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Abstract 

Background: Smart nanoscale drug delivery systems that target acidic tumor microenvironments (TME) could offer 
controlled release of drugs and modulate the hypoxic TME to enhance cancer therapy. The majority of previously 
reported  MnO2 nanostructures are nanoparticles, nanosheets, or nanocomposites incorporated with other types of 
nanoparticles, which may not offer the most effective method for drug loading or for the controlled release of thera‑
peutic payloads. Previous studies have designed  MnO2 nanoshells that achieve tumor‑specific and enhanced com‑
bination therapy for localized advanced cancer. However, the therapeutic effect of  MnO2 nanoshells on metastatic 
cancer is still uncertain.

Result: Here, intelligent “theranostic” platforms were synthesized based on hollow mesoporous  MnO2 (H‑MnO2) 
nanoshells that were loaded with chemotherapy agents docetaxel and cisplatin (TP) to form H‑MnO2‑PEG/TP 
nanoshells, which were designed to alleviate tumor hypoxia, attenuate angiogenesis, trigger the dissolution of 
 Mn2+, and synergize the efficacy of first‑class anticancer chemotherapy. The obtained H‑MnO2‑PEG/TP nanoshells 
decomposed in the acidic TME, releasing the loaded drugs (TP) and simultaneously attenuated tumor hypoxia and 
hypoxia‑inducible factor‑1α (HIF‑1α) expression by inducing endogenous tumor hydrogen peroxide  (H2O2) decom‑
position. In vitro experiments showed that compared with the control group, the proliferation, colony formation and 
migration ability of CAL27 and SCC7 cells were significantly reduced in H‑MnO2‑PEG/TP group, while cell apoptosis 
was enhanced, and the expression of hypoxia‑inducible factor‑1α(HIF‑1α) was down‑regulated. In vivo experiments 
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Highlights

• A theranostic platform has been developed using 
hollow mesoporous  MnO2 (H-MnO2) nanoshells.

• H-MnO2 nanoshells trigger  H2O2 decomposition 
into  O2, reducing TME hypoxia and HIF-1α expres-
sion.

• H-MnO2 nanoshells exert an anti-angiogenic effect 
by downregulating HIF-1α expression.

• In combination with chemotherapy, H-MnO2 
nanoshells have excellent efficacy in pulmonary 
metastasized oral squamous cell carcinoma.

Introduction
The tumor microenvironment (TME) is character-
ized by oxygen-deficient solid tumors. Hypoxic condi-
tions significantly promote tumor heterogeneity and 
increase metastatic spread [1–3]. Furthermore, undesir-
able angiogenesis and immunosuppression are caused 
by disordered metabolism and unstable genome pheno-
type accelerated in hypoxic TMEs, which consistently 
contribute to tumor resistance to various oxygen-related 
therapeutics [4, 5]. Many of the hallmarks of meta-
static cancers are related to the hypoxic TME [6], which 
stimulates hypoxia-inducible factor (HIF)-driven tran-
scriptional responses that upregulate the expression 
of hypoxia-inducible genes that facilitate invasion and 
metastasis [7, 8]. These hypoxic effects play essential 
roles in the outcomes of various cancer therapies [5, 9, 
10].

Nanoscale drug delivery systems (nano-DDSs) have 
been regarded as an ideal approach to overcome the 
hypoxic TME, as nano-DDSs are capable of responding to 
the inherent acidic and hypoxic features of the TME [11, 
12]. Recently, several studies have focused on the devel-
opment of manganese dioxide  (MnO2) nanostructures 
that can decompose under the acidic TME [13–16], gen-
erating  Mn2+ ions that could enhance T1 images during 
magnetic resonance imaging (MRI) [17, 18]. Accordingly, 
 MnO2 nanostructures could offer a safe DDS without 
long-term toxicity in in  vivo therapy [13–16].  MnO2 
nanostructures could also relieve tumor hypoxia by trig-
gering the decomposition of  H2O2 that is present in the 
TME [19, 20]. Hollow nanostructures with mesoporous 
shells (such as hollow mesoporous silica) have large cavi-
ties that have been demonstrated to be excellent drug 
loading/delivery systems, loading high quantities of ther-
apeutic agents, whose release may be precisely controlled 
by tuning the shell structure or coating [21, 22].

