Exo + NPs, or Exo + NPs + MAG after 0, 1, 3, and 5 weeks. b Quantitative analysis of wound closure at different time points post-wounding. 
*P < 0.05. After 24 h, c iron ion staining showed iron deposition (blue) in cutaneous wound tissue. Scale bar = 50 µm
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with Exos, Exo + NPs, and Exo + NPs + MAG, as con-
firmed by the increased rate of PCNA + (Fig. 11d). Col-
lectively, these results indicated that Exos, Exo + NPs and 
Exo + NPs + MAG promoted cellular proliferation and 
angiogenesis, which are the two primary wound healing 
processes, in vivo.

Discussion
A significant number of clinical trials have demonstrated 
that MSCs can have beneficial therapeutic effects when 
used to heal cutaneous wounds, as well as in various 
diseases including myocardial infarction, bone defects, 
autoimmune diseases, and Crohn’s disease [35–38]. 

Fig. 10 MSC-Exo + NPs with magnetic guidance accelerated the recovery of skin burn injury in rats. a H&E staining of wound sections following 
treatment with PBS, Exos, Exo + NPs, or Exo + NPs with magnetic guidance 5 weeks post-wounding. Double-headed arrows indicate scar edges. 
Scale bar = 1 mm; Ep, Epithelium. Effects of PBS, Exos, Exo + NPs, or Exo + NPs with magnetic guidance on wound re-epithelialization (b) and scar 
width (c) 5 weeks post-wounding (n = 6; *P < 0.05; ***P < 0.001). d Quantitative analysis of collagen in wound tissue 5 weeks after treatment (n = 5, 
***P < 0.001). e Evaluation of collagen maturity by staining wounds with Masson’s trichrome following treatment with PBS, Exos, Exo + NPs, or 
Exo + NPs with magnetic guidance 5 weeks post-wounding. Scale bar = 100 μm. f Representative immunofluorescence images of CK19 expression 
showing re-epithelialization in the wound area. Scale bar = 100 μm
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MSCs act via paracrine/endocrine mechanisms to trig-
ger these regenerative processes, with these mechanisms 
also playing an important role in MSC-mediated repair 
[39]. Recent studies have demonstrated that Exos are 
important for the paracrine activity of MSCs [40], and it 
has been shown that the local injection of human MSC-
derived Exos can accelerate cutaneous wound healing 
in vivo [19, 20]. However, it has been reported that intra-
venous injection is superior to local injection for wound 
healing, with the loss of Exos during local injection spec-
ulated to contribute to this difference. In addition, when 
Exos are injected directly into the wound, the wound is 
inevitably disturbed further, thus disrupting the wound 
healing process [35]. Therefore, in the present study, we 
used intravenous injection to study the effect of Exos on 
skin wound repair.

Previously, Pascucci et  al. [41] showed that MSCs 
treated with paclitaxel incorporated the drug into Exos. 
Similarly, we also isolated NP-loaded Exos from NP-
loaded MSCs. TEM images showed that labeled MSCs 
incorporated NPs by endocytic mechanisms, as already 
reported [42]. It has been demonstrated that NPs inter-
nalized by endocytosis often accumulate inside multive-
sicular bodies, which in turn may fuse with the plasma 
membrane thus releasing their cargo (Exos). [43, 44] 
 Fe3O4 NPs likely undergo the same secretion process of 
the endosomal system. Exos effectively protect against 
tissue injury and exert a therapeutic effect in tissue repair 

[45, 46]. However, Exos have a limited ability to target 
injured tissues; therefore, it is necessary to enhance their 
targeting.

