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Abstract 

This review focuses on the recent advances in the synthesis of graphene quantum dots (GQDs) and their applications 
in drug delivery. To give a brief understanding about the preparation of GQDs, recent advances in methods of GQDs 
synthesis are first presented. Afterwards, various drug delivery-release modes of GQDs-based drug delivery systems 
such as EPR-pH delivery-release mode, ligand-pH delivery-release mode, EPR-Photothermal delivery-Release mode, 
and Core/Shell-photothermal/magnetic thermal delivery-release mode are reviewed. Finally, the current challenges 
and the prospective application of GQDs in drug delivery are discussed.
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Introduction
GQDs are graphene blocks with two-dimensional (2D) 
transverse size (less than 100 nm) [1] and excellent chem-
ical [2], physical [3], and biological properties [4, 5]. An 
ideal GQD consists of only one atomic layer of carbon 
atoms. However, most of the synthesized GQDs also 
contain functional groups like oxygen and hydrogen, and 
usually have multiple atomic layers with sizes less than 
10 nm [6].

Due to its small size, GQD has a better prospect in bio-
medical applications than graphene or graphene oxide 
(GO) [7]. However, prior to designing GQDs into prac-
tical applications, their biocompatibility and toxicity are 
still the main concerns. Studies have shown that GQDs 
have good biocompatibility [8–10] and low biotoxic-
ity [11, 12]. Xie et  al. [13] studied the cytotoxicity and 
autophagy induction of three kinds of GQDs, including 

cGQDs (HOOC-GQDs), hGQDs (HO-GQDs), aGQDs 
(H2N-GQDs), using lung cancer A549 cells as models. 
The results showed that hGQDs were the most toxic, 
leading to significant cell death at 100  μg/mL of hGQD 
concentration, while cGQDs and aGQDs showed no 
cytotoxicity within the measured concentration range. 
Besides cGQDs, aGQDs, and hGQDs can induce 
autophagy to varying degrees, as shown in Table 1. Fur-
ther analysis of autophagy pathway showed that all GQDs 
could significantly activate p-p38MAPK, while p-ERK1/2 
was inhibited by aGQDs and hGQDs but activated by 
cGQDs. The aGQDs and cGQDs inhibited p-JNK and 
hGQDs activated p-JNK. On the other hand, Akt was 
activated by hGQDs, but inhibited by aGQDs. The inhi-
bition of 3-MA on autophagy significantly increased the 
cytotoxicity of GQDs, suggesting that autophagy has 
a protective effect on the toxicity of GQDs. The results 
show that cGQDs have better biocompatibility and more 
potential in biological applications. Generally, the bio-
availability of nanoparticles plays an important role in 
their safety [14]. However, the amount of cellular uptake 
showed no significant difference between cGQDs and 
hGQDs, indicating that bioavailability of GQDs may 
not explain the difference in toxicity of these GQDs. 
Although the exact reason is still not clear, the autophagy 
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induction abilities of such GQDs could explain the dif-
ferences of their toxicity profiles. It was found that 
cGQDs appears to be even inert in autophagy activation, 
both aGQDs and hGQDs induced cellular autophagy to 
various degrees except for cGQDs [13]. Interestingly, 
hydroxylation was thought to be able to enhance the bio-
compatibility of nanoparticles [15], but when it comes to 
GQDs, hGQDs showed the highest toxicity of the three 
GQDs. Therefore, the influence of surface chemistry on 
the safety of nanomaterials should not be overgeneral-
ized, and the risk assessment of nanomaterials needs to 
be handled in a case-by-case manner.

In addition, the monoatomic layer planar conjugate 
structure, large specific surface area and oxygen-con-
taining functional groups on the surface of GQDs can 
provide significant active sites and spacious environ-
ment to load and carry various drugs/genes/small mol-
ecules. Similar with graphene, GQDs have capability to 
bind with a variety of aromatic bimolecular through the 
π–π stacking interaction and/or electrostatic binding. 
However compared with graphene sheets, GQDs exhibit 
improved biocompatibility and minimal toxicity [16–18], 
making them more promising materials for delivering of 
biologically active cargoes into living systems. In recent 
years, many researchers have been dedicated to the 
application of GQDs in drug delivery systems [19–21]. 
Although, study in this field is still in its primary devel-
opment period, a comprehensive review article focusing 
on the applications of GQDs in drug delivery is highly 
demanded.

In this review, we outline the recent advancements in 
synthesizing of GQDs together with an analysis and com-
parison study on their pros and cons and suitable appli-
cations. Moreover, the applications of GQDs in drug 
delivery are summarized and discussed, while various 
GQDs based drug delivery-release modes are reviewed 
and compared.

Synthesis methods of GQDs
The existing methods for GQDs synthesis can be gen-
erally divided into top-down and bottom-up processes 
(Fig.  1) [22]. As the bottom-up methods, synthesis of 

GQDs requires complex reaction steps and specific 
organic materials, making it difficult to optimize the 
conditions. Therefore, it is preferred to use the top-
down approach, which is to cut large blocks of carbon 
materials into small pieces. The raw materials needed 
for this method are abundant carbon materials, which 
are cheap and easy to obtain, also the method is rela-
tively straightforward and easy to synthesize GQDs.

Top‑down strategy
There are many methods for GQDs synthesis based 
on top-down processes, including chemical oxida-
tion method [24–26], hydrothermal method [27, 28], 
ultrasonic assisted method [29], electrochemical oxi-
dation method [30], chemical vapor deposition (CVD) 
method [31–33], and pulsed laser ablation (PLA) tech-
nique [34–37], or a combination of the above different 
approaches [38].

Chemical oxidation method
Chemical oxidation method, also known as oxidation 
cutting method, is a very widely used method, in which 
carbon bonds of graphene, GO or carbon nanotubes 
are usually destroyed by H2SO4, HNO3 or other oxi-
dants [39–43].

Liu et  al. [44] developed an experimental system, 
which used Vulcan XC-72 carbon black as carbon 
source and strong oxidant concentrated nitric acid 
reflux to prepare high purity GQDs. The yield and 
purity of GQDs were 75 wt% and 99.96 wt% respec-
tively. At different excitation wavelengths, the prepared 
GQDs exhibited multicolor photoluminescence (PL) 
from green to red (Fig. 2).

In order to avoid the use of concentrated acids and 
the introduction of metal impurities, Lu et  al. [45] syn-
thesized GQDs with black carbon as precursor and 
hydrogen peroxide (H2O2) as the oxidant in a pot of 
hydrothermal method without any additional post-treat-
ment steps. The diameter of synthesized GQDs was 3.0–
4.5 nm. The whole synthesis process takes only 90 min, 
and has good light stability, salt tolerance, low toxicity 
and good biocompatibility. Compared with many other 
reported methods, it is a more green and faster method 
for GQDs synthesis. After that, Halder et  al. [46] also 
used GO as the precursor, oxidized and cracked it in 2 h 
with the help of H2O2, to obtain GQDs products, which 
also did not need further purification steps.

Due to the use of strong oxidants such as H2SO4 and 
HNO3, the chemical oxidation method is not very safe, 
and the generated chemical waste is liable to pollute the 
environment.

Table 1  Effects of  three GQDs on  autophagy-inducing 
related genes

“ +  + ” indicates significant activation; “ + ” indicates activation; “−” indicates 
inhibition

p-p38MAPK p-ERK1/2 p-JNK Akt

cGQDs  +  +   +  −
hGQDs  +  +  −  +   + 

aGQDs  +  +  − − −
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Hydrothermal method
Hydrothermal method is a simple and rapid method for 
preparing GQDs [47–50]. GQDs can be finally obtained 
using a variety of macromolecular or small molecular 

substances [51] as the starting materials through high 
temperature and pressure [52–55]. The principle is to 
break the bonds between carbon materials to form GQDs 
via high temperature under high pressure [56–59].