The combination of docetaxel and cisplatin (TP) has 
become a first-line anticancer therapy in advanced 
OSCC, which provides good progression-free sur-
vival (PFS) and overall survival (OS) [23, 24]. Previous 
research has also demonstrated the limitations caused 
by TME hypoxia, which contributes to metastasis and 
angiogenesis of OSCC [25–28]. TP can be co-loaded 
into the H-MnO2-PEG nano-platform (H-MnO2-PEG/
TP) with high loading capacities. Under acidic pH, the 
rapid decomposition of the  MnO2 nanoshells leads to the 
release of the loaded drugs (TP), while simultaneously 
resulting in significantly enhanced T1-images during 
MRI.

showed that tumor to normal organ uptake ratio (T/N ratio) of mice in H‑MnO2‑PEG/TP group was significantly higher 
than that in TP group alone (without the nanoparticle), and tumor growth was partially delayed. In the H‑MnO2‑PEG/
TP treatment group, HE staining showed that most of the tumor cells were severely damaged, and TUNEL assay 
showed cell apoptosis was up‑regulated. He staining of renal and liver sections showed no obvious fibrosis, necrosis 
or hypertrophy, indicating good biosafety. Fluorescence staining showed that HIF‑1α expression was decreased, sug‑
gesting that the accumulation of  MnO2 in the tumor caused the decomposition of  H2O2 into  O2 and alleviated the 
hypoxia of the tumor.

Conclusion: In conclusion, a remarkable in vivo and in vitro synergistic therapeutic effect is achieved through the 
combination of TP chemotherapy, which simultaneously triggered a series of antiangiogenic and oxidative antitumor 
reactions.

Keywords: MnO2, Tumor microenvironment, Oral squamous cell carcinoma, Hypoxia, Angiogenesis, Chemotherapy

(See figure on next page.)
Fig. 1 Synthesis and characterization of H‑MnO2‑PEG nanoshells: a step‑by‑step synthetic scheme of H‑MnO2‑PEG nanoparticles and subsequent 
dual‑drug loading; b SEM images of  MnO2, PEG@MnO2 and H‑MnO2‑PEG/TP; c TEM images of  MnO2, PEG@MnO2 and H‑MnO2‑PEG/TP; d HRTEM for 
H‑MnO2‑PEG nanoshells; e SEM–EDS imaging and elemental mapping for H‑MnO2‑PEG nanoshells; f zeta potentials of nanoparticles obtained at 
different steps of fabrication; g FT‑IR of free PEG, DDP, DDP@DOC@MnO2, DOC and  MnO2; h XRD for H‑MnO2‑PEG
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Lung metastasis is a common feature of advanced 
OSCC and associated with a poor prognosis (5-year 
OS < 30%), which is contributed to by hypoxia-induced 
resistance [26, 27]—unlike pulmonary metastasis of 
HER2-positive breast cancer, which can be effectively 
treated through targeted therapies. Currently, there is 
a lack of effective targeted treatments for OSCC lung 
metastasis. Moreover, previous research has shown 
that HIF, which can be downregulated after hypoxia is 
relieved, is a promoting factor of angiogenesis. Consider-
ing  MnO2 are able to target the TME and generate  O2, we 
hypothesized that using hollow  MnO2 nanostructures as 
smart DDSs may achieve an ideal therapeutic effect in the 
application of pulmonary metastasis of OSCC by revers-
ing hypoxia-induced chemotherapy resistance.

Previous studies have designed similar smart DDSs to 
achieve tumor-specific enhanced combination therapy 
[29, 30]. In a previous system, mesoporous  MnO2 shells 
combined with chlorine e6 (Ce6) and doxorubicin (DOX) 
were used to treat 4T1 cells in a subcutaneous model, 
which obtained an ideal effect. To the best of our knowl-
edge, the therapeutic effect of MnO2 particles on OSCC 
pulmonary metastasis has not been assessed. In our 
research, we aimed to develop a system that could target 

OSCC lung metastasis by using pH-sensitive mesoporous 
MnO2 nanoshells co-loaded with first-line OSCC chem-
otherapeutic drugs, TP. We also assessed whether these 
TP-loaded MnO2 nanoshells were effective against TP-
resistant OSCC cells.

