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Abstract 

Gas therapy (GT) has attracted increasing attention in recent years as a new cancer treatment method with favorable 
therapeutic efficacy and reduced side effects. Several gas molecules, such as nitric oxide (NO), carbon monoxide (CO), 
hydrogen  (H2), hydrogen sulfide  (H2S) and sulfur dioxide  (SO2), have been employed to treat cancers by directly kill-
ing tumor cells, enhancing drug accumulation in tumors or sensitizing tumor cells to chemotherapy, photodynamic 
therapy or radiotherapy. Despite the great progress of gas therapy, most gas molecules are prone to nonspecific distri-
bution when administered systemically, resulting in strong toxicity to normal tissues. Therefore, how to deliver and 
release gas molecules to targeted tissues on demand is the main issue to be considered before clinical applications of 
gas therapy. As a specific and noninvasive stimulus with deep penetration, near-infrared (NIR) light has been widely 
used to trigger the cleavage and release of gas from nano-prodrugs via photothermal or photodynamic effects, 
achieving the on-demand release of gas molecules with high controllability. In this review, we will summarize the 
recent progress in cancer gas therapy triggered by NIR light. Furthermore, the prospects and challenges in this field 
are presented, with the hope for ongoing development.
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Introduction
Cancer is one of the most serious diseases that threaten 
human health worldwide [1–5]. At present, cancer treat-
ments mainly include surgery, chemotherapy and radio-
therapy, but the clinical benefits are unsatisfactory owing 
to the heterogeneity and complexity of cancer [6–9]. In 
recent years, as a new cancer treatment model, gas ther-
apy has played important roles in cancer treatment with 
high therapeutic efficiency [10–14]. The commonly used 
therapeutic gas molecules include nitric oxide (NO), car-
bon monoxide (CO), hydrogen  (H2), hydrogen sulfide 

 (H2S), and sulfur dioxide  (SO2) (Scheme  1). The devel-
opment of the first biomedical gas, NO, led to the Nobel 
Prize in Physiology and Medicine in 1998 for its signifi-
cant therapeutic effects on cardiovascular diseases [15]. 
Subsequently, other therapeutic gas molecules have also 
been used in biomedical applications, especially cancer 
treatment. Although gas therapy has made great progress 
in the treatment of diseases, most therapeutic gases are 
prone to nonspecific distribution after systemic admin-
istration, resulting in strong irritation to the respiratory 
system and severe side effects on normal tissues [10, 16]. 
Furthermore, the off-targeting phenomenon of gas mol-
ecules often leads to inferior tumor accumulation and 
weakens therapeutic efficiency [17]. Therefore, the devel-
opment of stimulus-responsive gas-releasing nanoplat-
forms (GRNs) for controlled gas release is the main goal 
that needs to be achieved before the clinical application 
of gas therapy [18, 19]. Stimulus-responsive GRNs could 
effectively prevent gas from being released prematurely 
in blood circulation or in normal tissues, preventing 
possible toxicity and side effects [20, 21]. Furthermore, 
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stimulus-responsive GRNs could target tumor tissues 
and release gas molecules in a controlled manner, sig-
nificantly enhancing the antitumor effect. There are two 
main approaches to stimulating the release of gas mol-
ecules: (1) endogenous stimuli, such as weak acidity and 
high  H2O2, glutathione (GSH), ATPase (ATP) and special 
enzyme levels; and (2) exogenous stimuli, such as light, 
sound, electricity and magnetism [22–27]. The response 
to internal stimuli can realize the controlled release of 
gas without external stimulation, which is simple and 
convenient without damage to normal tissues [28–31]. 
In contrast, an external stimulus source has the advan-
tage of easy control of the stimulus source to accurately 
control the gas release rate, quantity and tissue retention 
[22, 23, 32]. Among exogenous stimuli, lasers have the 
advantages of convenience and effectiveness, leading to 
the wide application of photocontrolled GRNs [33–37]. 
Compared to ultraviolet or visible light with limited tis-
sue penetration depth, NIR light has higher tissue pen-
etration depth and lower phototoxicity and therefore 
exhibits broader application prospects in cancer gas 
treatment [38–40].

NIR can not only trigger the controlled release of gas 
molecules from GRNs but also achieve phototherapy, 
including photothermal therapy (PTT) and photody-
namic therapy (PDT), for combined antitumor efficacy 
[41]. PTT uses a photosensitizer to convert absorbed light 
energy into thermal energy, which produces local high 
temperatures to destroy tumor cells [42–50]. PTT has the 
advantages of low invasiveness, deep tissue penetration, 

high spatiotemporal precision and low cytotoxicity [51–
57]. Compared to PTT, PDT has a more complex basic 
mechanism. PDT can induce the apoptosis of cancer cells 
by stimulating the production of reactive oxygen spe-
cies (ROS), such as hydroxyl radicals, singlet oxygen and 
superoxide dismutase, after irradiation with ultraviolet or 
NIR light [58–63]. ROS can also increase the permeabil-
ity of the tumor cell membrane and enhance nanoparticle 
uptake, a phenomenon known as photochemical inter-
nalization [64–67]. The precise release of gas molecules 
from GRNs in diseased tissue is a prerequisite to ensure 
the effectiveness and biosafety of gas therapy [18, 19]. 
At present, many kinds of GRNs have been designed to 
transport gas to tumor tissues, such as poly(D-L-lactic-
co-glycolic acid) (PLGA), micelles, silica/mesoporous 
silica, organosilica,  MnO2, graphene,  Bi2Se3, upconver-
sion nanoparticles (UCNPs), and  CaCO3[20]. In addition, 
some GRNs can be loaded with antineoplastic drugs that 
can accumulate in the tumor through the enhanced per-
meability and retention (EPR) effect or active targeting 
and regulate relevant proteins to reverse the multidrug 
resistance (MDR) of tumor cells, thus enhancing the anti-
tumor effects of chemotherapeutic drugs [68–70]. Due to 
the diversity of therapeutic gases and treatment mecha-
nisms, GRNs could achieve efficient therapeutic effects 
and reduce side effects at the same time [71, 72]. Table 1 
summarizes the applications of various representative 
NIR-responsive gas prodrugs in tumors in recent years.

In this review, the latest progress in gas prodrugs 
excited by NIR lasers in tumor therapy is systematically 
reviewed. First, the reasonable design of multifunctional 
GRNs is introduced. Second, the advantages of GRNs, 
including five gas molecules (NO, CO,  H2,  H2S,  SO2), in 
tumor therapy under NIR laser irradiation are summa-
rized. Then, combinations of gas therapy with PTT and 
PDT are introduced, which reveals the synergistic anti-
tumor mechanism of GRNs. Finally, the challenges and 
possible solutions of gas therapy under NIR laser radia-
tion are discussed.