Tian et  al. [60] used H2O2 to synthesize GQDs in N, 
N-dimethylformamide (DMF) environment by one-step 
solvothermal method. In the whole preparation process, 
the use of concentrated sulfuric acid and nitric acid to 
treat raw materials was completely avoided, whereas no 
impurities were introduced (Fig.  3). High purity GQDs 
could be obtained by evaporation/re-dissolution and 
filtration without dialysis. The results showed that the 
diameter and thickness of GQDs were mainly distributed 
within the range of 20–40 nm and 1–1.5 nm, respectively. 
Under neutral conditions, the quantum yield (QY) was 
15%. The PL signal represented a good stability under dif-
ferent pH conditions, which indicates that it has broad 
application prospects in different environments. This 
method has many advantages such as low cost, high 
quantum yield, no requirement for dialysis and purifica-
tion, simple experimental setup, etc. The prepared GQDs 

Fig. 1  Two main approaches were adopted to prepare fluorescent GQDs: the “top-down” splitting route from different carbon sources and 
“bottom-up” method from small molecules or polymers (reprinted/reproduced with the permission of Ref. [23], copyright 2017, Nano Today)

Fig. 2  a UV–vis absorption spectrum of the GQDs at different 
excitation wavelengths. Inset: optical photograph of the GQDs 
dispersed in water under different wavelengths of irradiation. b PL 
spectra of the GQDs at excitation wavelengths from 260 to 580 nm 
(reprinted/reproduced with the permission of Ref. [44], copyright 
2015, RSC Advances)
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were environmentally friendly and displayed sound water 
solubility to represent their promising applications in the 
field of biomedical and bioelectronic devices.

Recently, Zhang et  al. [61] successfully synthesized 
reduced graphene oxide quantum dots (rGOQDs) in 5 h. 
They used graphite as the starting material to prepare 
GO by an improved Hummers’ method, and then GO 
and DMF were utilized as the raw materials for further 
hydrothermal treatment in a poly(tetrafluoroethylene) 
(Teflon)-lined autoclave at 200  °C. The QY of the syn-
thesized rGOQDs was 24.62%, and the surface doping 
was nitrogen (N) extracted from DMF. They also studied 
zebrafish by rGOQDs, which provided valuable reference 
for the biocompatibility of bio-probes in vivo.

In order to make full use of crop biomass, some 
researchers [62] used rice husk as the raw material to 
produce high-quality GQDs by hydrothermal method. 
The mass fraction of QY is about 15 wt%. The prepared 
GQDs showed good colloidal stability in water with 
bright and adjustable PL signals. Experiments suggested 
that, the synthesized GQDs has good biocompatibility 
and can be easily translocated into cytoplasm, to be used 
for cell imaging. In addition, mesoporous silica nanopar-
ticles (MSNs) as the by-products were synthesized dur-
ing the synthesis of GQDs.

Hydrothermal method can be used to dope many ele-
ments or groups, and the raw materials come from a 

wide range of composites [63]. Moreover, the hydrother-
mal method can be combined with chemical oxidation 
method to prepare different GQDs [64–66]. However, it 
suffers from the safety issue, because of the high temper-
ature and pressure, and also it generally takes a long time, 
usually at least 5 h [67, 68].

Ultrasound assisted method
Ultrasonic technology is also a common method for 
material synthesis [69, 70]. Under the action of ultra-
sound, tens of thousands of small bubbles will be formed 
in the liquid, and the mechanical force generated can 
destroy the carbon–carbon bonds, thus cutting into 
GQDs (Fig. 4).

Gao et al. [71] prepared three kinds of GQDs of pristine 
graphene quantum dots (PGQDs), expanded graphene 
quantum dots (EGQDs) and graphene oxide quantum 
dots (GOQDs) using natural graphite, expanded graphite, 
and oxide graphite as the raw materials in a supercritical 
CO2/H2O system assisted by ultrasound. The experimen-
tal results show that this method is an environmentally 
friendly, low-cost, fast and large-scale synthesis method 
of GQDs, which it can provide an alternative green route 
for the production of various GQDs, especially PGQDs.

Balaji et  al. [72] calcined the latex of Calotropis 
gigantea to 300  °C and extracted it with ethanol. The 
pure rGOQDs can be obtained by re-dispersing the 

Fig. 3  Schematic representation of GQDs prepared by solvothermal method (reprinted/reproduced with the permission of Ref. [60], copyright 
2016, Optical Materials)
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extract in Milli-Q water with a 15 min sonicate treat-
ment and further centrifuging at 5000 rpm. The parti-
cle size of rGOQDs ranged from 2–8 nm and showed 
green fluorescence in the long ultraviolet range of 
360–520  nm. It can be used to design more environ-
mentally friendly and economical Pb2+ fluorescent 
probes, since, it provides a simple and suitable method 
for the selective and sensitive detection of Pb2+ in 
water purification process. In addition, the rGOQDs 
were also prepared for free radical scavenging and bio-
imaging applications. They showed the advantages of 
stability, cost-effectiveness, good biocompatibility and 
environmental protection to play an important role 
in the field of nanotechnology-based biomedicine in 
the near future. Although, combination of hydrother-
mal and ultrasound-assisted methods have shown to 
improve their drawbacks in the fabrication of GQDs 
[73, 74].

Electrochemical oxidation method
In the electrochemical oxidation method process, car-
bon–carbon bonds of graphite, graphene, or carbon 
nanotubes are oxidized and decomposed into GQDs at a 
high redox voltage (+ 1.5 to + 3 V) [30, 75].

In order to controllably and efficiently prepare highly 
crystalline GQDs in aqueous systems, researchers [76] 
have developed a weak electrolyte (such as ammonia 
solution) electrochemical method to enhance the oxi-
dation and cutting process, thereby achieving high 
yield of GQDs. The af-GQDs were prepared using a 
circular graphene paper as the anode, a Pt sheet as the 
cathode, and an ammonia solution (nitrogen source) 
as the electrolyte and operated in a constant voltage 
mode (30 V) for 2 h in an electrochemical cell (Fig. 5). 
GQDs had a size of 3–8 nm and QY of 28%, which was 
approximately 28 times greater than that of the strong 
electrolytes (such as borax solution). At the same time, 
GQDs also showed significantly better crystallinity 
than the bottom-up GQDs. In addition, the amino 

Fig. 4  Illustration of the exfoliation process of pristine graphite, expanded graphite and graphite oxide in ultrasonic-assisted scCO2 process 
(reprinted/reproduced with the permission of Ref. [71], copyright 2017, Ultrasonics Sonochemistry)

Fig. 5  The electrolytic process of graphene paper in a ammonia and b NaOH solutions under different reaction times (reprinted/reproduced with 
the permission of Ref. [76], copyright 2018, Langmuir)



Page 6 of 32Zhao et al. J Nanobiotechnol          (2020) 18:142 

functionalization of GQDs can be controlled by con-
trolling the electrolyte concentration. In addition, this 
method can also be used in other weak electrolytes 
(such as HF and H2S) and anode precursors (such as 
graphene/graphite paper, carbon fiber and carbon 
nanotubes) to prepare other types of GQDs.

In a study conducted by by Chen et al. boron-doped 
graphene quantum dots (BGQDs) were synthesized by 
potentiostatic electrolysis [75]. Firstly, they put high 
purity graphite rod (carbon source) as the anode and 
PT sheet as the cathode into borax solution (boron 
source) of pH ≈ 7. Oxidization and decomposition of 
graphite at high redox voltage (3 V) for 2 h led to the 
production of BGQDs. Then, a 0.22  μm microporous 
nylon membrane filtration and dialysis bag (retained 
molecular weight of 3500  Da) were used to obtain a 
high-purity BGQDs solution.

The GQDs solution prepared by the electrochemical 
oxidation method has high stability, but the pretreat-
ment of raw materials and the purification of GQDs 
products take a long time, and the QY is relatively low, 
which makes it difficult to achieve large-scale produc-
tion of GQDs.

Other methods
Due to the unique structure and excellent properties of 
GQDs, researchers have reported more and more prepa-
ration methods based on the popular techniques, such 
as chemical vapor deposition (CVD) [33, 77] and pulsed 
laser ablation (PLA) [78, 79].

For example, Deka et  al. [31] prepared a PL sensor 
based on hydrophobic graphene quantum dots (h-GQDs) 
using acetylene and hydrogen as raw materials by CVD, 
which can distinguish aromatic and non-aromatic amino 
acids (Fig.  6). They first grew graphene on the Cu sub-
strate through a custom CVD system, then transferred 
it directly to n-hexane which was followed by obtaining 
h-GQDs after 8 h of ultrasonic treatment. This is the first 
report on the direct synthesis of CVD-assisted h-GQDs, 
which can form highly stable dispersions in organic sol-
vents without functionalization, doping or binding with 
other molecules.