Materials and methods
Materials
Tetraethyl orthosilicate (TEOS), poly(allylamine hydro-
chloride) (PAH, MW≈15,000), and polyacrylic acid 
(PAA, MW ≈ 1800) were purchased from Sigma-Aldrich 
(USA). Potassium permanganate  (KMnO4) and sodium 
carbonate  (Na2CO3) were obtained from Sinopharm 
Chemical Reagent CO., Ltd. (China). Coumarin-modified 
cisplatin and rhodamine-modified docetaxel were pur-
chased from Xian Qiyue Biotechnic CO., Ltd. (China).

Synthesis of H‑MnO2‑PEG/TP
Solid silica nanoparticles  (sSiO2) were synthesized fol-
lowing the reported method [31]. Then, an aqueous 
solution of  KMnO4 (300 mg) was added dropwise to the 
 sSiO2 suspension (40  mg) under ultrasonication. After 
6  h, the precipitate was obtained by centrifugating the 
suspension at 14,800 rpm. The as-prepared mesoporous 

Fig. 2 pH‑dependent nanoparticle decomposition and drug behaviors of H‑MnO2‑PEG/TP nanoshells: a TEM images of H‑MnO2‑PEG nanoshells 
after incubation in buffers with different pH values (7.4 and 5.5) for various periods of time; b degradative behavior of H‑MnO2‑PEG nanoshells 
dispersed in solutions with different pH values (7.4, 6.5, 5.5, and 4.5) determined by the absorbance of  MnO2; c DOC‑ and DDP‑loading weight 
ratios in H‑MnO2‑PEG nanoshells at different drug to  MnO2 ratios; d UV–Vis spectra of free PEG,  MnO2, DOC, DDP, H‑MnO2‑PEG, and H‑MnO2‑PEG/
TP nanoshells; e UV–Vis spectra of H‑MnO2‑PEG/TP nanoshells measuring drug release with increasing concentration; and f percentages of released 
DOC and DDP from H‑MnO2‑PEG/TP nanoshells over time in the presence of 10% fetal bovine serum (FBS) at different pH values (7.4, 6.5, 5.5, and 
4.5). Data are presented as means ± standard deviation (s.d.) (n = 3)
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 MnO2-coated  sSiO2 were dissolved in 2  M  Na2CO3 
aqueous solution at 60 °C for 12 h. The obtained hollow 
mesoporous  MnO2 (H-MnO2) nanoshells were centri-
fuged and washed with water several times. Then, 5 ml of 
the H-MnO2 solution (2 mg/ml) was added to 10 ml PAH 
solution (5  mg/ml) under ultrasonication. After stirring 
for 2  h, the above solution was centrifuged and washed 
with water. The obtained H-MnO2/PAH solution was 
added drop wise to PAA (10  ml, 5  mg/ml) under ultra-
sonication. After 2 h of stirring, the above solution was 
centrifuged and washed with water, before it was mixed 
with mPEG-5  K-NH2 (50  mg) under ultrasonication for 
30 min. After adding EDC (15 mg) and stirring for 12 h, 
the prepared H-MnO2-PEG was collected by centrifuga-
tion and washed with water three times. For docetaxel 
and cisplatin (TP) loading, the H-MnO2-PEG solution 
(0.2  mg/ml) was mixed with different concentrations of 
TP for 12 h. TP were co-loaded into H-MnO2-PEG with 
appropriate concentrations, yielding H-MnO2-PEG/TP 
which were used in further experiments.

Characterization
Scanning electron microscopy (SEM; JSM-2100F, JEOL, 
Tokyo, Japan) was applied to characterize the nanopar-
ticle morphology. Ultraviolet–visible (UV–Vis) spectra 
were measured with a PerkinElmer Lambda 750 UV/
Vis/NIR spectrophotometer. Nanoparticle size and 
zeta potential were determined by a Malvern Zetasizer 
(ZEN3690, Malvern, UK) and Nano ZS90 (Malvern, UK). 
Surface area and pore size were measured by Surface 
Area and Porosity Analyzer (Micromeritics Instrument 
Corp. ASAP2050). The functional groups and chemical 
structure of the nanofibers were performed by Fourier 
transform infrared (FT-IR) spectroscopy (Nicolet iS50) in 
the wavenumber range of 4000–400  cm–1.

Degradation and drug release studies
H-MnO2-PEG was incubated with PBS at different pH 
values (4.5, 5.5, 6.5, and 7.4) for different time periods 
(0–36 h). At a given time point, the solution was meas-
ured by SEM and UV–Vis spectrometry for characteriza-
tion. To study the TP release, a solution of H-MnO2-PEG/
TP was dialyzed against PBS with different pH values 
(4.5, 5.5, 6.5, and 7.4) at room temperature. The amount 
of TP released at different time points was measured by 
UV–Vis spectrometry.