NIR light‑triggered NO prodrug
NO was the first gas signaling molecule used and was 
found to play important roles in a series of physiological 
processes, such as apoptosis, angiogenesis, and immune 
response [111–116]. In addition NO can deplete colla-
gen through inducing matrix metalloproteinases (MMP), 
which has been used for improved nanoparticle penetra-
tion in solid tumors [117, 118]. The physiological func-
tion and clinical application of NO have a longer research 
history than those of other gas molecules [119]. NO 
plays a dual role in tumor therapy: it can promote cancer 
growth at low concentrations (< 1 μM) but exhibits anti-
tumor effects at high concentrations (> 1 μM) [120–122]. 

Scheme 1 Schematic illustration of NIR light triggered nano-prodrug 
for cancer gas therapy
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Therefore, tumor growth can be effectively inhibited by 
raising the concentration of NO above the basic level in 
tumor tissues. In addition, NO can enhance the thera-
peutic effects of chemotherapeutic drugs by overcoming 
the MDR of cancer cells, and it can improve the efficacy 
of PDT by reacting with ROS to form highly toxic per-
oxynitrites [84]. In exogenous stimulation wiht NIR laser 
irradiation, the position, duration and dose of the light 
source can be accurately controlled, offering practical 
application value in biomedical use.

Photothermal therapy‑triggered NO prodrug
Photothermal therapy is the use of NIR light radiation 
lesions of organic or inorganic nanomaterials to generate 
local heat in the tumor, stimulating the release of NO in 
gas therapy [123, 124]. At present, various NO prodrugs 
have been developed, including organic nitrates/nitrites, 

metal-NO complexes, nitrosamines, and S-nitros-
omercaptan. Moreover, the photothermal conversion 
and thermosensitive properties give these NO nano-
prodrugs the ability to absorb NIR and convert it into 
heat, thus promoting the breaking of chemical bonds to 
release NO [125]. Therefore, various methods to release 
NO by using the photothermal effect produced by NIR 
have been developed in recent years. For example, Zhao 
et  al. reported an NIR-triggered NO release platform 
based on UCNPs and photosensitive ruxin black salts 
(RBS-UCNPs), which can capture 980  nm NIR photons 
and convert them into higher-energy Ultraviolet–vis-
ible (UV–vis) photons. In addition, the white upconver-
sion emission causes the maximum spectrum to overlap 
with the absorption peak of RBS, and then the effective 
photolysis of NO is induced by the energy transfer (ET) 
process under irradiation with a 980 nm laser. This work 

Table 1 Representative NIR-responsive nano-gas prodrugs and their biomedical applications

Gas Materials Tumor cells lines Therapy References

NO RBS-UCNPs
GO-BNN6
Me-RBSs
Nb2C–MSNs–SNO
BNN-Bi2S3
Fe3O4@PDA@Ru-NO@FA
PTNGs
PNOC-PDA/DOX
DTX@m-PB-NO
SPNs PFTDPP
Lyso-Ru-NO@FA@C-TiO2
L-Arg@PCn@Mem
DPP-NF
ADAu@CuS YSNPs

Human breast cancer MCF-7/DOXR cells
Human osteosarcoma 143B cells
Human breast cancer 4T1-LUC cells
Mouse breast cancer 4T1 cells
Human liver cancer BEL-7402 cells
Human cervical carcinoma HeLa cells
Human breast cancer MCF-7/ADR cells
Human breast cancer MCF-7/ADR cells
Mouse breast cancer 4T1 cells
Human breast cancer MCF-7 cells
Human breast cancer MCF-7 cells
Mouse breast cancer 4T1 cells
Human cervical cancer HeLa cells
Human breast cancer MCF-7/ADR cells

PTT
PTT
PTT
PTT
PTT
PTT
PTT
PTT
PTT
PTT
PDT
PDT
PDT
PDT

[73]
[74]
[75]
[76]
[77]
[78]
[79]
[80]
[81]
[82]
[83]
[84]
[85]
[86]

CO m-PB-CO
PdNS-CO
POM-anchored HMON
FeCO-DOX@MC
MCM@PEG-CO-DOX
PEG@DW/BC
CORM@G3DSP-CE6
Uio-BDP-MnCO
PB-CO-TPZ
PPPPB − CO − Dox NPs
NCu-FleCP
Fe(CO)5@Au

Human cervical cancer HeLa cells
Human lung cancer A549 cells
Human malignant glioma U87MG cells
Mouse breast cancer 4T1 cells
Human colon tumor HCT116 cells
Mouse colorectal cancer CT26 cells
Mouse breast cancer 4T1 cells
Human breast cancer MCF-7 cells
Mouse breast cancer 4T1 cells
Human breast cancer MCF-7/ADR cells
Mouse breast cancer 4T1 cells
Mouse breast cancer 4T1 cells

PTT
PTT
PTT
PTT
PTT
PTT
PTT
PTT
PDT
PDT
PDT
PDT

[87]
[88]
[89]
[90]
[91]
[92]
[93]
[94]
[95]
[96]
[97]
[98]

H2S SP-loaded PEG-UCNPs
rGO–PEI-DTC
AB-DS@BSA-N3
ZnS@ZIF-8

Human breast cancer MCF-7 cells
Human breast cancer MCF-7 cells
Human laryngeal cancer Hep2 cells
Human hepatocellular carcinoma Huh7 cells

PTT
PTT
PTT
PDT

[99]
[100]
[101]
[102]

H2 PdH-MOF
mPDAB NPs
Z-scheme SnS1.68–WO2.41
UCCZ NPs

Human cervical cancer HeLa cells
Mouse breast cancer 4T1 cells
Mouse breast cancer 4T1 cells
Mouse breast cancer 4T1 cells

PTT
PTT
PTT
PDT

[103]
[104]
[105]
[106]

SO2 DNs–Naph–Cbl
RUCSNs-DM
Au-Ag-BTS HTNs
GNRS@PDA-BTS

Human breast cancer MDA-MB-231 cells
Human colon cancer S180 cell
Mouse breast cancer 4T1 cells
Human breast cancer MCF-7 cells