Because it has already been shown that the transplan-
tation of NP-loaded MSCs promotes burn wound repair 
[47], the therapeutic effects of NP-loaded MSC-derived 
Exos for cutaneous wound repair expectedly offer good 
chances for clinical translation. As expected, the MSCs 
incorporated  Fe3O4 NPs into Exos without affecting their 
characteristics in vitro. An increasing number of studies 
have reported that external magnetic fields can effec-
tively control the localization of injected NPs in animals; 
[48, 49] for instance, magnetic guidance was shown to 
induce the accumulation of injected anti-cancer drug-
attached NPs in the tumors of cancer patients [50, 51]. In 
the present study, external magnetic guidance promoted 
the homing of NP-loaded Exos to burn injury sites and 
improved wound repair in vivo.

Because angiogenesis involves the proliferation, migra-
tion, and angiogenic tubule formation of endothelial 
cells [52], we initially investigated the effects of Exos 
and Exo + NPs on the behavior of endothelial cells 
in  vitro. Both Exos and Exo + NPs were able to inte-
grate into endothelial cells (HUVECs) and significantly 
enhance their proliferation, migration, and angiogenic 
activity, thus confirming the pro-angiogenic proper-
ties of Exos. Additionally, Exo and Exo + NPs increased 
HUVEC proliferation, migration, and angiogenesis 

Fig. 11 MSC-Exo + NPs with magnet-guided transplantation promoted the formation of new blood vessels in the wound sites of rats. a 
Immunofluorescence staining for CD31 and α-SMA in wounds after treatment with PBS, Exos, Exo + NPs, or Exo + NPs with magnetic guidance 
5 weeks post-wounding. Scale bar = 100 μm. b Quantitative analysis of the number of total blood vessels by CD31 immunofluorescence staining. c 
Quantitative analysis of the number of mature blood vessels by CD31 and α-SMA double immunofluorescence staining in wounds. d Wounds were 
subjected to immunohistochemical staining for PCNA expression 5 weeks after treatment. Scale bar = 100 μm
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capability through upregulating proliferation-, migra-
tion-, and angiogenesis-related proteins, such as Cyc-
lin D1, Cyclin A2, VEGFA, and CXCL12. Our in  vitro 
results confirmed that both Exos and Exo + NPs could 
equally increase the proliferation, migration, and tube 
formation of HUVECs, while simultaneously upregulat-
ing the expression of related proteins. We further tested 
the targeting efficiency of Exo + NPs in a rat skin wound 
model. We observed a relatively significant accumulation 
of NPs at the injured skin site. Importantly, injected and 
magnet-guided Exo + NPs showed significantly enhanced 
accumulation at the site of injured skin, possibly due to 
the increased blood-circulation time of Exo + NPs and 
the external magnetic guidance. We further investigated 
whether the increased amount of Exo + NPs accumulated 
in injured skin exerts therapeutic effects. Encouragingly, 
our results also showed that Exo + NPs induced signifi-
cant regenerative effects at the wound sites in a rat skin 
burn model, as defined by increased re-epithelialization 
and collagen deposition, more rapid wound closure, and 
reduced scar formation. Furthermore, we showed that 
Exo + NPs + MAG treatment markedly enhanced the 
number of total and mature blood vessels at the wound 
sites, with beneficial effects on blood vessel formation 
and cutaneous wound repair. The post-natal forma-
tion of new blood vessels occurs mainly through angio-
genesis [53], which is essential for the survival, repair, 
and remodeling of injured tissues. Our results showed 
that Exo + NPs + MAG might improve angiogenesis at 
the wound site, increasing the blood vessel density and 
thereby accelerating the process of burn wound heal-
ing. Immunohistochemical staining for PCNA revealed 
that Exo + NPs + MAG could promote endothelial 
cell proliferation in  vivo. We clearly observed that 
Exo + NPs + MAG treatment markedly increased re-epi-
thelialization and collagen deposition at the wound site, 
whereas the new collagen fibrils did not exhibit periodic 
loss. Previous studies have demonstrated that higher con-
centrations of Exos are injected locally around the skin 
lesions and present a better therapeutic effect [18]. Our 
results also showed that magnetic targeting increases the 
number of Exo + NPs that accumulate in the injured area 
and that the therapeutic effect of magnetic field-guided 
Exo + NPs exceeds that of Exos or Exo + NPs without tar-
geting. Of note, our results also indicated that Exo + NPs 
have similar tissue repair characteristics to MSCs; thus, 
Exo + NPs with magnetic field-guided targeting may 
serve as a promising candidate for treating skin wound 
healing and may overcome the barriers and risks associ-
ated with stem cell transplantation therapy.