In order to open up a new way to prepare GQDs, 
Kang et  al. [34] prepared GQDs from multi-walled 
carbon nanotubes (MWCNTs) by PLA. They first dis-
persed MWCNTs as carbon precursors in n-hexane 
and ethanol, respectively. Ultrasound treatment was 
then carried out in the solution for 2 h to achieve uni-
form dispersion of MWCNT (Fig.  7). GQDs were 

Fig. 6  Schematic representation of the strategy employed to synthesize h-GQDs and fabrication it as a sensing system which can distinguish 
between aromatic and non-aromatic amino acids (reprinted/reproduced with the permission of Ref. [31], copyright 2017, ChemistrySelect)
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fabricated rapidly by transferring 50  mL solution to 
glass bottle and then using a 6  min pulsed laser peel-
ing (PLE) process on a fixed bottle. The synthesized 
GQDs represented an obvious blue PL with the QY of 
12%, and showed sufficient brightness and resolution, 
to make them suitable for photoelectric applications.

In addition, some researchers [80–84] have prepared 
GQDs by other methods, but it has not been widely 
used due to their disadvantages such as difficult particle 
size control, low yield, long reaction time and complex 
process.

Bottom‑up strategy
The bottom-up approach generally includes microwave 
method [73, 85–87], molecular carbonization [88–90], 
and electron beam irradiation (EBI) methods [91, 92]. 
Generally, small molecules [93, 94] such as citric acid 
(CA) [95–97], amino acid [98, 99], phenyl compounds 
[91, 100–103], or small molecule sugar [104–106] are 
used as the starting material.

Microwave method
The long reaction time of hydrothermal method is a com-
mon problem, so microwave technology has become a 
fast heating method, which is widely used in the prepa-
ration of nanomaterials [107–109]. It not only shortened 
the reaction time, but also increased the yield.

Zhang et  al. [110] used aspartic acid (Asp) and 
NH4HCO3 as raw materials, DI water as solvent, purified 
GQDs by microwave irradiation for 10 min and dialysis 
membrane for 7 h (Fig. 8). The prepared GQDs showed 
strong blue fluorescence and QY of 14%. The strong 
fluorescence quenching effect of Fe3+ on GQDs can be 
used for highly selective detection in general metal ions. 
GQDs is also sensitive to pH value (2–12), which shows 
that it has great potential for optical pH sensors. In addi-
tion, GQDs can be directly used as fluorescent probe 
for cell imaging due to its low cytotoxicity and high 
photostability.

In order to obtain GQDs with good biocompatibility, 
sensing and in  vivo bioimaging capabilities, Campbell 
et  al. [111] used glucosamine-HCl solution as a carbon 

Fig. 7  HR-TEM images of e-GOQDs and h-GQDs. a TEM image of e-GOQDs and b h-GQDs. They both showing the uniform round shape and size 
distribution of 1 ~ 5 nm. Scale bar 50 nm. c HR TEM image of e-GOQDs and d h-GQDs. Insets are the 2D FFT patterns (left). They both show high 
quality crystalline hexagonal patterns of these quantum dots. Scale Bar 5 nm. Right side insets show the edge structure of e-GOQDs and h-GQDs. 
Scale bar 2 nm (reprinted/reproduced with the permission of Ref. [34], copyright 2016, Scientific Reports)
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source and added different dopant precursors (sulfur 
thiourea or benezeneboronic acid) to synthesize various 
GQDs, including N-GQDs, NS-GQDs, and BN-GQDs. 
After the mixed solution was subjected to microwave 
treatment for 40 min, it was treated with dialysis mem-
branes for 7  days, and GQDs with QY of 15–20% were 
obtained. After examining the cytotoxicity and pH fluo-
rescence response of the prepared GQDs, it was found 
that they have a great potential in drug delivery, pH-sens-
ing of cancerous environments, and multicolor visible/
near-infrared (NIR) fluorescence imaging.

The microwave method greatly shortens the time for 
synthesizing GQDs, which can be obtained in a few min-
utes, and can be doped with various elements, which 

enriches the types of GQDs and expands the functions of 
GQDs.

Molecular carbonization method
The preparation of GQDs by molecular carbonization 
is an environmentally friendly and simple method [90, 
112]. Its principle is to use suitable organic molecules 
or polymers for dehydration and further carbonization 
[113–115].

Bayat et  al. [116] synthesized low cost and high yield 
green photoluminescent single-layer graphene quantum 
dots (SLGQDs) using DI water as solvent and glucose 
as precursor. The synthesized SLGQDs were uniformly 
dispersed without obvious aggregation, and their aver-
age size was about 8 nm. The maximum emission wave-
length was about 540  nm. The formation mechanism 
of SLGQDs was as follows (Fig. 9). First, dehydration of 
glucose molecule to form C=C and basic unit of gra-
phene structure through hydrothermal reaction; second, 
interaction of hydrogen atoms of glucose molecule with 
hydroxyl group of adjacent glucose molecule to form 
water molecule; finally, covalent interaction of carbon 
atom to form GQDs. The prepared SLGQDs have the 
advantages of low cost, high yield and large scale.

In another report, Teymourinia et  al. [117] prepared 
GQDs with corn flour as green precursor. The diam-
eter of synthesized GQDs was 20–30  nm. Broad emis-
sion centered at 450  nm was observed in the emission 
spectrum (PL) of 360  nm excitation wavelength. The 

Fig. 8  Schematic illustration of the preparation process for the GQDs 
(reprinted/reproduced with the permission of Ref. [110], copyright 
2016, Talanta)

Fig. 9  Formation mechanism of the SLGQDs via a hydrothermal method at 200 °C for 8 h (reprinted/reproduced with the permission of Ref. [116], 
copyright 2017, Journal of Luminescence)
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excitation spectrum (PLE) showed a broad peak centered 
at 365 nm.

The application of molecular carbonization method 
is relatively challenging. Since the size and struc-
ture of GQDs cannot be accurately controlled, the 
GQDs obtained using this method is multi-dispersive 
[118–120].

Electron beam irradiation (EBI) method
It is worth to note that, the EBI method [121] requires 
expensive professional equipment and has the risk of 
being injured by radiation, so it has not been widely used. 
Wang et  al. [122] synthesized single crystal fluorescent 
GQDs by EBI at room temperature. 1,3,6-trinitropyrene 
was dissolved in a solution of hydrazine hydrate. Then, it 
was sealed in a plastic bag after stirring, and irradiated 
under the titanium window of a dynamitron electron 
accelerator (Fig.  10). After irradiation, the sample was 
dialyzed through a 0.22  mm microporous membrane 
filter and a dialysis bag for 2 d, and finally a GQDs with 
32% QY was obtained. Other small molecules such as 
1-Nitropyrene, urea, and CA can also be used as precur-
sors to synthesize GQDs at the same conditions.

Generally, GQDs are prepared by cutting carbon mate-
rials, including graphene, fullerene and carbon nano-
tubes, through top-down strategies, including chemical 
oxidation method, hydrothermal method, ultrasound 
Assisted method, electrochemical oxidation method, 
CVD method, and PLA method, or using appropriate 
organic molecules or polymers as raw materials. Bottom-
up strategies include microwave method, molecular car-
bonization method, and EBI method. Generally, small 
molecules such as CA, amino acids, phenyl compounds 
or small molecular sugars are used as starting materials, 
or different elements are doped to synthesize GQDs with 
multiple functions. Table  2 summarizes the advantages 
and disadvantages of different methods.

In all GQDs preparation methods, hydrothermal meth-
ods are often combined with chemical oxidation methods 
to break down large molecules such as graphite, fuller-
ene, C60, carbon nanotubes, and even crop biomass. The 
sources of raw materials are very rich, so they are widely 

used. The microwave method has the advantages of short 
reaction time, simple operation, cheap equipment, and 
no pretreatment of raw materials, so researchers can 
quickly prepare GQDs for further experiments.