PTT
PDT
PDT
PDT

[107]
[108]
[109]
[110]
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proved that a high concentration of NO produced by 
high-intensity NIR can directly kill cancer cells, while a 
low concentration of NO can overcome MDR in chem-
otherapy by inhibiting the expression of P-glycopro-
tein (P-gp) on the cancer cell membrane (Fig.  1a) [73]. 
Although the nanodrugs designed by Zhao et  al. have a 
good NIR response and significant antitumor MDR, they 
have a low drug loading rate and poor light transmission 
efficiency (NIR-UV light). High-power NIR laser irradia-
tion is usually required to produce enough NO, which 
inevitably leads to potential thermal damage. To solve 
this problem, Chen et  al. constructed a novel sandwich 
nanodrug (GO-BNN6) with NIR light response by π-π 
stacking of graphene oxide (GO) nanoparticles with an 
NO donor (BNN6) that has high drug loading and ther-
mal stability. GO can absorb NIR photons of 808  nm 
into active electrons, inducing BNN6 decomposition 
to release NO, which has significant anticancer effects. 
Importantly, GO-BNN6 nanopharmaceuticals have 
repeatable NIR-controlled NO release and high sensi-
tivity to NIR radiation power density, which helps to 
achieve accurate on-demand release of NO while reduc-
ing the risk of NO poisoning [74].

According to previous studies, the antitumor effect of 
NO is closely related to its concentration [126]. However, 
NO molecules have a short half-life under physiologi-
cal conditions and are easily consumed by free radicals 
or biological macromolecules [127]. Therefore, it is dif-
ficult to achieve effective concentrations of NO in the 
tumor area [126, 127]. In another study, Qian et al. devel-
oped a fast, simple and efficient coordination precipita-
tion route for insoluble metal ruxin black salts (MeRBs), 
which have a stable photoresponse, low cytotoxicity and 
high thermal stability. Under 808  nm laser stimulation, 
Me-RBS can absorb light energy and stimulate the release 
of NO as needed. However, when the NIR light irradia-
tion was stopped, NO release stopped almost completely. 
This confirms that the release of NO by Cu-RBS has high 
NIR controllability. In addition, in the mouse 4T1-Luc 
breast cancer model, compared with the blank control 
group, the NIR irradiation alone group and injection of 
Cu-RBS alone group had no significant inhibitory effect 
on the growth of primary 4T1-Luc tumors in mice. How-
ever, the combined injection of Cu-RBS and NIR light 
significantly inhibited the growth of primary 4T1-Luc 
tumors in. Bioluminescence imaging and Masson and 
H&E staining analyses of pulmonary metastasis clearly 
showed proliferative cancer nodules in the three control 
groups (PBS, NIR, Cu-RBS), but no obvious cancer nod-
ules were seen in the Cu-RBS + NIR group. In brief, Cu-
RBS, as a NO donor stimulated by NIR, can effectively 
inhibit the growth and metastasis of metastatic breast 
cancer (Fig.  1b) [75]. Recently, Xu et  al. proposed their 

own design of an NO release nanoreactor based on an 
 Nb2CMXene nanosheet and a NO donor (S-nitrosomer-
captan, RSNO). Compared to other NO donors, RSNO 
has the unique advantage of high biocompatibility. Under 
the irradiation of 1064  nm laser, MXene can produce 
heat shock, which triggers the breakage of S-NO bond in 
RSNO to release NO precisely. This effectively increases 
the concentration of NO in the tumor area and further 
induces apoptosis.In addition, NB2C-MSNS-SNO has 
excellent PA imaging effect. With the increase of con-
centration and time, the contrast of PA imaging becomes 
higher, which can be used as an excellent PA contrast 
agent.At the same time, the nanomedicine has good bio-
compatibility and can be quickly eliminated from the 
body by the kidney, which has great potential for clinical 
transformation (Fig. 1c) [76].

In addition, Zhao et  al. combined bismuth sulfide 
 (Bi2S3) nanoparticles as carriers with the NO donor bis-
N-nitroso compound (BNN) to construct efficient NIR-
triggered NO-releasing nanocomposites.  Bi2S3 can be 
targeted to tumor tissue, converting the light energy of 
the 1064  nm laser into thermal energy to trigger BNN 
decomposition and the release of NO. At the same time, 
NO can maintain the expression of p62 gene to inhibit 
protective autophagy, which could enhance the effi-
cacy of PTT by aggravating thermal injury (Fig. 1d) [77]. 
Among many NO donors, ruthenium nitrite (Ru-NO) 
not only has good biocompatibility and low cytotoxicity 
under physiological conditions but also releases NO con-
trollably under NIR light irradiation [128, 129]. There-
fore, Liu et  al. covalently linked a Ru-NO donor to the 
Folic Acid (FA) targeting group on the  Fe3O4@PDA mag-
netic carrier to construct a new multifunctional magnetic 
nanoplatform that can produce an obvious photothermal 
effect under 808  nm laser irradiation, which stimulates 
the release of NO. Moreover, the nanoplatform can target 
and be transported to tumor cells under the guidance of 
a magnetic field and FA targeting groups, which has obvi-
ous antitumor effects (Fig. 1e) [78].

The MDR of tumor cells is one of the main obstacles 
leading to failure of tumor chemotherapy [130]. Accord-
ing to recent studies, overexpression of P-glycoprotein 
(P-gp) in tumor cells can cause chemotherapeutic drugs 
(such as doxorubicin and paclitaxel) to be pumped out 
of the cells [131]. However, NIR stimulation-responsive 
polymer nanoparticles (such as drug-loaded or drug-
bound nanoparticles) can overcome MDR by inhibiting 
the expression of P-gp. Therefore, Yang et al. developed a 
 Fe3O4@polydopamine photothermal platform with high 
drug loading, which was directly triggered by 808  nm 
laser irradiation to efficiently release NO and reduce the 
expression of the P-gp protein, overcoming the MDR of 
tumor cells during chemotherapy [79]. At present, several 
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Fig. 1 a Schematic illustration of 980-nm laser light-triggered on-demand NO release for dose-dependent therapeutic applications. Reproduced 
with permission from Ref [73]. Copyright 2015, Wiley–VCH. b Schematic illustration of the coordination-precipitation process of Me-RBS and 
NIR-responsive release of NO. Reproduced with permission from Ref [75]. Copyright 2017, American Chemical Society. c Schematic illustration of 
theranostic functions of  Nb2C–MSNs–SNO, including free delivery within blood vessel after intravenous injection, photothermal-triggered NO 
release, photonic thermogaseous therapy toward oncotherapy, and PAI guidance and monitoring. Reproduced with permission from Ref [76]. 
Copyright 2019, Wiley–VCH. d Schematic illustration of synthetic procedure and NIR-triggered NO release property of BNN-Bi2S3, and synergistic 
mechanism of NO and mild PTT in cancer therapy. Reproduced with permission from Ref [77]. Copyright 2019, Wiley–VCH. e Schematic of the 
nanoplatform (1) for target-directed delivery of NO and production of PTT under 808 nm light irradiation, and schematic of the preparation of the 
CS-PVA/NO hydrogel and its antibacterial effect by NO under irradiation with 808 nm light. Reproduced with permission from Ref [78]. Copyright 
2020, American Chemical Society
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polypeptide-polyoxyethylene drug-loaded micelles have 
been approved by the Food and Drug Administration 
(FDA) to enter clinical antitumor trials [132]. Therefore, 
Dong et  al. designed an NIR-responsive drug-loaded 
peptide nanocomposite (PNOC-PDA/DOX) by cou-
pling poly(L-cysteine)20-poly(ethylene oxide)45 (PC) with 
S-nitroso(SNO) and embedding biomimetic dopamine 
(PDA) and DOX. Under 808  nm laser irradiation, PTT 
can induce the pyrolysis of S-NO to release NO. PNOC-
PDA/DOX exhibits pH-responsive drug release. In the 
acidic tumor microenvironment, protonation of the 
amino group on DOX destroys π − π stacking to trigger 
drug release. NO can also overcome the MDR of tumors, 
enhancing their chemosensitivity by significantly inhibit-
ing the expression of P-gp (Fig. 2a) [80].