Poor wound healing is often associated with abnor-
mal blood supply to the wound bed. In contrast, studies 
have shown that Exos isolated from various cell types 

can promote angiogenesis and neovascularization [18, 
19, 54]. In the present study, we found that magnetic tar-
geting enhanced the cutaneous wound healing effects 
of Exo + NPs through significantly increasing the num-
ber of closed tubular structures in  vitro and increasing 
the number of newly formed and mature blood vessels 
in  vivo. These results indicated that Exo + NPs could 
improve the blood supply in wound beds and that the 
number of newly formed blood vessels increased as 
Exo + NPs accumulated in the wound. Thus, the rats in 
the Exo + NPs + MAG group displayed optimal wound 
healing effects.

Conclusion
In the present study, we demonstrated the effective 
in  vivo targeting ability of Exo + NPs and their feasibil-
ity for repairing cutaneous wounds. Similar to Exos, 
Exo + NPs can significantly promote the proliferation, 
migration, and angiogenesis of HUVECs in  vitro and 
upregulate the expression of injured skin repair-related 
proteins, namely Cyclin A2, Cyclin D1, VEGFA, and 
CXCL12. In vivo magnetic guidance markedly enhanced 
the targeting efficacy of intravenously injected Exo + NPs 
toward the injured skin site and alleviated skin damage 
in a clinically relevant rat model. Our findings suggest 
that the application of Exo + NPs with magnetic guid-
ance may be a promising therapeutic strategy for improv-
ing cutaneous wound healing, which may be applied to 
other types of tissue damages in patients. Thus, the non-
invasive systemic application of Exo + NPs may represent 
a feasible therapeutic option for patients with cutaneous 
wounds. Moreover, this approach might be applied to 
treat various diseases including hindlimb ischemia and 
vascular injury in which tissue damage, angiogenesis, and 
tissue repair occur in this sequence.

Materials and methods
Synthesis of  Fe3O4 NPs
Briefly, 5 mmol 1,2-hexadecanediol (90%, Sigma-Aldrich, 
St. Louis, Missouri, USA), 2  mmol iron acetylacetonate 
(Fe(acac)3, 99.9 + %, Sigma-Aldrich), 6  mmol oleic acid 
(OA, 90%, Sigma-Aldrich) and 6 mmol oleyamine (70%, 
Sigma-Aldrich) were mixed in 20 mL benzyl ether. Under 
nitrogen atmosphere, the mixture was heated to 200 ºC 
at a rate of 20 ºC  min−1 for 30 min, and then refluxed for 
another 30 min at 265 ºC. Then, the solution was cooled 
to 23–25 ºC. The OA-stabilized  Fe3O4 NPs were extracted 
and washed three times with ethanol before being dis-
persed in toluene. Under mechanical stirring and a nitro-
gen atmosphere at room temperature, 4.0 mL of 7.0 mg/
mL OA-stabilized  Fe3O4 NPs was injected into aqueous 
sodium dodecyl sulfate (SDS, 99%, Sigma-Aldrich) solu-
tion (2.8  mg/mL, 12.5  mL). After ultrasonic treatment, 
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the emulsion was heated at 60 ºC to evaporate toluene. 
The SDS-capped  Fe3O4 NPs were collected and stored at 
4  °C in a refrigerator until use. Dynamic light scattering 
measurements were obtained using a Malvern Zetasizer 
Nano-ZS (Malvern Instruments, Worcestershire, UK).