In vitro cell experiments
The tongue squamous cell carcinoma cell line CAL27 was 
purchased from ATCC (Manassas, VA, USA). Mice oral 
squamous cell carcinoma cell line SCC7 was provided 
as a gift from the Nanjing Medical University (China). 
For cell toxicity assays, cells were seeded into 96-well 

plates (1 ×  104 per well) for 24  h and incubated with a 
series of concentrations of TP. 3-(4,5-dimethylthiazol-
2-yl)-2,5-diphenyltetrazolium bromide (MTT) solution 
(0.5  mg/ml) was added to the wells to measure the cell 
viability of the treated cells relative to the untreated cells. 
For confocal fluorescence microscopy, CAL27 cells were 
seeded onto coverslips at the bottom of a dish containing 
H-MnO2-PEG/TP (docetaxel: 3.1  nM, cisplatin: 18  nM) 
for different incubation times (1, 4, 8, and 12  h). After 
washing with PBS three times, the cells were labeled with 
4′,6-diamidino-2-phenylindole (DAPI) and imaged using 
a laser scanning confocal microscope (Leica SP5). Len-
tivirus-transduced stable cells were seeded into 6-well 
plates at a density of 1000 cells per well and incubated 
for 10–14 days. The colonies were fixed and stained, and 
those with more than 50 cells were counted under a dis-
secting microscope.

Western blot analysis
Proteins were extracted from OSCC cells treated with 
H-MnO2-PEG/TP (docetaxel: 3.1  nM, cisplatin: 18  nM) 
for 0, 2, 4, 8, 12, and 16 h. The membranes were blocked 
by adding QuickBlock™ Blocking Buffer at room tem-
perature for 20  min and then incubating with primary 
antibodies (β-actin, 1:1000; HIF-1α, 1:1000) overnight 
at 4  °C. The membranes were then incubated with fluo-
rescently-labelled anti-rabbit IgG secondary antibodies 
(7704, Cell Signaling Technology, USA) at a 1:10000 dilu-
tion for 1 h at room temperature. Immunoreactive bands 
were detected using enhanced chemiluminescence. The 
observation and analysis of immunoreactive bands were 
performed using the Odyssey Infrared Imaging System 
(LI-COR Biosciences, USA).

Animal models
SPF BALB/c nude mice (nu/nu, 4  weeks old, weigh-
ing approximately 20  g) were purchased from Shanghai 
experimental animal center (Shanghai, China) and placed 
in the SPF facility of the Ninth People’s Hospital, Shang-
hai Jiao Tong University School of Medicine. All labora-
tory procedures were approved by the Laboratory Animal 
Care and Use Committee at the hospital. High metastatic 
oral squamous cell carcinoma was established. After 
luciferase lentivirus transfection, CAL27 cells (1 ×  106) 
were suspended in 50 μl of PBS and injected by intrave-
nous injection (IV) or subcutaneous injection (SC). The 
mice bearing CAL27 tumors were treated 10  days after 
injection.

In vivo imaging
In vivo fluorescence imaging was performed using the 
Maestro In-Vivo Fluorescence Imaging System (CRi 
Inc., USA). MRI was conducted under a BioSpec 70/20 
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USR (Bruker, USA) with a special coil for small animal 
imaging.

Immunohistochemistry
CAL27 tumor-bearing mice were injected intravenously 
with PBS or H-MnO2-PEG/TP. Liver, kidney, and lungs 
bearing tumors were surgically excised 20- or 120-min 
post injection. Tissue sections (4 mm) were stained with 

hematoxylin and eosin (HE). Terminal deoxynucleo-
tide transferase dUTP notch end labeling (TUNEL) was 
used to detect apoptotic cells. To detect oxidation, the 
tumor sections were treated with mouse anti-HIF1α 
primary antibody (dilution 1:200, Abcam Inc. USA) and 
Alexa  Flour® 488-conjugated goat anti-rabbit second-
ary antibody (dilution 1:200, CST Inc. USA) following 
the instructions. Tumor blood vessels were stained by 