Sodium nitroprusside (SNP) is not only a commonly 
used drug in the treatment of hypertension but also 
an NO donor [74, 75]. Zhang et  al. synthesized hol-
low mesoporous Prussian blue loaded with docetaxel 
(DTX@m-PB-NO) using SNPs. Under 808  nm laser 
irradiation, DTX@m-PB-NO can realize triple therapy 
with NO gas therapy, PTT and chemotherapy at the 
same time. In a mouse tumor model, DTX@m-PB-NO 
not only showed an obvious ability to kill tumors under 
NIR irradiation but also inhibited tumor lung metastasis. 
Picric acid staining was used to detect lung metastatic 
nodules. There were almost no lung metastatic nodules 
in the DTX@m-PB-NO + NIR group, while obvious lung 
metastatic nodules could be seen in the control groups 
(Fig.  2b) [81]. Recently, Fan et  al. constructed semicon-
ductor polymer nanoparticles (SPNs PFTDPP) by using 
the S-nitrosomercaptan group (SNAP) as a NO donor. 
Under the thermal energy produced by 808  nm laser 
radiation, SNAP can undergo thermal decomposition 
into NO. In addition, PFTDPP exhibits an obvious fluo-
rescence signal in the NIR II region under808 nm laser 
irradiation, enabling fluorescence imaging. Therefore, 
PFTDPP SPNs can use fluorescence imaging characteris-
tics to guide NO gas therapy and PTT (Fig. 2c) [82].

Photodynamic therapy‑triggered NO prodrug
In antineoplastic therapy, PDT can also be used to trig-
ger the controlled release of NO, which could inhibit the 
expression of P-gp protein and improve the sensitivity 
of cancer cells to chemotherapeutic drugs [133, 134]. In 
addition, NO can directly or indirectly react with ROS 
to form highly active peroxynitrite  (ONOO−) molecules, 
improving the efficacy of gas therapy and PDT [133, 135]. 
According to many recent studies, lysosomes are closely 
related to the programmed death of cancer cells [136]. 
Therefore, Liu et  al. developed a novel multifunctional 
NO delivery platform for cancer cell lysosome target-
ing. The nanoplatform can selectively target cancer cells 

overexpressing folate receptor (FR) and enrich in the lys-
osomes of cancer cells. Under 808  nm laser irradiation, 
nanoparticles can undergo phototriggered electron and 
energy transfer in lysosomes. This process will stimulate 
the release of NO and ROS from the NO donor and sur-
rounding  O2, resulting in lysosome damage and promot-
ing the programmed death of cancer cells [83]. However, 
once the nanoparticles enter the human body, they will 
be easily cleaned by the human immune system and 
captured by capillaries, which would decrease the drug 

Fig. 2 a Therapeutic effect of NIR light guided triple therapy on 
MCF-7/ADR in vitro. Reproduced with permission from Ref [80]. 
Copyright 2019, American Chemical Society. b Schematic illustration 
of the preparation process and in vivo behavior of m-PB-NO. 
Reproduced with permission from Ref [81]. Copyright 2019, 
American Chemical Society. c NIR-II/photoacoustic imaging-guided 
photothermal initiated NO/photothermal therapy. Reproduced with 
permission from Ref [82].Copyright 2019, American Chemical Society
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concentration at the tumor site, reducing the therapeu-
tic effects [137]. To overcome this problem, Zhang et al. 
prepared a porous coordination network (PCN) contain-
ing the NO donor L-arginine (L-Arg) inside a cancer cell 
membrane. The biomimetic multifunctional nanosystem 
(L-Arg@PCn@Mem) exhibits good homologous target-
ing to tumor tissues, which can avoid immune cleaning 
and take advantage of EPR at the tumor site. In addition, 
once PCN is irradiated by a 660 nm laser, it will produce 
a large number of free radicals, which can convert L-Arg 
into NO. The ROS-stimulated production of NO can 
enhance the effect of PDT under hypoxia to realize com-
bined gas therapy and PDT (Fig. 3a) [84].

Diketopyrrolopyrrole (DPP) derivatives are efficient 
photosensitizers that have the advantages of NIR absorp-
tion, high light stability and thermal stability [138–140]. 
Recently, Dong et  al. designed pH-sensitive DPP nano-
particles (DPPNF) loaded with NO photodonors (4-nitro-
3-trifluoromethylaniline, NF) and pH-sensitive groups 
(dimethylaminophenyl). DPPNF can be activated in the 
acidic environment of lysosomes, enhancing the ROS 
production and photothermal effects. Under 660 nm NIR 
light irradiation, NF can achieve the controllable release 
of NO under light/dark conditions, which induces lyso-
somal damage to enhance the efficacy of PDT, leading to 
tumor cell apoptosis. It shows excellent tumor lethality 
in gas therapy, PTT and PDT (Fig.  3b) [85]. In another 
work, Zhang et al. developed a complex liposome nano-
system that can sequentially release NO and DOX. Under 
808  nm laser irradiation, nanoparticles with Au-NRs as 
the core undergo resonance energy transfer (RET) to 
produce a large amount of ROS. L-Arg can be converted 
to NO by NO synthetase with ROS-induced activity. 
When liposomes embedded with hydrophobic o-phe-
nylenediamine lipids encounter NO gas molecules, the 
o-phenylenediamine lipids can change from hydrophobic 
to hydrophilic. This process destroys the phospholipid 
bilayer of liposomes and eventually releases DOX. At the 
same time, NO can inhibit the expression of P-gp, creat-
ing a favorable microenvironment for the later release of 
DOX accumulation (Fig. 3c) [86].