MSC preparation
MSCs were isolated from human umbilical cord tissue 
using our previously described method approved by the 
Ethics Committee of the China-Japan Union Hospital at 
Jilin University [47]. MSCs were cultured and expanded 
in α-minimum essential medium (MEM) supplemented 
with 10% fetal bovine serum (FBS; GIBCO, Clontech, 
Mountain View, CA, USA) at 37  °C and 5%  CO2. MSCs 
from passages 3–6 were used in all experiments.

Labeling of MSCs with  Fe3O4 NPs
MSCs grown to 80% confluency were incubated with 
 Fe3O4 NPs (50 µg/mL) for 16 h, washed three times with 
PBS, and stained with a Prussian blue iron staining kit 
(Solarbio, Beijing, China), according to the manufactur-
er’s instructions.

MSC‑derived Exo isolation and identification
MSCs  (106 cells) were incubated with 50 µg/mL of  Fe3O4 
NPs for 24 h and washed three times with PBS. Then, the 
culture medium was changed to α-MEM medium sup-
plemented with 10% Exo-depleted FBS (SBI, Mountain 
View, CA, USA), and the cells were incubated for 48  h. 
The conditioned MSC medium (MSC-CM) was col-
lected, centrifuged at 1500  rpm for 15  min to remove 
cells and cell debris, and filtered using a 0.22-μm syringe 
filter. The supernatant was passed through a 100-kDa 
molecular weight  Amicon® Ultra-15 Centrifugal Filter 
Device (Merck Millipore, Darmstadt, Germany) and con-
centrated. Exos were isolated from the MSC-CM using an 
exoEasy Maxi kit (Qiagen, Frankfurt, Germany) accord-
ing to the manufacturer’s instructions. Briefly, the filtered 
MSC-CM was mixed at a 1:1 ratio with 2 × binding buffer 
(XBP) and added to an exoEasy membrane affinity col-
umn to allow the Exos to bind to the membrane. After 
centrifugation, the flow-through was discarded, and wash 
buffer (XWP) was added to the column to wash away 
nonspecifically retained material. After further centrifu-
gation, the flow-through was discarded, and Exos were 
eluted by adding elution buffer to the spin column, with 
the eluate collected by centrifugation.

Exo morphologies were observed by 100 kV TEM, with 
size, concentration, and particle size distribution identi-
fied using NanoSight LM10 (Malvern, Worcestershire, 
UK) and NTA software version 3.0 (NanoSight, Malvern, 
Worcestershire, UK).

Exo iron determination
Exos or Exo + NPs were lysed in 0.5  mL concentrated 
hydrochloric acid and their iron content quantified 
using an inductively coupled plasma optical emission 
spectrometer (ICP-OES) with a Perkin-Elmer Optima 
3300DV (Perkin-Elmer, Norwalk, CT, USA).

Exo labeling and internalization assay
Exos were incubated with a 1,1′-dioctadecyl-3,3,3′,3′-
tetramethylindodicarbocyanine (DiD) tracer (5  µM; 
Sigma-Aldrich) for 4  min, treated with 0.5% BSA/PBS 
to neutralize excess dye, and the labeled Exos were 
obtained by centrifugation to remove contaminat-
ing dye. For the internalization assay, HUVECs were 
seeded in a 35-mm confocal dish at 2 × 105 cells/dish 
and treated with 50  μg/mL labeled Exos. After incu-
bation for 18 h, the cells were washed twice with PBS, 
fixed in 4% paraformaldehyde for 10  min, and their 
nuclei were stained with 4, 6-diamino-2-phenyl indole 
(DAPI, Solarbio, Beijing, China) according to the 
manufacturer’s instructions. Cellular Exo uptake was 
observed using laser scanning confocal microscopy.

Cell proliferation assay
Cell growth was determined using Cell Counting Kit-8 
(CCK-8; Sigma, St. Louis, MO, USA) assays. Briefly, 
HUVECs were seeded in 96-well plates (2000 cells/well) 
and co-cultured with Exos, Exo + NPs (50  μg/mL), or 
an equal volume of PBS. Cell growth was analyzed 1, 3, 
and 5 days after Exo treatment by measuring the opti-
cal density (OD) at 450  nm using a microplate reader 
(Bio-Rad Laboratories Inc., Hercules, CA, USA). Data 
are representative of three independent experiments.