Fig. 3 In vitro experiments with H‑MnO2‑PEG/TP nanoshells: a a scheme illustrating H‑MnO2‑PEG/TP nanoshells in pH‑responsive drug delivery; 
b the changes in  O2 concentration in  H2O2 solutions (100 μM) after various concentrations of H‑MnO2‑PEG/TP nanoshells were added; c after 
the treatment of different concentrations of DDP/DOC within 24 h, cell viability was assessed using an MTT assay where IC50 of DDP/DOC was 
measured in SCC7 and CAL27 cells (in vitro TP treatment was measured with and without H‑MnO2‑PEG nanoshells in  N2 or  O2 atmospheres in 
CAL27 cells); and d confocal microscopy images of CAL27 cells treated with H‑MnO2‑PEG/TP at different times points. Blue, green, and red represent 
DAPI, DDP, and DOC fluorescence, respectively. Date are presented as means ± s.d. (n = 5)
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Fig. 4 Antitumor function of H‑MnO2‑PEG/TP nanoshells in vitro: a Wound healing was performed with SCC7 and CAL27 cells after treatment with 
PBS, DOC, DDP, TP, and H‑MnO2‑PEG/TP nanoshells; b colony formation assays were performed with SCC7 and CAL27 cells after treatment with 
PBS, DOC, DDP, TP, and H‑MnO2‑PEG/TP nanoshells; c CAL27 cells were treated with indicated concentrations PBS, DDP, TP, and H‑MnO2‑PEG/TP 
nanoshells for 48 h before staining with Annexin V and propidium iodide (PI), and the apoptotic rates were determined by flow cytometry; and d 
Western blotting showed decreased HIF‑1α after treatment with indicated concentrations of H‑MnO2‑PEG/TP nanoshells for 48 h in the CAL27 and 
SCC7 cells
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anti-CD31 mouse monoclonal antibody (dilution 1:200, 
Abcam Inc.) and Alexa  Flour® 555-conjugated goat 
anti-mouse secondary antibody (dilution 1:200, CST 
Inc., USA), subsequently. Cell nuclei were stained with 
DAPI (dilution 1:5000, Invitrogen, USA). The obtained 
slices were observed by confocal microscopy (Leica SP5, 
Germany).

In vivo cancer treatment
CAL27 tumor-bearing mice were injected via i.p. with 
100 μl of PBS, TP, or H-MnO2-PEG/TP (dose of  MnO2: 
10  mg/kg, docetaxel: 10  mg/kg, cisplatin: 2.5  mg/kg). 
Body weights were monitored every 2 days for 4 weeks. 
Tumor progression was monitored using Maestro In-
Vivo Fluorescence Imaging System every 2  weeks. The 
tissue and tumor slices were stained by HE, following 
standard protocol.

Results
Synthesis and characterization of H‑MnO2‑PEG
The H-MnO2-PEG/TP synthetic process is illustrated in 
Fig.  1a. Monodispersed silica nanoparticles were syn-
thesized by hydrolyzation of tetraethyl orthosilicate 
(TEOS) and then used immediately as the hard tem-
plate. A uniform layer of mesoporous  MnO2 was grown 
on the surface of the as-made silica nanoparticles by 
mixing them with  KMnO4, which was reduced by unre-
acted organosilica existing on the prepared silica nano-
particles. The H-MnO2 nanoshells were obtained after 
incubating  MnO2@SiO2 nanoparticles with a  Na2CO3 
solution to dissolve silica. To enhance their water solu-
bility and physiological stability, H-MnO2 nanoshells 
were modified with PEG through a layer-by-layer (LBL) 
polymer-coating method. In this process, negatively-
charged H-MnO2 nanoshells were coated with a cationic 
polymer PAH and then an anionic polymer PAA through 
electrostatic interaction. Amino-terminated PEG 
 (NH2-PEG) was then conjugated to the surface of PAA-
coated H-MnO2 nanoshells via amide formation, produc-
ing H-MnO2-PEG nanoshells. TP were simultaneously 
loaded into the hollow structure of the H-MnO2-PEG 
nanoshells, yielding H-MnO2-PEG/TP. SEM and TEM 
images revealed the spherical morphology and the hol-
low structure of the H-MnO2-PEG nanoshells (Fig.  1b, 

c). The hollow structure of the H-MnO2-PEG nanoshells 
was further confirmed by SEM-EDS (Fig.  1d, e). The 
change in zeta potential for the nanoparticles obtained 
at different steps of synthesis are shown in Fig. 1f. In the 
process of surface functionalization, the step wise altered 
spectrogram indicated successful LBL coating of poly-
mers on the nanoparticles (Fig. 1g). No diffraction phe-
nomena was observed according to XRD result (Fig. 1h), 
which indicates a low crystallinity structure of synthe-
sized nanoparticles. Because of the structural defects, 
oxygen vacancies and low manganese of the low crystal-
linity structure synthesized at low temperature, it is eas-
ier to degradate in vivo [32, 33].