NIR light‑triggered CO prodrug
For a long time, CO has been considered a toxic sub-
stance. When it enters the blood, it reduces the oxy-
gen-carrying capacity of hemoglobin, which can lead 
to permanent damage and even death [141]. However, 
recent studies have found that endogenous CO pro-
duced by heme oxygenase (HMOX) has a protective 
effect against tissue and cell damage [142, 143]. Endog-
enous CO is also a second messenger that regulates the 
cellular signaling pathway and participates in various 
physiological and pathological responses in the human 

body [141]. It has significant therapeutic potential in the 
treatment of many related diseases, including cerebral 
infarction, organ transplantation, arteriosclerosis, stroke 
and cancer [13, 144–148]. CO can promote the prolif-
eration, metabolism and metastasis of tumor cells at low 
levels, while it can induce tumor cell death by interfering 

Fig. 3 a Schematic illustration of L-Arg@PCN@Mem preparation 
and lethal mechanism of gas therapy and sensitized photodynamic 
therapy against tumor cells. Reproduced with permission from Ref 
[84]. Copyright 2018, Elsevier Ltd. b Illustrating the NO and Dox 
programmable release and MDR cancer therapy of ADLAu2@CuS 
YSNPs. Reproduced with permission from Ref [85]. Copyright 2018, 
American Chemical Society. c Schematic illustration of pH-responsive 
DPP-NF NPs for PTI and FI guided PDT/PTT/GT synergistic cancer 
therapy. Reproduced with permission from Ref [86]. Copyright 2019, 
The Royal Society of Chemistry
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with mitochondrial respiration and increasing ROS at 
high levels, which lays a foundation for the treatment 
of tumors with CO [13, 144]. Therefore, the realization 
of a controlled-release CO prodrug is very important 
to improve the effectiveness of CO gas therapy and 
reduce the risk of CO poisoning. It is urgent to develop 
a nanogas delivery system that can target diseased tissues 
and control the release of CO gas [13].

Photothermal therapy‑triggered CO prodrug
To reduce the early leakage of CO in blood circula-
tion and increase the accumulation of CO in tumor 
tissues, the use of NIR to stimulate CO prodrug nan-
oplatforms for on-demand release has attracted wide-
spread attention in recent years. Prussian blue (PB) has 
been approved by the FDA in the United States as an 
antidote for heavy metal poisoning and has good bio-
compatibility and safety [149]. Therefore, Yeh et  al. 
allowed polyethylene glycol carbonyl iron to react with 
mesoporous Prussian blue as the carrier to obtain a CO 
nanogas prodrug (m-PB-CO). Under 808 nm laser irra-
diation, the photothermal effect can trigger m-PB-CO 

to release CO. In contrast, in the absence of laser irra-
diation, m-PB-CO shows no CO release within 7 days, 
with high biological safety. In addition, m-PB-CO ena-
bles ultrasonic imaging under laser irradiation. In the 
mouse tumor model, the ultrasonic echo signal in the 
tumor was monitored by on/off pulsing of the laser. 
When m-PB-CO was injected into the tumor, compared 
with the group without laser irradiation, the ultrasonic 
signal of the tumor was significantly enhanced due to 
the release of CO after 5 min of 808 nm laser irradia-
tion (Fig. 4a) [87]. Although PB nanoparticles have high 
biological safety, their photothermal conversion rate is 
not high. Palladium-loaded nanotablets (PdNS) have 
been widely used in NIR photothermal therapy because 
of their excellent photothermal conversion rate [150]. 
Wei et  al. prepared ultrathin PdNS-CO nanocrystals 
using CO as a reducing agent. In addition, the photo-
thermal conversion rate of PdNS-CO can be as high as 
40%. After 808  nm laser irradiation, an excellent pho-
tothermal effect can trigger PdNS-CO to release CO, 
which can enrich PdNS-CO in tumors and enhance its 
antitumor effect by EPR [88].

Fig. 4 a Synthetic Strategy for NIR-Responsive m-PB-CO/PEG NPs Applied for CO and Photothermal Therapy and US Imaging. Reproduced 
with permission from Ref [87]. Copyright 2016, American Chemical Society. b Schematic Illustration of the  Mn2(CO)10-Loaded and POM 
Surface-Modifified Hollow Mesoporous Organosilica Nanoplatform, HMOPM-CO, for Tumor Microenvironment (TME)-Responsive Self-Assembly 
and Precise Synergistic Therapy. Reproduced with permission from Ref [89]. Copyright 2018, American Chemical Society. c Schematic illustration 
of multifunctional nanoplatform for photoacoustic imaging-guided combined therapy enhanced by CO induced ferroptosis. Reproduced 
with permission from Ref [90]. Copyright 2019, Elsevier Ltd. d The synthetic workflflow of MCM@PEG-CO-DOX for NIR light-responded CO-DOX 
combination therapy of tumor with dual-mode imaging. Reproduced with permission from Ref [92]. Copyright 2019, Elsevier Ltd
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Hollow mesoporous organosilicon nanoparticles 
(HMONs) have wide application prospects in the bio-
medical field because of their large specific surface area, 
uniform mesoporous structure, high chemical stability 
and controllable surface modification [151]. Chen et  al. 
used a special “ammonia-assisted hot water etching” 
method to load Mo(VI)-based polyoxometalate (POM) 
and the CO-release molecule  Mn2(CO)10 into HMONs. 
In the acidic tumor microenvironment, POM proto-
nates and leads to the accumulation of HMONs in the 
tumor, enhancing the EPR effect of the tumor. In addi-
tion, the reductive tumor microenvironment will induce 
the reduction of Mo(VI) to Mo(V), which has stronger 
NIR light absorption. Therefore, under 808  nm irradia-
tion, PTT can further trigger the thermal decomposition 
of  Mn2(CO)10 and release CO, which acts synergisti-
cally with PTT (Fig.  4b) [89]. Compared with HMONs, 
mesoporous carbon nanoparticles (MCNs) have stronger 
absorbance, higher photothermal conversion efficiency 
and lower in vivo toxicity in the NIR region [152]. Yang 
et al. constructed an MCN nanoplatform (FeCO-DOX@
MCN) loaded with DOX and triiron dodecacarbonyl 
(FeCO), which realized combined gas therapy and PTT. 
FeCO-DOX@MCN nanoparticles exhibit pH-dependent 
drug release behavior that can release more DOX in the 
acidic tumor microenvironment. Under 808  nm laser 
irradiation, the excellent photothermal conversion rate 
of FeCO-DOX@MCN can cause the thermal decomposi-
tion of FeCO to release CO. At the same time, CO can 
inhibit the expression of cystathionine β synthase (CBS) 
and glutathione peroxidase 4 (Gpx4), increasing the sen-
sitivity of cancer cells to DOX by enhancing the effect of 
ferroptosis (Fig. 4c) [90].