Cell migration assay
The effects of Exos on HUVEC migration were evalu-
ated using a scratch assay. Briefly, cells were seeded 
in the cell culture system using an ibidi culture insert 
(ibidi GmbH, Munich, Germany). To measure cell 
migration, the silicon inserts were removed after 24 h, 
the gaps created were washed, and each well was filled 
with fresh serum-free culture medium containing Exos 
or Exo + NPs (50  μg/mL). Images of the closing area 
were obtained after 0, 6, 12, and 24  h, and the migra-
tion area was measured using Image-Pro Plus 6.0 soft-
ware (Media Cybernetics, Inc., Rockville, MD, USA) as 
follows:

Migration area (%) = (A0−An) /A0 × 100,
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where A0 represents the initial wound area (t = 0 h), and 
An represents the residual wound area at the time of 
measuring (t = n h).

Tube formation assay
In vitro, capillary-like structure formation was evaluated 
using a Matrigel Basement Membrane Matrix (BD Bio-
sciences, San Jose, CA, USA). Briefly, HUVECs (4 × 104 
cells/well) were seeded with 50 μg/mL Exos or Exo + NPs 
in 48-well culture plates coated with 150 μL Matrigel 
and cultured at 37 °C with 5%  CO2. Tube formation was 
quantified after 6 and 8 h using an inverted microscope. 
The number of total branch points and tubule lengths 
in five randomly chosen fields were examined using an 
inverted microscope. Results represent the mean ± SEM 
of three independent experiments.

Cell cycle
After incubation with 50 μg/mL of Exos or Exo + NPs for 
24  h, HUVECs were collected, washed twice with PBS, 
and fixed with 70% alcohol at 4  °C for more than 24  h. 
The cells were then stained with 50 µg/mL of propidium 
iodide (PI) and 50  µg/mL of RNase A (Beyotime Insti-
tute of Biotechnology, Jiangsu, China) at 23–25  °C in 
the dark for 30 min, filtered, and measured using a flow 
cytometer (FC500; Beckman Coulter Inc., Fullerton, CA, 
USA). All data were collected and analyzed using flow 
cytometer software (Beckman Coulter Inc.). The S-phase 
fraction (SPF) was calculated as follows: SPF = S/(G0/
G1 + S + G2/M) × 100%.

The proliferation index (PIndex) was calculated as fol-
lows: [55]

Western blotting
Cells or purified Exo samples were diluted 1:5 with 
protein loading buffer (6 ×) (Transgen Biotech, Bei-
jing, China) and heated at 99  °C for 10  min. Protein 
extracts were separated on a 10% sodium dodecyl sul-
fate–polyacrylamide gel electrophoresis gel and trans-
ferred onto polyvinylidene difluoride membranes (Sigma 
Aldrich Chemie GmbH, Munich, Germany) at 100  V 
for 30–60  min. The membranes were blocked with 5% 
nonfat milk at 23–25  °C for 1  h, washed three times in 
TBST buffer for 10 min, and incubated with the follow-
ing primary antibodies at 4  °C overnight: CD9 (1:1000; 
BioLegend, San Diego, CA, USA), Alix (1:500; Santa 
Cruz Biotechnology, Santa Cruz, CA, USA), Cyclin A2 
(1:1000; Proteintech Group, Rosemont, IL, USA), Cyclin 
D1 (1:5000; Proteintech), VEGFA (1:1000; Proteintech), 
CXCL12 (1:500; Proteintech), and GAPDH (1:5000; 
Proteintech). GAPDH was used as a loading control. 

PIndex = (S + G2/M) / (G0/G1 + S + G2/M)× 100%.

Western blots were probed with IRDye 800-conjugated 
goat anti-rabbit or anti-mouse secondary antibodies 
and blotted proteins detected using an Odyssey infrared 
imaging system (LI-COR Biosciences, Lincoln, NE, USA).