Applications of GQDs in drug delivery
In recent years, the applications of GQDs in drug deliv-
ery [123–127], sensors [128–134], bio-imaging [10, 63, 
135–140], magnetic hyperthermia [141–143], photother-
mal therapy [144–148], antibacterial [145, 149, 150], cat-
alyst [69, 151–155], environmental protection [38, 156, 
157], and energy [158–163] has made remarkable accom-
plishment. In order to better apply GQDs to drug deliv-
ery, some researchers had used density functional theory 
(DFT) calculations [164–167], molecular dynamics (MD) 
simulations [168, 169], or other methods [170, 171] to 
theoretically study the properties of GQDs. For exam-
ple, Vatanparast et  al. [166] studied the interaction of 
5-fluorouracil (FU) with undoped/doped GQDs by DFT 
calculations. The results showed that AlN and AlP doped 
GQDs could serve as potential carriers for FU drugs in 
the nanomedicine domain. Later, they [167] used DFT 
calculations to study the applications of GQDs and doped 
GQDs as potential carriers of isoniazid (Iso). The results 
confirmed that the AlN- and AlP-doped GQDs could 
be used as potential carriers for drug delivery applica-
tions. Recently, they [169] also has studied the effects of 
different N-functionalities groups in the drug delivery 
performance of N-GQDs via DFT calculations and MD 
simulations. The drug release performance of the center 
N-GQDs is considered to be superior to that of pristine 
GQDs and edge N-GQDs. This review focuses on the 
research accomplishment of GQDs in drug delivery.

There are many ways of drug delivery, but simply focus-
ing on drug delivery and ignoring drug release cannot 
improve the therapeutic effect of drugs. Therefore, more 
and more researchers have being paying attention to the 
close relationship between drug delivery and drug release 
and try to develop a variety of drug delivery-release 
mode, in order to improve the therapeutic effect of drugs 
by improving drug delivery and release efficiency.

Fig. 10  Preparation procedure of GQDs by EBI (reprinted/reproduced with the permission of Ref. [122], copyright 2017, Chemical Engineering 
Journal)
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GQDs is a novel and efficient nano-material for bio-
logical therapy. Graphene or graphene-based nanoma-
terials [145, 172] have been reported for drug delivery 
and release in order to improve delivery efficiency and 
enhance therapeutic effects [143, 171–174]. Compared 
with graphene, GQDs have better water solubility, lower 
cytotoxicity [61, 150, 175, 176], and larger specific surface 
area, which makes them more effective drug molecular 
loading cores [12, 177, 178].

As a member of graphene family and carbon-based 
nanomaterials, GQDs have a number of advantages 
over other nanoparticles in the application of drug 
delivery due to their low toxicity, large surface/volume 
ratio and their massive capabilities of surface function-
alization. When compared to other traditional nano-
platforms, such as polyethylene glycol (PEG), GQDs 
may provide more bonding sites for chemotherapeu-
tic conjugation and improved cell uptake ability [179]. 
Compared with quantum dots (QDs) of similar size, 
GQDs exhibit superior properties such as quantum 
confinement effects, ability for simultaneous tracking 
due to their tunable photoluminescence (PL) but rela-
tively lower toxicity due to the lack of heavy metal com-
ponents [180]. Therefore, GQDs have great potential 
for biomedical application. Moreover, owing to their 
planar structure, GQDs possess a large surface area to 
volume ratio, which allows for higher efficiency of drug 
loading and delivery [142]. Furthermore, the unique 

π-orbitals in the sp2-hybridized GQD lattice can be 
used to bond drugs containing an aromatic ring struc-
ture through π–π stacking, without covalent conjuga-
tion, which widens the application of GQDs for drug 
delivery.

A schematic diagram showing the drug delivery and 
release in GQDs based system is shown in Fig. 11 [181]. 
First, the drugs are delivered to the target cells by EPR 
effect or the targeting ligand, then up taken by cells. Simi-
lar with other non-degradable nanoparticle drug carriers, 
drugs released from GQDs via a diffusion process. For 
example, the adsorbed drugs on GQDs can be released 
into cytoplasm by desorption and diffusion.

GQDs were proved to be able to across the blood–
brain barrier (BBB) and prevent α-synucleinopathy in 
Parkinson’s disease without surface functionalization 
[182]. Generally, size and charge of the nanoparticles 
have important influence on their BBB permeation. 
Smaller nanoparticles are able to cross the BBB more eas-
ily and to diffuse better through the brain. For example, 
gold nanoparticles under 15  nm were found to be able 
to cross the BBB without any functionalization. How-
ever, gold nanoparticles bigger than 50  nm were failed 
to across BBB and not found in the brain [183]. Simi-
larly, the small size is considered to the main reason why 
GQDs can across BBB, and GQDs across biological barri-
ers probably through the transmembrane or the paracel-
lular pathway.

Table 2  Advantages and disadvantages of different methods

Methods Advantages Disadvantages

Top-down strategy Chemical oxidation Method It is widely used method at present; it is 
simple and effective and can be used in 
large-scale production

It usually needs to use H2SO4, HNO3 or other 
oxidants, which may cause corrosion or 
explosions

Hydrothermal/solvothermal method It is a green, simple and fast method Reaction time is long; some raw materi-
als need to be treated by strong oxidant 
before reaction occurs; reaction also 
involves high temperature and high 
pressure, which may cause combustion or 
explosion

Ultrasound assisted method It can shorten the reaction time and 
improve the yield

It is difficult to synthesize on a large scale in 
industry

Electrochemical Oxidation Method The GQDs produced are stable and uniform 
in size distribution

The pretreatment of raw materials and the 
yield of products is low, so it is difficult to 
carry out large-scale production

Other method It is difficult particle size control, low yield, 
long reaction time and complex process

Bottom-up strategy Microwave method It greatly shortens the reaction time and 
is green

It is difficult to carry out large-scale produc-
tion and requires filtration and purification

Molecular carbonization method It is an environmentally friendly and simple 
method

It is impossible to control the size and 
structure of GQDs accurately; the obtained 
GQDs are multi-dispersive

Electron beam irradiation method It is simple, fast and high yield It requires expensive professional equipment 
and has the risk of being injured by radia-
tion, so it has not been widely used
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The integration of cancer diagnosis and treatment 
has been always a concern for the biomedical research-
ers. Although considerable progress has been made in 
targeting drug delivery systems to deliver anticancer 
drugs to specific sites of interest, new nanomaterials are 
often developed and explored for better drug delivery 
efficiency. While developing new nanomaterials, new 
drug delivery-release modes have also been explored. 
Generally, there are enhanced permeability and reten-
tion (EPR)-pH delivery-release mode [184], ligand-pH 
delivery-release mode [99, 185, 186], EPR-Photothermal 
Delivery-Release Mode [123], and Core/Shell-photother-
mal/magnetic thermal delivery-release mode [187, 188]. 
In addition, other delivery-release modes are generally 
used to treat non-tumor diseases.

EPR‑pH delivery‑release mode
Drug-Loaded Delivery-Release System (DDRS) can be 
used to deliver drugs to tumor sites through the EPR 
effect and released in low pH microenvironments for 
anti-tumor chemotherapy.

In a report by Khodadadei et al. [184], blue fluorescent 
nitrogen-doped graphene quantum dots (N-GQDs) were 
synthesized by hydrothermal method using CA as the 
carbon source and urea as the nitrogen source. N-GQDs 

were loaded with methotrexate (MTX) through π–π 
superposition interactions, thereby preparing MTX-(N-
GQDs) DDRS (Fig. 12). The release of MTX in vivo was 
simulated by the release of MTX-(N-GQDs) in phos-
phate buffered saline (PBS) at pH 7.4. In vitro cytotoxicity 
tests on human breast cancer cells (MCF-7) showed that 
N-GQDs were well compatible with cells, while MTX-(N-
GQDs) had higher cytotoxicity and longer culture time 
than MTX alone Inside. This study confirms the progress 
of GQDs as nanocarriers in prolonging the cytotoxicity 
of drug-loaded cells, thereby better killing cancer cells.