pH‑dependent nanoparticle decomposition and drug 
behavior
It is well known that  MnO2 is stable at neutral and alka-
line pH but can decompose into  Mn2+ at reduced pH 
[34]. Therefore, TEM images of H-MnO2-PEG incu-
bated in PBS with different pH values (5.5 and 7.4) at 
different processing times were recorded (Fig.  2a). The 
morphology of H-MnO2-PEG nanocrystals showed no 
significant change at pH 7.4 after eight hours, indicat-
ing that H-MnO2-PEG nanocrystals were stable in neu-
tral environments. However, due to the decomposition 
of  MnO2 into  Mn2+ ions, H-MnO2-PEG showed time-
dependent degradation behavior in acidic solutions. 
The degradation rate was determined by decreasing the 
 MnO2-characteristic absorption band (Fig.  2b), which 
appears to be stable at pH 7.4, but rapidly decreases at pH 
6.5, 5.5, and 4.5, further demonstrating the ultra-sensitive 
pH-responsive degradation behavior of H-MnO2-PEG.

The H-MnO2-PEG with mesoporous shells were 
expected to have an efficient drug-loading ability. 
H-MnO2-PEG nanoshells were loaded with TP. Under 
ultrasonication, H-MnO2-PEG nanoshells were incu-
bated and stirred with different concentrations of free 
DOC and DDP. Drug-loading capacities was evalu-
ated by UV–Vis spectroscopy. At the feeding weight 
ratio of 1:1 (DOC:DDP), the drug loading capacity of 
the nanoshells was high: 75.53% (DOC:MnO2) and 
71.75% (DDP:MnO2; Fig. 2c). DOC and DDP could also 
be simultaneously loaded into the hollow structure of 
H-MnO2-PEG nanoshells, obtaining dual drug co-loaded 

(See figure on next page.)
Fig. 5 In vivo and ex vivo imaging with H‑MnO2‑PEG/TP nanoshells: a images from T1‑weighted MRI of the H‑MnO2‑PEG/TP nanoshells recorded 
using BioSpec 70/20 USR at different pH values (5.5 and 7.4). The transverse relativities (r1) were 8.091 and 0.091  mM−1  s−1 for H‑MnO2‑PEG/TP 
nanoshells at pH 5.5 and 7.4, respectively. b Images from T1‑MRI of CAL27 tumor‑bearing mice before and after local injection of H‑MnO2‑PEG/
TP nanoshells within normal and tumor subcutaneous tissues (three mice per group). Quantified T1‑MR signals in muscle and tumor before 
and after injection with H‑MnO2‑PEG/TP nanoshells. c Ex vivo fluorescence images of major organs and pulmonary metastasis tumors in Balb/c 
mice dissected from mice 2 h after injection (Ki, Lu and Li stands for kidney, lung, and liver, respectively). Semi‑quantitative analysis of ex vivo 
fluorescence images in different organs. Data are presented as means ± s.d. (n = 3 mice per group)
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H-MnO2-PEG/TP nanoparticles (Fig.  2d) and enhanced 
release with increasing concentration (Fig.  2e). Drug-
release behaviors of DOC and DDP from H-MnO2-PEG/
TP were studied in solutions with different pH values 
(Fig.  2f ). Compared to the slow drug-release profiles of 
H-MnO2-PEG/TP at pH 7.4, the release speeds of both 
DOC and DDP were found to be much faster in mild 
acidic solutions at pH 6.5, 5.5, and 4.5, owing to the 
acidic-triggered decomposition of H-MnO2 nanocarriers 
into  Mn2+ ions.