As an excellent type of nanocarrier for drug deliv-
ery systems, metal organic frameworks (MOFs) have 
been widely used in a variety of drug carriers because of 
their low toxicity, high drug loading rate and high tar-
geting [153]. Shen et  al. formed MCM@PEG-CO-DOX 
nanoparticles by coloading DOX and CO prodrugs into 
an MOF and embedding polyethylene glycol magnetic 
carbon nanoparticles. Under 808  nm laser radiation, 
MCM@PEG-CO-DOX converts light energy into ther-
mal energy, triggering CO and DOX release. In addition, 
MCM@PEG-CO-DOX can target the mitochondria of 
cancer cells to release CO, which can quickly cause mito-
chondrial damage and enhance the sensitivity of cancer 
cells to DOX, leading to cancer cell apoptosis. This will 
enhance the sensitivity of cancer cells to DOX, leading to 
apoptosis of cancer cells. In addition, MCM@PEG-CO-
DOX can enable magnetic resonance imaging (MRI) and 
photoacoustic imaging (PAI) of tumors. Compared with 
non-intratumoral injection of the drug, intratumoral 
injection in mice resulted in T2 signal intensity at the 

tumor site of the mice with a lower signal area, while the 
PAI signal intensity showed a higher signal intensity [91]. 
Zhang et  al. modified the surface of defective tungsten 
oxide  (WO3) nanosheets (DW NSs) with bicarbonate 
(BC) by ferric ion-mediated coordination and further 
modified it with polyethylene glycol (PEG) to fabricate 
PEG@DW/BC nanosheets. Under 808  nm laser irradia-
tion, PEG@DW/BC, producing a photothermal effect, 
can decompose BC to release  CO2 and act as a CO 
photocatalyst to convert  CO2 into CO. In addition, CO 
produced by PEG@DW/BC significantly inhibits the pro-
inflammatory cytokines tumor necrosis factor-α (TNF-α) 
and interleukin-6 (IL-6), eliminating the inflammatory 
response produced by PTT (Fig. 4d) [92].

Photodynamic therapy‑triggered CO prodrug
ROS induced by NIR light not only can be activated by 
heat but also can trigger the release of CO [154]. The 
curative effect of PDT is mainly because the photosen-
sitizer can produce a large amount of ROS under NIR 
light, which can induce the programmed death of cancer 
cells [155]. Although  H2O2 produced by the PDT pro-
cess was found to be involved in cancer cell apoptosis, 
long-term accumulation of high concentrations would 
lead to tumor recurrence and metastasis [156]. There-
fore, Gu et  al. reported a controlled CO-release system 
(CORM@G3DSP-CE6) driven by PDT that integrates the 
photosensitizer e6 chloride (Ce6) and the  H2O2-sensitive 
CO-release molecule CORM-401 into a polypeptide 
dendrimer nanogel. Under laser irradiation, CORM@
G3DSP-CE6 accumulates in the tumor, producing a 
large amount of  H2O2, which could weaken the Mn-CO 
backbond in CORM-401 to release CO while being 
largely consumed. However, this process does not affect 
the production of 1O2, which not only retains the anti-
cancer effect of PDT but also reduces the side effects of 
PDT. This will improve the anticancer effect [93]. There 
has been widespread interest in interference with cancer 
metabolism as an antitumor mechanism [157]. For exam-
ple, starvation therapy can block tumor ATP supply by 
inhibiting the oxidative phosphorylation pathway, which 
can cause cancer cell necrosis [158]. Dong et al. designed 
a nanometallo-organic skeleton (NMOF) embedded 
with a photosensitizer (21-BODIPY) and CO prodrug 
(MnCO), which can achieve the synergistic effect of PDT 
and starvation therapy. Under NIR irradiation, the PDT 
process produces a large amount of ROS to promote the 
release of CO from MnCO. At the same time, PDT and 
CO gas therapy can cause mitochondrial damage and 
inhibit aerobic glycolysis, which blocks the energy supply 
of cancer cells, achieving effective combined treatment of 
cancer [94].
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Currently, some chemotherapeutic drugs can be fully 
activated in a specific tumor microenvironment, such 
as in the presence of overexpressed enzymes, overpro-
duced ROS or hypoxia [159]. Yin et  al. developed an 
NIR light-triggered CO release system, which consists 
of mesoporous Prussian blue nanoparticles (PB NPs) 
as a photosensitizer, pentacarbonyl iron (Fe(CO)5) as 
a CO donor and the bioreductive anticancer drug Tira-
pazamine (TPZ). Under 808  nm laser irradiation, the 
nanoparticles produce a large amount of ROS, leading to 
the decomposition of Fe(CO)5 and the release of a large 
amount of CO, which can cause mitochondrial damage 
and aggravate the hypoxic environment in the tumor by 
depolarizing the mitochondrial membrane. TPZ can 
be activated in the deep hypoxic tumor microenviron-
ment, which aggravates the apoptosis of cancer cells and 
achieves a strong antitumor effect (Fig.  5a).[95] Cur-
rently, chemotherapy is still the main treatment for can-
cer in the clinic, but the MDR of cancer is a great obstacle 
to the efficacy of chemotherapy [131]. Yin et al. first used 
a CO nanodrug delivery system to overcome the MDR of 
tumors. Fe(CO)5 and DOX were coupled to mesoporous 
Prussian blue nanoparticles (PB NPs) to construct an 
NIR-responsive CO release system. Under 808 nm laser 
irradiation, the photothermal effect can cleave the Fe-CO 
bond to release CO, inducing mitochondrial damage. 
This process leads to the inhibition of APT-dependent 
drug efflux, which greatly increases the accumulation of 
DOX in tumor cells, overcoming the MDR of tumors. In 
addition, the large amount of ROS released during PDT 
can upregulate the expression of the proapoptotic protein 
caspase3 and induce apoptosis [96].