To overcome the hypoxia-induced resistance to chem-
otherapy in the tumor microenvironment, Wei et  al. 
[189] established a DDRS based on Pt and polyethylene 
glycol-GQDs. First, GQDs were synthesized by chemi-
cal oxidation of dried CX-7 carbon black with HNO3. 
Subsequently, ClCH2COH hydroxylated GQDs-COOH 
supported cisplatin via a covalent bond. Further, Pt-
GQDs-COOH was obtained. Finally, polyethylene glycol 
(PEG) was connected to Pt-GQDs-COOH by stirring to 
synthesize a polyethylene glycol-graphene quantum dot-
Pt (GPt) with a diameter of about 5  nm (Fig.  13). Oral 
squamous cell carcinoma (OSCC) and BALB/cJNJu-
Foxn1nu/Nju (4  weeks old) xenograft tumor male mice 
were used to detect GPt in vitro and in vivo, respectively. 
It was found that GPt has a good therapeutic effect on 
OSCC under both normoxic and hypoxic conditions. 
Compared with free cisplatin, after GPt enters mice 
through the tail vein, GPt has a stronger inhibitory effect 
on tumor growth, and systemic drug toxicity is not obvi-
ous. This is mainly because GPt is easier to enter tumor 
tissues through the EPR effect, and releases Pt for anti-
tumor in an acidic environment. Potential new strate-
gies for the preparation of GPt for therapy targeting the 
tumor microenvironment.

In general, when the function of DDRS is usually rela-
tively simple, in this EPR-pH delivery-release mode, the 
drug may be released early during delivery, and the effi-
cacy will be reduced due to the lower penetration perfor-
mance. To improve tissue permeability and cell uptake, 
Ding et al. [41] developed a new type of anticancer drug 
with excellent therapeutic properties. Firstly, GQDs were 
prepared from polyacrylonitrile carbon fibers by simple 
chemical oxidation and exfoliation. DOX is then loaded 
on the surface of GQDs via π–π interaction to obtain 
DOX@GQDs. GQDs were coupled with Cy5.5 (Cy) dye, 
a NIR fluorescent molecule, via a cathepsin D-respon-
sive (P) peptide, and finally DOX@GQDs-P-Cy was 
synthesized. DOX@GQDs-P-Cy was evaluated in  vitro 
and in  vivo by 4T1 breast cancer cells, 3D multicellu-
lar tumor spheroid (MCTS) model, and tumor-bearing 
mice, respectively (Fig.  14). It was found that GQDs-P-
Cy has good biocompatibility. After loading DOX, it is 

Fig. 11  Illustration of receptor-mediated endocytosis of targeting 
ligand-conjugated GQDs loaded with an anticancer drug into a 
tumor cell and drug release inside the cell (reprinted/reproduced 
with the permission of Ref. [181], (reprinted/reproduced with 
the permission of Ref. [181], copyright 2020, Materials Science & 
Engineering: C)
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significantly more cytotoxic than free DOX, and DOX@
GQDs-P-Cy has stronger tumor penetration ability. 
DOX@GQDs-P-Cy is injected intravenously into tumor-
bearing mice. Compared with free DOX, tumor uptake of 
DDRS is more favorable for tumors. The tumors shrink 
faster, and tumor-bearing mice survive longer. In addi-
tion, the DOX@GQDs-P-Cy can also be used as a probe 
to trace the delivery process and release site of anticancer 
drugs. The negative correlation between the fluorescence 
intensity of the NIR fluorescence signal of Cy triggered by 
cathepsin D and the relative speed of tumor growth can 
also be used to accurately assess the apoptosis in chemo-
therapy in real time. This versatile DDRS that monitors 
drug delivery, release, and treatment will help establish 
personalized anti-cancer therapies.

Ligand‑pH delivery‑release mode
Generally, to achieve accurate anti-tumor treatment, 
first, the antitumor drugs are loaded on DDRS through 
π–π interactions. Then, tumor is targeted by the 

DDRS-loaded drugs through ligand-receptor interac-
tions. Finally, antitumor drugs are released from DDRS 
in the low pH environment of tumor cells for effective 
tumor ablation [190].

Iannazzo et al. [191] established a good biocompatible 
and cell-traceable drug delivery system based on GQDs 
for inserting the doxorubicin (DOX) drug into DNA for 
delivery to cancer cells (Fig.  15). They first synthesized 
highly dispersed water-soluble GQDs by chemical oxi-
dation using MWCNTs as raw materials. In order to be 
able to effectively recognize biotin receptors that are 
overexpressed in cancer cells, they are covalently linked 
to the tumor targeting module biotin (BTN) and loaded 
with DOX through π–π interactions to obtain GQDs-
BTN-DOX delivery-release system. In  vitro cytotoxicity 
tests using A549 cells showed that the synthesized GQDs 
and GQDs-BTN had no significant toxicity. In A549 cells 
treated with GQDs-BTN-DOX, cytotoxicity is closely 
related to cellular uptake. After treatment with GQDs-
BTN-DOX, cell uptake was larger and delayed compared 

Fig. 12  Preparation of N-GQDs and subsequent release of MTX from the surface of N-GQDs in a tumor cell environment (reprinted/reproduced 
with the permission of Ref. [184], (reprinted/reproduced with the permission of Ref. [184], copyright 2017, Materials Science and Engineering: C)
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Fig. 13  Schematic illustration of a multifunctional platform for anticancer therapy with high efficacy against hypoxia-induced chemoresistance 
of OSCC (reprinted/reproduced with the permission of Ref. [189], (reprinted/reproduced with the permission of Ref. [189], copyright 2018, Int J 
Nanomedicine)
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to cell uptake observed with GQDs-DOX or free DOX. 
The drug delayed nuclear internalization because the 
acidic environment of cancer cells caused the drug to 
detach from the system. In addition, intrinsic fluores-
cence enables tracking of drug release.

Based on the previous experience, they [192] have 
prepared similar intelligent DDRS, which also has drug 
loading and targeting functions. First, GQDs and PEG 

are assembled to form GQDs-PEG-BFG, which has the 
function of supporting anticancer drugs with a benzo-
furan structure (BFG). Then, using pyrene as a linker, it 
was linked to the targeting ligand riboflavin (RF, vitamin 
B2) through a π–π interaction. The GQDs-PEG-BFG@
Pyr-RF (Fig. 16) was formed to target cancer cells. Func-
tions. Biological tests were performed on synthetic DDRS 
using three cancer cell lines, laryngeal cancer cell line 

Fig. 14  Strategy of GQDs-based theranostic agent for programmatically monitoring anticancer drug delivery, release, and response (reprinted/
reproduced with the permission of Ref. [41], copyright 2017, ACS Applied Materials & Interfaces)

Fig. 15  Synthesis of GQDs-BTN-DOX. Reagents and conditions: a BTN, EDC·HCl, HOBt, DMAP, CH2Cl2, 4d, r.t.; b DOX, buffer solution pH 7.4, 24 h, r.t 
(reprinted/reproduced with the permission of Ref. [191], copyright 2017, Int J Pharm)
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(HEp-2), human lung epithelial cancer cell line (A549), 
and human colorectal adenocarcinoma cell line (HT-29). 
GQDs-PEG-BFG@Pyr-RF, GQD-PEG-BFG, and GQDs@
Pyr-RF were found to be low cytotoxic, but toxic to can-
cer cells, compared to free BFG. This new DDRS provides 
new ideas for the application of anticancer drugs with 
poor water solubility, low cell uptake, systemic toxicity 
and adverse side effects. It also shows that GQDs, a new 
generation member of the graphene family, have shown 
broad application prospects in anticancer treatment.

Qin et  al. [193] developed a new nano-scale DDRS 
based on GQDs, only 9–12  nm, for the treatment of 
ovarian cancer. First, GQDs were synthesized by hydro-
thermal method using graphite as a raw material. Subse-
quently, the targeting ligand folic acid (FA) was coupled 
to GQDs, giving GQDs the ability to target cancer cells. 
Next, the chemotherapeutic DOX is loaded on it via π–π 
stacking interaction to form the final DDRS, GQDs-
FA-DOX, which was somewhat similar to the design by 
Wang et  al. [194] (Fig.  17). The performance of GQDs-
FA-DOX was tested using the normal ovarian epithe-
lial cell line T80 and the ovarian carcinoma cell line 
OVCAR3. It was found that the synthesized DDRS had 
no toxic effect on normal ovarian cells and had ideal ther-
apeutic effects on ovarian cancer cells. GQDs-FA-DOX 
provides a novel and effective strategy for targeted ther-
apy of ovarian cancer.