In vitro experiments with H‑MnO2‑PEG/TP
As described in previous research, the efficacy of TP is 
limited by the hypoxic TME of a solid tumor [35–39]. 
Considering the presence and concentration of endoge-
nous  H2O2 in most types of solid tumors is in the range of 
100 μM [40], we then tested the ability of H-MnO2 to act 
as a catalyst and induce the decomposition of  H2O2. An 
oxygen probe was used to measure the oxygen released 
into the solution after adding  H2O2 (100 μM) with differ-
ent concentrations of H-MnO2-PEG nanoshells. Without 
the addition of H-MnO2-PEG nanoshells, the dissolved 
 O2 in the  H2O2 solution was maintained at a low and sta-
ble level. H-MnO2-PEG nanoshells can effectively trigger 
the rapid generation of  O2 from  H2O2 in a  MnO2 concen-
tration-dependent manner (Fig.  3b). Then, the in  vitro 
efficacy of H-MnO2-PEG nanoshells as a multifunctional 
DDS was assessed by using CAL27 cells. As expected, no 
significant difference was observed in OSCC cells that 
were treated in different concentrations of H-MnO2-PEG 
(Additional file  1: Figure S1). Then, SCC7 and CAL27 
cells were used to determine the IC50 of DOC and DDP. 
Cells were then treated with H-MnO2-PEG/TP in either 
an  N2 or  O2 environment, and the cell viabilities were 
determined by an MTT assay after incubation for 24  h 
(Fig. 3c). We used H-MnO2-PEG/TP for in vitro combi-
nation treatment. CAL27 cells incubated with H-MnO2-
PEG/TP for different periods of time were then imaged 
by a confocal fluorescence microscope (Fig.  3d). Both 
DDP-coumarin (GFP) and DOC-rhodamine (RFP) fluo-
rescence inside cells was significantly enhanced with 
increased incubation time. The colony-formation and 
-migration abilities were significantly decreased in 
CAL27 and SCC7 cells in the H-MnO2-PEG/TP group 
compared to the control group (p < 0.01) (Fig.  4a, b). 

Flow cytometry assays also confirmed that apoptosis 
was induced by H-MnO2-PEG/TP (Fig. 4c). Hypoxia is a 
key concern during the treatment of non-small cell lung 
cancer (NSCLC) [39], as with pulmonary metastasis of 
OSCC, and hypoxia-inducible factor 1 alpha (HIF-1α) 
has been associated with increased tumor resistance to 
therapeutic agents such as cisplatin. To further evalu-
ate, the downregulation of HIF-1α induced by H-MnO2-
PEG/TP was confirmed using western blot. (Fig. 4d). 

In vivo and ex vivo imaging with H‑MnO2‑PEG/TP
After confirmation of in vitro efficacy of H-MnO2-PEG/
TP nanoshells, the effect of H-MnO2-PEG/TP in an 
OSCC subcutaneous bearing or pulmonary metastasis 
model was assessed.  Mn2+ ions with five unpaired 3d 
electrons could decompose from  MnO2 under the acidic 
conditions of the TME and is known as a T1-shortening 
agent in MRI [41]. In solutions at different pH (5.5 and 
7.4), the H-MnO2-PEG/TP incubated in solutions at pH 
5.5 showed a brighter T1-shortening image compared 
with the image at pH 7.4 (Fig.  5a). To demonstrate the 
use of H-MnO2 nanoshells for tumor-specific imaging, 
H-MnO2-PEG/TP nanoshells were injected into tumor, 
and into muscle on the opposite side of the tumor in 
tumor-bearing mice for MRI (Fig.  5b). Caused by the 
acidic TME, the tumor showed significantly enhanced 
images in T1 signaling after injection of H-MnO2-PEG/
TP nanoshells, whereas the muscle area with the same 
concentration of injected nanoparticles had reduced 
T1-signal enhancement (Fig. 5b). This phenomenon pro-
vides direct evidence that H-MnO2 has ultra-sensitive 
pH-responsive T1-MR contrast performance, which 
is particularly useful for tumor-specific imaging. After 
intravenous injection of H-MnO2-PEG/TP nanoshells 
(dose of  MnO2: 10  mg/kg, docetaxel: 10  mg/kg, cispl-
atin: 2.5  mg/kg), in  vivo fluorescence imaging was used 
to track the nanoparticles in CAL27 pulmonary metasta-
sis Balb/c mice (Additional file 2: Figure S2). Semi-quan-
titative biodistribution data based on ex vivo imaging of 
major organs and tumors was collected two hours post 
injection, indicating a high tumor uptake of H-MnO2-
PEG/TP (Fig. 5c). Notably, strong fluorescence was found 
in the kidneys of mice after H-MnO2-PEG/TP injection, 
illustrating a rapid renal clearance of the decomposed 
nanoshells. Previous research [42] used the tumor to 