Rat skin wound model and treatment
Rats were handled in strict accordance with the Guide-
lines for the Care and Use of Laboratory Animals of Jilin 
University. All animal experiments were approved by the 
Ethics Committee of Animal Experiments of Jilin Uni-
versity and were carried out according to internationally 
accepted animal care guidelines (EEC Directive of 1986; 
86/609/EEC). Six-week-old male Wistar rats were ran-
domly divided into four groups (n = 9 per group): PBS 
group (100 μL PBS), Exo group (100  μg Exos dispersed 
in 100 μL PBS), Exo + NPs group (100  μg Exo + NPs 
dispersed in 100 μL PBS), and Exo + NPs + MAG 
group (100  μg Exo + NPs dispersed in 100 μL PBS). A 
1.2-T magnet was placed under the injury site in the 
Exo + NPs + MAG group for 30 min. As described previ-
ously [47], a full skin thickness burn was induced on the 
back of the rat (3 W cm −2 for 5 min) using an 808-nm 
diode laser (LEO Photonics, Beijing, China). Exos were 
administered intravenously to the animals in the burn 
injury group. Photographs were acquired at weeks 0, 1, 
3, and 5, and the wound area measured using Image J 
software. The wound-size reduction was calculated as 
follows:

where A0 is the initial wound area, and At is the wound 
area 1, 3, or 5 weeks post-wounding.

Histological analysis
Skin tissues excised from the wound sites were fixed with 
4% paraformaldehyde, dehydrated using a graded alco-
hol series, embedded in paraffin, and cut into 4-μm-thick 
longitudinal sections. The sections were stained with 
H&E for the histological analysis of wound repair and 
Masson staining to evaluate collagen accumulation. The 
sections were stained with Prussian blue iron stain kit 
(Servicebio, Wuhan, China) according to manufactur-
er’s instructions.  Immunohistochemical staining  evalu-
ated the expression of PCNA in skin tissues.

Immunofluorescence analysis
CD31 and α-SMA were detected by immunofluores-
cence staining to study Exo-induced angiogenesis dur-
ing wound healing. Briefly, skin tissue excised from the 
wound sites was fixed in 4% paraformaldehyde, dehy-
drated in 30% sucrose solution, embedded in OCT, and 
cut into 4-μm-thick sections perpendicular to the wound 
surface. The sections were blocked in 1% BSA for 30 min 

Wound− size reduction (%) = (A0−At) /A0 × 100,
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at 23–25  °C, incubated with rabbit anti-CD31 (1:100; 
Abcam, Cambridge, UK) and mouse anti-α-SMA (1:50; 
Abcam) antibodies overnight at 4  °C, stained with sec-
ondary Alexa-Fluor 594-conjugated goat anti-rabbit and 
Alexa-Fluor 488-conjugated goat anti-mouse secondary 
antibodies (Abcam, 1:200), and then counterstained with 
DAPI.   To evaluate the re-epitheliazation in the wound 
area, we detected the expression of CK19 using immu-
nofluorescence  staining. The sections were incubated 
with rabbit anti-CK19 (1:500; Servicebio, Wuhan, China) 
antibodies overnight at 4  °C, stained with cy3-conju-
gated anti-rabbit secondary antibody (1:500;  Service-
bio), and then counterstained with DAPI.  Images were 
acquired using an Olympus IX81 microscope (Tokyo, 
Japan). Newly formed vessels were indicated by CD31-
positive staining, whereas mature vessels were detected 
as CD31 and α-SMA double-positive vascular structures. 
The numbers of newly formed and mature vessels were 
counted in five random fields per section between wound 
edges using Image-Pro Plus 6.

Statistical analysis
All data are expressed as the mean ± standard deviation 
(SD). Between-group differences were assessed by one-
way analysis of variance (ANOVA) using SPSS software. 
P values < 0.05 were considered significant.
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