In addition, in order to deliver pancreatic cancer-spe-
cific drugs in rats, Joshi et  al. [195] synthesized a novel 
DDRS (Fig.  18) based on silver-graphene quantum dot 
(Ag-GQDs) nanocomposites. First, glutamine was used 
as the raw material, and pure GQDs were obtained after 

high-temperature cracking at 190–200  °C and further 
high-speed centrifugation to remove impurities. Sub-
sequently, GQDs and a certain amount of AgNO3 solu-
tion were mixed, and Ag+ was reduced in  situ using tri 
sodium citrate as a reducing agent to obtain an Ag-GQDs 
nanocomposite. In order to reduce the toxicity of silver 
nanoparticles and improve the biocompatibility of nano-
particles, carboxymethyl inulin (CMI), a modification 
of natural polysaccharide inulin, is coupled with carbo-
diimide and nanocomposites to obtain Ag-GQDs-CMI. 
Hyaluronic acid (HA), as a target component of CD-44 
(cancer stem cell marker), is connected to Ag-GQDs 
through an EDC-NHS coupling reaction, so that the 
synthesized HA-Ag-GQDs-CMI can reach cancer cells 

Fig. 16  Cancer targeted DDRS based on GQDs (reprinted/reproduced with the permission of Ref. [192], copyright 2019, Nanomaterials)

Fig. 17  Schematic of the fabricated DOX-GQDs-FA nanoassembly 
for DOX deliveryinto target cells (reprinted/reproduced with the 
permission of Ref. [194], copyright 2014, Colloids and Surfaces B: 
Biointerfaces)
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accurately. ability. 5-Fluorouracil (5-FU), as a model 
drug, is loaded on it by adsorption and released in the 
acidic environment of cancer cells. After in vitro biologi-
cal characterization of three cell lines—HeLa (Cervical 
cancer), HepG2 (Liver cancer), and Panc-1 (Pancreatic 
cancer)—in vitro and in Wistar rats, a synthetic 5-FU-
containing DDRS was found (72–78% inhibition) inhib-
ited cancer cells more effectively than Ag-GQDs-CMI 
(~ 56%) with 5-FU and had stronger anti-cancer effect. 
This shows the potential promise of Ag-GQDs-CMI in 
targeted delivery-release drugs.

The most commonly used delivery-release mode is 
the ligand-pH delivery-release mode. Synthetic DDRS is 
typically nano-sized and reaches the tumor site through 
blood flow. Due to the unique ligand-receptor binding, 
drug delivery is accurate. However, because the release 
is pH-mediated, the drug is sometimes lost during the 
delivery, which leads to a decrease in the treatment 
efficiency.

EPR‑photothermal delivery‑release mode
In the EPR-photothermal delivery-release mode, DDRS 
can be two-dimensional (2D) or three-dimensional 
(3D), but because it lacks a ligand and does not have a 
targeting function, it has no magnetic iron oxide and 
is not controlled by a magnetic field. Generally, it can 
only be accumulated at the tumor site through the EPR 
effect, but the release of DDRS can be controlled by NIR 

radiation without relying on the tumor’s slightly acidic 
environment.

Xu et  al. [123] reports a DDRS that can reduce the 
drug leakage and improve drug release efficiency in 
tumor lesions (Fig.  19). First, polymerizable ionic liq-
uid ViDoIm+Br− as an emulsifier successfully prepared 
polymer microsphere including GQDs, DOX, MMA, 
and EGDMA via miniemulsion polymerization. The 
study found that compared with non-imprinted poly-
mers (GNIPs), molecularly imprinted polymers (GMIPs) 
greatly improved the loading efficiency of DOX and 
reduced drug leakage. DDRS can accumulate in tumor 
areas through the EPR effect. In addition, because GQDs 
have a light-to-heat conversion effect, DOX that releases 
the load from GMIPs can be controlled by NIR radiation. 
The combination of molecular imprinting technology 
and photothermal controllable drug delivery system pro-
vides an idea for designing novel DDRS that can reduce 
drug loss and improve drug release efficiency.

Aiming at the targeting and penetration of deep 
tumors, Su et  al. [196] has synthesized a pH-sensitive 
GQDs nanoaircraft (SCNA) with variable size and NIR-
mediated drug release, which can deliver and penetrate 
antitumor drugs into the deep Tumor (Fig.  20). Firstly, 
using hexaphenylbenzene as a starting material, artificial 
graphite (AG) was synthesized by a bottom-up method. 
Subsequently, Hummers method was used to prepare 
artificial graphene oxide (AGO) from AG, followed by 

Fig. 18  Schematic diagram of nanoformulation preparation and in vitro and in vivo theranostic applications (reprinted/reproduced with the 
permission of Ref. [195], copyright 2017, Materials Science and Engineering: C)
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ultrasonic dispersion of the AGO solution containing 
hydrazine to obtain GQDs. Finally, GQDs loaded with 
DOX through π–π stacking interactions self-assembled 
into SCNA with HTPGS containing a hydrophilic PEG 
strain and a hydrophobic vitamin E via hydrophobic 

interaction. The SCNA is injected into RG2 tumor-bear-
ing BALB/c nude mice via intravenous injection and 
has a stealth function due to stability at physiological 
pH. When the SCNA entered the weak acidity of tumor 
environment through the enhanced permeability and 

Fig. 19  Schematic diagram of GMIPs synthesis and DOX release by an ex vivo (reprinted/reproduced with the permission of Ref. [123], copyright 
2019, Journal of Materials Science)

Fig. 20  Size-changeable nanoaircrafts (SCNAs) for hierarchical tumor targeting through an aggregation transition in the weak acidity of the tumor 
environment and photopenetrating drug/GQDs delivery. a The SCNAs delivered DOX/GQDs to the tumor through intravenous injection. b The 
aggregation transition of the SCNAs in the weak acidity of the tumor environment enhanced tumor accumulation. c NIR-activated disassembly of 
SCNAs into DOX/GQDs facilitated penetration deep into tumors. d Schematic illustration of the enhanced tumor accumulation and penetration by 
SCNAs  (reprinted/reproduced with the permission of Ref. [196], (reprinted/reproduced with the permission of Ref. [196], copyright 2017, Advanced 
Functional Materials)
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retention (EPR) effect, it exhibited an aggregation transi-
tion, which expanded from 150 to 450  nm (in vitro pH 
6.6). When further driven by NIR, SCNA breaks down 
into DOX/GQDs (5 nm) and penetrates deep tumor tis-
sues like a bomb-loaded jet. It is exciting that DOX/
GQDs that penetrate tumor tissue can infect and repeat-
edly kill adjacent tumor cells without causing damage to 
the distal end. This nanocomposite with enhanced tumor 
permeability combined with photothermal chemother-
apy is expected to open a new way to overcome the limi-
tations of nanoparticles in tumor treatment.

Compared with the EPR-pH delivery-release mode, the 
EPR-photothermal delivery-release mode goes one step 
further. Instead of relying solely on the tumor’s micro-
acid environment, it has a light-to-heat conversion capa-
bility and can control the release of DDRS through NIR 
radiation. This approach reduces the early release of 
drugs and improves the efficiency of drug treatment.

Core/Shell‑photothermal/magnetic thermal 
delivery‑release mode
Some researchers [187, 188] have developed core–shell 
materials, which are generally combined with photody-
namic therapy and thermodynamic therapy, providing 
new ideas for drug delivery and release.

With upconversion nanoparticle (UCNP) as the core 
and GOQDs as the shell, Choi et al. [197] also synthesized 
a core–shell nanoparticle for cell imaging and drug deliv-
ery. Firstly, UCNP (NaYF4:Yb3+, Er3+) was synthesized 

by hydrothermal method, and the surface of UCNP was 
further modified by polyethylene glycol 2-aminoethyl 
ether acetic acid (amine-PEG). GOQDs were coupled to 
Hypocrellin A (HA), a commonly used chemotherapeutic 
drug and photosensitizer, through π–π interaction and 
loaded onto the surface of UCNP via PEG to synthesize 
HA/GOQDs/UCNP core–shell structure (Fig. 21). HeLa 
cells were used to study HA/GOQDs/UCNP in  vitro. 
The study found that GOQDs/UCNP and HA/GOQDs 
had no significant cytotoxicity regardless of whether they 
were irradiated (460 nm LED). Compared with the non-
irradiated group, the cell activity of the HA/GOQDs/
UCNP irradiated group was significantly reduced (52%), 
indicating that HA/GOQDs/UCNP irradiation at 460 nm 
improved the anti-tumor treatment effect. Upconversion 
luminescence (UCL) imaging shows that HA/GOQDs/
UCNP is an effective biological probe that can be used 
for cell imaging. Synthetic core–shell structured nano-
particles are potential candidates for multifunctional 
agents for cell imaging, drug delivery, and cell therapy.