In recent years, nanocoordination polymers (NCPs) 
based on the combination of metal ions and organic 
compounds have attracted wide attention because of 
their high drug loading and high biosafety [160]. For 
example, NCPs containing copper ions have been used in 
antitumor therapy because of their excellent Fenton-like 
response in the tumor microenvironment [161]. There-
fore, Wang et al. reported a GSH and NIR photorespon-
sive CO nano-prodrug composed of a CO donor (Fle) 
and  Cu2+. The high concentration of GSH in the tumor 
microenvironment cleaves NCu-FleCP into smaller Fle 
and  Cu2+, which enhances the drug uptake of cancer 
cells. In addition, high concentrations of  H2O2 in the 
tumor microenvironment will react with  Cu2+ to produce 
Fenton-like reactions to release a large amount of highly 
toxic·OH. Under irradiation with an 808  nm laser, the 
C–C bond of Fle is cleaved to release CO, causing dam-
age to mitochondria. CO and·OH produced in  situ can 
significantly promote the apoptosis of cancer cells, result-
ing in a significant synergistic anticancer effect [97]. Car-
bonyl compound complexes are easily oxidized under the 

physiological conditions of the human body, which inevi-
tably leads to CO leakage [13]. Therefore, Zhang et  al. 
encapsulated Fe(CO)5 in a Au nanocage cavity under 
anaerobic conditions and then formed iron oxide on the 
surface of Au nanocages under aerobic conditions, which 
effectively prevented CO leakage and oxidation, ensuring 
the stability and biocompatibility of the nanomaterials. 
After laser irradiation, Fe(CO)5 is thermally decomposed 
into CO and Fe. At this time, in the acidic tumor micro-
environment, the iron oxide wrapped on the surface of 
the Au nanocage is decomposed by acid, releasing CO 
and Fe into the tumor in situ. CO gas can produce ROS 
by interfering with the mitochondrial respiratory chain, 
resulting in mitochondrial autophagy, which induces the 
accumulation of iron and iron oxide in lysosomes. The 
Fenton reaction of iron and iron oxide in acidic environ-
ments produces a large amount of hydrogen peroxide, 
which destroys lysosomes and accelerates the death of 
cancer cells (Fig. 5b) [98].

NIR light‑triggered  H2S prodrug
In the past, hydrogen sulfide  (H2S) was considered to be a 
highly toxic gas. In fact, it is also an endogenous cellular 
signal mediator that can transmit biological information 
between cells in physiology or pathology [11]. Therefore, 
endogenous  H2S is considered to be the third gas trans-
mitter in addition to NO and CO [10, 162, 163].  H2S 
signaling molecules show great potential in the treatment 
of many diseases, such as inflammation, diabetes and 
cancer [164–167]. It has been reported that a high con-
centration of  H2S can produce a large amount of ROS, 
causing mitochondrial damage and inducing tumor cell 
apoptosis [167–169]. In recent years, the application of 
hydrogen sulfide in the medical field has aroused wide-
spread interest, but controlling the release of  H2S gas in 
time and space is still a difficult challenge. NIR-mediated 
PTT and PDT can stimulate  H2S donors to release  H2S, 
which has the unique advantages of being simple, nonin-
vasive, safe and low in side effects [170–174]. Therefore, 
suitable photosensitizers are particularly important to 
control the release of  H2S. At present, some photosen-
sitizers have been used in the treatment of cancer, such 
as gold nanoparticles [175–180], carbon materials [181–
183], copper sulfide nanoparticles [184–189], and organic 
dyes [190–195].

Photothermal therapy‑triggered  H2S prodrug
In recent years, UCNPs have attracted widespread inter-
est in the fields of biological imaging and antitumor 
activity because of their unique optical properties [167]. 
UCNPs can convert NIR light into UV or visible light, 
which enables their use in the biomedical field as carri-
ers for the transmission or release of NIR light [196]. Liu 
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Fig. 5 a Schematic illustration of PPPPB-CO-TPZ NPs with enhanced bioreductive chemotherapy and CO-mediated pro-apoptotic gas therapy. 
Reproduced with permission from Ref [95]. Copyright 2019, Elsevier Ltd. b Design of a controlled CO delivery nanomaterial for improving cancer 
therapy. Reproduced with permission from Ref [98]. Copyright 2020, American Chemical Society
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et al. synthesized a new  H2S donor (SP) for the first time 
and loaded it on the surface of UCNPs by hydrophobic 
interactions. Under 980 nm laser irradiation, the UV con-
verted from NIR by UCNPs cleaves SP to gem-dithiols 
by luminescence resonance energy transfer (LRET). PTT 
can promote the thermal decomposition of gem-dithiols 
to release  H2S gas. In addition, UCNPs can emit strong 
NIR fluorescence after NIR irradiation. SP-UCNPs were 
injected into mice and irradiated with 980 nm NIR light. 
The IVIS imaging system can track SP-UCNPs in  vivo, 
which can regulate the targeted release of  H2S (Fig.  6a) 
[99].

Reduced graphene oxide (rGO) has an excellent pho-
tothermal conversion rate for NIR and is a good car-
rier for photothermal therapy [197]. Dithiocarbamate 
(DTC) is the donor of  H2S and can be pyrolyzed to  H2S 
at high temperature [198]. Therefore, Liu et al. developed 
an NIR-photoresponsive  H2S gas generation nanoplat-
form (rGO-PEI-DTC) with a high drug loading rate by 
the electrostatic adsorption of positively charged DTC 
and negatively charged rGO. Under irradiation with NIR 

light, light energy is converted into thermal energy based 
on the photothermal effect of rGO, and a large amount of 
 H2S is released due to the thermal degradation of DTC. 
In the cell experiment, the rGO-PEI-DTC + NIR group 
showed higher cytotoxicity than the rGO and PEI-DTC 
groups, thus showing inhibition of the proliferation of 
cancer cells [100, 199].