Fig. 6 In vivo combination chemotherapy of H‑MnO2‑PEG/TP nanoshells. a In vivo fluorescence images of mice with CAL27 pulmonary metastasis 
taken at different time points (six mice per group). b HE‑stained tumor slices collected from mice after the various treatments indicated. c The 
percentage of TUNEL‑positive cells were assessed in formalin‑fixed paraffin embedded sections from tumors in each group. d The nuclei, blood 
vessels, and hypoxic areas stained with DAPI (blue), anti‑HIF‑1α antibody (green), and anti‑CD31 antibody (red), respectively (three mice per group). 
Quantification of hypoxia and CD31 areas in tumors at different time points post injection of H‑MnO2‑PEG/TP nanoparticles. p values in (e) were 
calculated using a student t‑test (***p < 0.001, **p < 0.01, *p < 0.05)

(See figure on next page.)
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normal organ uptake ratio (T/N ratio) to evaluate tumor 
targeting efficiency. Tumor uptake of TP alone (without 
the nanoparticle) was extremely low, indicating a low T/N 
ratio. Compared to the TP group, the T/N ratio increased 
significantly in mice treated with H-MnO2-PEG/TP.

In vivo chemotherapy treatment with H‑MnO2‑PEG/TP 
nanoshells
According to previous research [14, 30, 43], H-MnO2-
PEG nanoparticles effectively increase lung metabolism. 
In vivo fluorescence imaging was used to evaluate tumor 
progression (Fig.  6a). At day 28, the tumors of all mice 
were collected. For tumors in mice treated with H-MnO2-
PEG/TP nanoshells, their growth was partially delayed. 
Furthermore, HE staining of tumor slices showed that 
the majority of tumor cells were severely damaged in the 
H-MnO2-PEG/TP-treated group (Fig.  6b). To evaluate 
the biosafety of H-MnO2-PEG/TP nanoshells, HE stain-
ing of kidney and liver slices were obtained 4 weeks after 
drug application (Additional file 3: Figure S3). Compared 
to the control group, no obvious cell fibrosis, necrosis, 
or hypertrophy was observed in the H-MnO2-PEG/TP-
treated group.

Terminal deoxynucleotide transferase dUTP notch 
end labeling (TUNEL) was used to detect apoptotic 
cells. H-MnO2-PEG/TP nanoshells upregulated apopto-
sis in vivo (Fig. 6c). It is known that tumor cells are able 
to constitutively produce  H2O2, whose level has been 
reported to be in the range of 10–100 μM in many types 
of solid tumors [40]. Therefore, H-MnO2-PEG/TP nan-
oparticles may be able to trigger the decomposition of 
 H2O2 generated by cancer cells, producing  O2 in situ to 
relieve tumor hypoxia. The cell nuclei, blood vessels, and 
hypoxic areas were stained with 2-(4-amidinophenyl)-
6-indolecarbamidine dihydrochloride (DAPI, blue), anti-
CD31 antibody (red), and anti-HIF-1α antibody (green), 
respectively. Tumor slices collected at different time 
points in the H-MnO2-PEG/TP-treated group showed a 
reduction in green fluorescence compared to the control 
group, indicating that  MnO2 accumulation in the tumor 
triggers  H2O2 decomposition into  O2, reducing tumor 
hypoxia (Fig. 6d).

Conclusion
In summary, H-MnO2-PEG/TP nanoshells act as a mul-
tifunctional theranostic platform, responding to and 
modulating TME and suppressing OSCC pulmonary 
metastasis by overcoming chemotherapy resistance. 
The ultrasensitive pH responsiveness of H-MnO2-PEG/
TP enables tumor-specific MRI and efficient drug 
release in acidic TMEs. The relieved tumor hypoxia by 
 MnO2-triggered decomposition of endogenous tumor 
 H2O2 offers remarkable benefits. HIF-1α expression was 

significantly reduced in vitro and in vivo, which relieves 
hypoxia and attenuates angiogenesis. Phenomena men-
tioned before could synergize the efficacy of chemo-
therapy and reverse angiogenesis in the TME to favor 
anticancer treatment. With its inherent biodegradability, 
this H-MnO2-based theranostic nanoplatform may find 
significant potential in clinical translation by providing a 
method of combining chemotherapy with antiangiogen-
esis therapy.
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