Yao et al. [141] established a multifunctional platform 
for drug release, magnetic thermotherapy and photo-
thermotherapy, consisting of caps and local photother-
mal generators, drug carriers and magnetic thermoseeds. 
Firstly, magnetic mesoporous silica nanoparticles 
(MMSN), drug carriers and magnetic thermoseeds were 
synthesized by sol–gel process with magnetic Fe3O4 nan-
oparticles prepared by solvothermal method as the core. 
Next, APTES-functionalized amine-modified MMSN 

Fig. 21  The action procedure of HA/GOQD/UCNP nanoparticle (reprinted/reproduced with the permission of Ref. [197], copyright 2017, Biosensors 
and Bioelectronics)
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absorbed DOX by stirring in the dark for 24  h. Then, 
DOX-MMSN and the activated GQDs were mixed at 4 °C 
in the dark for DOX encapsulation. N-Hydroxysuccinim-
ide (NHS) and 1-ethyl-3-(3-dimethylaminopropyl) car-
bodiimide hydrochloride (EDC) activate GQDs as caps 
and local photothermal generators. Finally, a core–shell 
structure of MMSN/GQDs DDRS with a diameter of 
100 nm was obtained (Fig. 22). In vitro biological detec-
tion of MMSN/GQDs DDRS was carried out using breast 
cancer line 4T1 cells as model cell system. It was found 
that the release of DOX in DOX-MMSN/GQDs could be 
induced in a low pH environment to perform chemother-
apy of tumor cells. In addition, this DDRS can effectively 
heat cells to high temperature under alternating mag-
netic fields or NIR radiation for magnetic or photother-
mal treatment of tumor cells. Compared with incomplete 
DDRS treatment, the combined use of chemotherapy, 
magnetocaloric therapy, or photothermal therapy has a 
significant synergistic effect greatly improving the anti-
tumor efficiency. Therefore, this multi-functional plat-
form (MMSN/GQDs DDRS) that enhances anti-tumor 
efficiency has a great potential application in anti-tumor 
treatment.

Fig. 22  Schematic illustration of the preparation process of the 
DOX-MMSN/GQDs nanoparticles and synergistic therapy combined 
with controlled drug release, magnetic hyperthermia, and 
photothermal therapy (reprinted/reproduced with the permission of 
Ref. [141], copyright 2016, Small)

Fig. 23  Schematic illustration showing the synthesis of PPy/mSiO2, the encapsulation of MTX with the aid of GQDs cap and the NIR light-triggered 
MTX delivery (reprinted/reproduced with the permission of Ref. [198], copyright 2017, Materials Science and Engineering: C)
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In order to reduce drug loss during transportation, Li 
et  al. [198] synthesized polypyrrole/mesoporous SiO2/
GQDs (PPy/mSiO2/GQDs) core–shell nanocomposites 
(Fig. 23) for drug delivery. Firstly, using Fe3O4 as the core, 
Ppy-Fe3O4 was prepared. Polypyrrole (PPy), has a very 
high light-to-heat conversion efficiency at 808  nm and 
shows strong absorption in the NIR region. Subsequently, 
a mesoporous SiO2 layer was formed on the surface 
of PPy–Fe3O4, and Fe3O4 was removed to form a PPy/
mSiO2 core–shell structure. After stirring the MTX load, 
GQDs were introduced into the outer surface of PPy/
mSiO2, forming hydrogen bonds with the outer surface 
of mSiO2, thereby packaging the drug to prevent the drug 
from being lost during transportation. Under NIR radia-
tion from the tumor site, PPy converts light into heat. 
As the temperature of PPy/mSiO2/GQDs increased, the 
hydrogen bonds between GQDs and mSiO2 were broken 
and fell off. MTX was released from PPy/mSiO2 for anti-
tumor treatment. The intelligent drug delivery-release of 
PPy/mSiO2/GQDs could provide a new mechanism for 
medical diagnosis and treatment.

Loading the antitumor drug into the core–shell struc-
ture can effectively prevent the early release of drug dur-
ing the delivery. Under the irradiation of light or applying 
magnetic field, the cell penetration efficiency and cell 
absorption capacity of nano-sized core–shell structure 
could be significantly improved, thereby improving the 
tumor treatment efficacy. In addition to chemother-
apy, photothermal therapy and magnetocaloric therapy 
have also been developed, and with extensive studies by 
researchers, multiple therapeutic approaches in conjunc-
tion with antitumor have gradually become a trend for 
tumor therapy [144].

Other delivery‑release modes
Some researchers have also developed other delivery-
release modes using GQDs. In addition to synthesizing 
nanoscale DDRS for intravenous administration, GQDs 
can also be used for micro and millimeter DDRS for oral 
administration. In order to avoid the trauma and discom-
fort caused by intravenous or other methods of adminis-
tration, for some diseases, oral delivery systems have also 
attracted much attention.

Hydrogel nanocomposite microspheres prepared based 
on carboxymethylcellulose (CMC) have received wide-
spread attentions due to their many advantages, such as 
mild, simple, compact, and uniform shape to be used for 
drug delivery and release. Therefore, Javanbakht et  al. 
[199] synthesized hydrogel nanocomposite microspheres 
based on CMC and GQDs for oral administration 
(Fig.  24). Firstly, CA prepared GQDs by pyrolysis, and 
then pre-loaded the model drug naproxen (NPX) on the 
surface of GQDs by stirring to form GQDs-NPX (Fig. 25) 

[113]. CMC was further added, and copper acetate was 
added as a physical cross-linking agent under continued 
stirring. Finally, Cu-crosslinked carboxymethylcellu-
lose/naproxen/graphene quantum dots nanocomposite 
hydrogel beads (Cu-CMC/NPX/GQDs) were obtained 
after drying at room temperature. After simulating oral 
administration, the release of the drug in the gastroin-
testinal tract found that CMC can effectively protect the 
loaded drug from the effects of a low pH environment. 
By controlling the release of different pH environments, 
the long-term effects of the drug can be extended. Caco-2 
cells was used to detect the cytotoxicity of Cu-CMC/
NPX/GQDs. It was found that the prepared hydrogel 
nanocomposite beads had no obvious toxicity and could 
be used as drug capsules to form an oral drug delivery-
release system in the gastrointestinal environment.

Subsequently, they [200] developed new bio-nano-
composite beads for oral administration. First, using the 
previously prepared GQDs [113, 199] as a cross-linking 
agent, the beads of chitosan (CS) acetate solution pre-
pared by a syringe (2  mm diameter) were cross-linked. 
CS-GQDs bio-nanocomposite hydrogel beads were 
obtained after vacuum drying. Afterward, CS-GQDs 
were loaded with SS by immersing in the model drug 
sodium salicylate (SS) solution to form CS-GQDs/SS. 
Next, CS-GQDs/SS was encapsulated and protected 
by pH-sensitive CMC by means of stirring and syringe 
extrusion, and finally Fe3+ cross-linking was carried out 
with ferric chloride hexahydrate solution. After drying, 
the CMC encapsulated CS-GQDs/SS bio-nanocomposite 
hydrogel beads (CS-GQDs/SS@CMC) were synthesized 
(Fig. 26). After simulated oral administration in vitro, it 
was found that the prepared beads were stable under the 
conditions of the gastrointestinal tract and could prolong 
the stability of administration for a long time (Fig.  27). 
MTT test of human colon adenocarcinoma HT29 cells 
showed that the bio-nanocomposite beads had low cyto-
toxicity. In conclusion, the new CS-GQD/SS@CMC 
is expected to potentially serve as a safe carrier for oral 
administration.

Based on MGQDs, Justin et  al. [201] also combined 
chitosan (CH) and water-soluble PEG ring to synthe-
size a biodegradable detachable microneedle array, CH-
MGQDs (Fig.  28). The release of CH-MGQDs to small 
molecular weight (MWt) drugs such as LA and bovine 
serum albumin (BSA) was also investigated. The results 
indicate that CH-MGQDs with intrinsic photolumines-
cent and supermagnetic properties are potential materi-
als for the development of multifunctional microneedles 
for targeted and tracking percutaneous administration.

The advantages and disadvantages of different drug 
delivery-release modes are compared (Table  3). Given 
the low pH of the tumor microenvironment, researchers 
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have developed an EPR-pH delivery-release mode. The 
drug loading efficiency in this mode is ~ 82.5% [41], and 
the drug release efficiency at pH 7.4 is 99% at 24 h in the 
previous report [184]. However, a small part of the drug 
will be released early due to pH changes during delivery. 
Considering that ligand-receptor binding enables more 
accurate drug delivery, a ligand-pH delivery-release mode 
was developed. Unfortunately, the drug loading efficiency 

and release efficiency decreased to 60% and 50% [193], 
respectively. Moreover, such DDRS can effectively release 
a large amount of antitumor drugs only after the low 
pH microenvironment of the tumor is formed. With 
the development of light-to-heat conversion materials 
and magnetic-to-heat conversion materials, EPR-Photo-
thermal delivery-release mode have emerged. Although 
it cannot target antitumor, it avoids the disadvantages 

Fig. 24  SEM images of the a Cu-CMC/NPX and Cu-CMC/NPX/GQDs, b 10%, c 20%, d 30% GQDs content (insets are higher magnifications) 
(reprinted/reproduced with the permission of Ref. [199], copyright 2018, Carbohydrate polymers)
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of relying solely on pH to release the drug, which can 
improve drug release and thus improve the efficiency of 
chemotherapy. The drug loading efficiency and release 
efficiency were 70.8% and ~ 40% (3 h), respectively [123]. 
The previously reported drug loading efficiency reached 
~ 97% [196]. The core/shell-photothermal/magnetic ther-
mal delivery-release mode exhibits excellent anti-tumor 
potential. Not only does it avoid the premature release 
of the drug before it is delivered to the tumor site, it also 
enables drug release and tumor cell thermal ablation at 

specific sites. For other diseases, other methods have also 
been developed, such as oral preparations and micronee-
dle array. In terms of current reports, both drug loading 
efficiency and release efficiency still need to be greatly 
improved. In addition, the impact of the microenviron-
ment in animals on DDRS is still unclear, and DDRS 
research needs to be transferred from the cell research 
stage to the animal research stage.

In addition, GQDs have PL characteristics; therefore 
they can track drugs for biological imaging. GQDs have 

Fig. 25  Characterization of GQDs: a SEM, b DLS of GQDs, c UV–Vis absorption spectra of GQDs in water, d EDX analysis for the prepared GQDs, 
e PL spectrum of the dilute aqueous solution of GQDs and the photograph demonstrates the fluorescence of a dilute aqueous solution of GQDs 
(reprinted/reproduced with the permission of Ref. [199], copyright 2018, Carbohydrate polymers)
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limited functions, hence, in order to design multifunc-
tional DDRS, multiple elements and groups are usu-
ally doped inside the GQDs. Moreover, even though the 
simulation results can provide good insights about the 
possible treatment efficacy in vitro, the practical in vivo 
approaches should not be overlooked. At present, the 
performance of some potential DDRSs are successfully 
confirmed through in  vitro tests, however, due to the 
more complexity of in vivo tests the performance of test-
ing DDRS in tumor-bearing mice needs to be more accu-
rately studied.

Gene, peptide, and other drugs delivery
Although most researches focus on tumor-targeted 
drug delivery, GQDs have shown promising poten-
tials for delivery of other molecules such as DNA, pep-
tides. An important technique of gene therapy is to 
delivery nucleic acids (DNA or RNA) to cells to restore 
or add gene expression, for the purpose of treating dis-
ease. Owing to its small size, GQDs possess the abil-
ity to cross the blood–brain barrier (BBB), this allows 
to ensure delivery of the nucleic acid payloads into cell 
cytosols and nuclei. Together with its low toxicity, good 
stability and luminescence properties which enable easy 
monitoring of drug release, GQDs is an excellent candi-
date for gene carriers. Plasmid DNA (pDNA) was proved 

Fig. 26  The schematic representation of coating of CS-GQDs/SS with CMC and preparation of CS-GQDs/SS@CMC bio-nanocomposite hydrogel 
beads (reprinted/reproduced with the permission of Ref. [200], (reprinted/reproduced with the permission of Ref. [200], copyright 2019, 
International Journal of Biological Macromolecules)
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to be conjugated with GQDs and MPG-2H1 chimeric 
peptide to form the GQDs-peptide-pDNA complex via 
non-covalent interactions. GQDs were found to allow 

efficient tracking due to their green and red emissions 
and enhance internalization of the plasmid harboring 
firefly luciferase gene into HEK 293T cells. This study 

Fig. 27  SEM images of the a CS-GQDs, c CMC@SS, e CS-GQDs/SS@CMC at low magnification and SEM images of the b CS-GQDs, d CMC@SS, 
f CS-GQDs/SS@CMC at high magnifications (reprinted/reproduced with the permission of Ref. [200], copyright 2019, International Journal of 
Biological Macromolecules)



Page 25 of 32Zhao et al. J Nanobiotechnol          (2020) 18:142 	

suggested the GQDs-peptide-pDNA complex could be a 
promising vector for enhanced the transfection efficiency 
and tracking of pDNA in vitro and in vivo [126].Glycine–
proline–glutamate (Gly–Pro–Glu, GPE), as a neuropro-
tective peptide, was conjugated with GQDs in a recent 
study. The results indicated that GQDs could be used as 
a novel nanocarrier to delivery neuroprotective peptide 
GPE to Central Nervous System (CNS), the GPE-GQDs 
can inhibit the aggregation of amyloid-β (Aβ) and reduce 
the inflammatory response, further protect the synapse 
and promote the neurogenesis [202].

GQDs also showed promising potential in transport 
Vanadium compounds, a kind of anti-diabetic agents. 
Vanadium coordination compounds [VO(p-dmada)] 
were proved to be packed on one side of the GQD sheets 
by the π–π stacking interaction. In  vivo tests suggested 
that GQD-VO(p-dmada) exhibited improved pharma-
ceutical properties and enhanced anti-diabetic effects 
compared to VO(p-dmada) alone [203].

At present, the research and application of GQDs in 
drug delivery is still in its initial stage, however, the great 
potential of GQDs based nanocarriers has been proved 
already, we have reason to believe that more types of 
drugs can be delivered by this novel nanomaterial.

Conclusion and prospect
This review focuses on the recent advances in the syn-
thesis of GQDs and their applications in drug delivery. 
Several fabrication methods of GQDs are introduced, 
while some popular techniques such as hydrothermal 
method, microwave method, and molecular carboniza-
tion method are emphasized. Each of these fabrication 
methods has advantages and drawbacks that we should 

balance with the needs for a specific application. Further-
more, novel functionalization methods have been devel-
oped to improve the physicochemical characteristics of 
GQDs so that they can meet the high requirements for 
biomedical applications.

In addition, various drug release-delivery modes of 
GQDs-based drug release systems are reviewed. By 
analyzing the advantages and disadvantages of various 
types of DDRS, the trend of designing new multifunc-
tional DDRS is pointed out. GQDs have been proved to 
be able to not only delivery anticancer drugs in various 
DDRS modes, but also act as nanocarriers to transport 
gene, peptides, and other non-anticancer drugs. How-
ever, before their practical applications in biomedi-
cine and clinical practice, many challenges need to be 
addressed. Despite of the large improvement in the 
biocompatibility of GQDs, systematic studies on their 
potential long-term toxicity and how GQDs affects 
the immune systems, reproductive systems, and nerve 
systems in different animal models are needed. GQDs 
synthesized with different ways exhibited tremendous 
variations in their physic-chemical properties. Conflict-
ing claims with respect to the biological properties of 
GQDs have been reported, such as their inherent anti-
bacterial ability. Therefore, a standard for characteri-
zation of GQDs is need and would help to understand 
more clearly about the various GQDs researches. In 
addition, the size of GQD has great influence on its tox-
icity, surface functionalization and the ability to across 
biological barriers. More systematic studies involving 
the size of GQDs are still need in the future.

Although, DDRS research for GQDs is still at its 
infancy, it is speculated that the future research can 

Fig. 28  Optical micrographs of the CH-MGQDs microneedle array: a side view and b plan view (reprinted/reproduced with the permission of Ref. 
[201], copyright 2018, Interface Focus)
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successfully resolve the current problems faced by 
implementation of GQDs to design more safe and sim-
ple synthesis routs for efficient and mass-production of 
DDRS.
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