Diallyl trisulfide (DATS), as a donor of  H2S, can be 
decomposed into  H2S by reductive GSH, which has good 
biological safety and strong cytotoxicity to cancer cells 
[200]. Zhang et  al. constructed a complex gas-produc-
ing nanoplatform  (Bi2S3-Ag2S-DATS@BSA-N3NYs) that 
responds to NIR light stimulation. In a tumor microen-
vironment rich in reductive GSH, DATS can be decom-
posed by GSH to release  H2S. At the same time, the  H2S 
released by the tumor in situ can reduce the surface –N3 
(−) to –NH2 ( +), resulting in the adsorption of nega-
tively charged BSA and increasing the size of NYs, which 
effectively enhances the enrichment of nanodrugs in the 
tumor site. Under 808  nm laser irradiation, the photo-
thermal conversion rate of the nanoparticles was as high 
as 31.6%, which indicates an excellent photothermal 
effect. In addition,  Bi2S3-Ag2S-DATS@BSA-N3NYs were 
injected into mice through the tail vein, and NIR-II fluo-
rescence and PA imaging were performed. After 6 h, the 
NIR-II fluorescence and PA signal of the tumor were sig-
nificantly higher than those of the surrounding normal 
tissue. Therefore, NIR-II/PA dual-mode imaging-guided 
PTT and GT provides a promising method for effective 
antitumor therapy [101].

Photodynamic therapy‑triggered  H2S prodrug
PDT can stimulate  H2S gas for use in antitumor therapy. 
TPZ is a hypoxia-activated anticancer drug that is highly 
toxic to cancer cells in the hypoxic tumor microenviron-
ment but has little effect on cells with normal oxygen 
concentrations [201]. High expression of catalase (CAT), 
which is overexpressed in the tumor microenvironment, 
can convert  H2O2 into oxygen, relieving hypoxia and 
weaking the anticancer effect of TPZ [202]. However,  H2S 
can inhibit the expression of CAT [203]. Han and oth-
ers have developed a  H2S nanogas production platform 
(ZSZIT) composed of ZnS nanoparticles coated with 
zeolitic imidazolate framework-8 (ZIF-8) and combined 
with indocyanine green (ICG) and TPZ. In the acidic 
tumor microenvironment, the shell of ZIF-8 collapses 
due to protonation, releasing ICG and TPZ. Under NIR 
radiation at 808  nm, ICG can induce PDT to produce 
ROS, which consume a large amount of oxygen at the 
tumor site, aggravating hypoxia in the tumor microenvi-
ronment. More importantly, ZnS can be degraded in situ 
to form  H2S gas in the tumor.  H2S can not only kill cancer 
cells but also downregulate the expression of CAT. This 

Fig. 6 a Construction of SP-loaded PEG-UCNPs platform for NIR 
triggered  H2S release. Reproduced with permission from Ref [99]. 
Copyright 2015, The Royal Society of Chemistry. b Schematic 
illustration of ZSZIT as a  H2S-sensitized PDT/chemotherapeutic 
synergistic nanoplatform. Reproduced with permission from Ref 
[102]. Copyright 2020, Ivyspring International Publisher
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process aggravates the anoxic environment of the tumor 
tissue by blocking the transformation of  H2O2 to  O2 and 
activating and enhancing the cytotoxicity of TPZ. There-
fore, due to the synergistic effects of PDT,  H2S and TPZ, 
ZSZIT has obvious antitumor effects in vivo and in vitro, 
indicating great potential in cancer treatment (Fig.  6b) 
[102].

NIR light‑triggered  H2 prodrug
Gas therapy, a relatively new treatment method, mainly 
uses gas molecules (NO, CO,  H2S,  H2 and  SO2) to treat 
various diseases [204, 205]. Among them,  H2 has higher 
biosafety than other gases, which has attracted increas-
ing attention. In 1975, Dole et  al. found that high con-
centrations of  H2 can be used to treat skin cancer [206]. 
In 2007,  H2 was proven to be able to scavenge harmful 
free radicals such as hydroxyl (·OH) and peroxynitrite 
 (ONOO−), thereby reducing inflammation or ischemia–
reperfusion damage [14]. Since then, a series of studies 
have shown that  H2 has a significant therapeutic effect on 
a variety of diseases, including cancer, diabetes and neu-
rodegeneration [14, 207, 208]. Unlike other therapeutic 
gas transmitters, hydrogen has no risk of poisoning even 
at high concentrations. However, the solubility of hydro-
gen is low, and it can diffuse arbitrarily in the body; as 
a result, directly inhaling hydrogen or injecting/drink-
ing hydrogen-rich water is not an easy method to reach 
and accumulate a large number of hydrogen molecules 
in deep lesions [209]. Therefore, how to achieve hydro-
gen targeting and controllable and continuous hydrogen 
release at the target site through nanosystems is the main 
challenge at present.

Photothermal therapy‑triggered  H2 prodrug
Hydrogen is a flammable and explosive gas but has been 
regarded as biologically inert for a long time. However, 
a large number of recent studies have shown that in the 
physiological environment, hydrogen is an endogenous 
signaling molecule with good biosafety and is consid-
ered to be a reductive homeostatic regulator [210]. It has 
shown certain effects on many diseases related to inflam-
mation and oxidation, such as cancer, ischemia–reperfu-
sion injury, and cardiovascular disease. [209, 211, 212] He 
et  al. put forward the concept of “hydrothermotherapy” 
for the first time, using small palladium nanoparticles as 
hydrogen carriers and self-catalysts to form stable PdH 
0.2 nanoparticles, realizing tumor delivery by passive 
targeting and achieving the efficacious PTT and photoa-
coustic imaging [213]. Palladium hydride nanomaterials 
(PdH 0.2) are used for targeted hydrogen delivery and 
controlled release in tumors to achieve efficient hydrogen 
thermotherapy. However, the hydrogen carrying capac-
ity of the synthesized PdH 0.2 is limited (H:Pd = 0.2). The 

synthesis of palladium hydride with a high hydrogen car-
rying capacity needs to be carried out under high pres-
sure, and the stability of the synthesized product is poor. 
Recently, to increase the hydrogen loading capacity, a 
research group proposed using palladium as the coor-
dination center and tetrapyridyl porphyrin as the ligand 
to synthesize a new type of PdH-MOF nanomaterial in 
one step. With the help of monatomic palladium in the 
MOF construction unit, the efficient loading of hydrogen 
(H:Pd = 1) and long-term slow release of hydrogen were 
realized. In addition, hydrogen loaded with monatomic 
palladium has high catalytic activity as a highly reductive 
form of hydrogen, which is beneficial for the scavenging 
of highly oxidizing ROS. The photothermal conversion 
efficiency of PdH-MOF is up to 44.2%, providing a good 
photoacoustic imaging effect. Combined with the self-
fluorescence characteristics of porphyrin, it can be used 
for in vivo tracking and treatment guidance of nanoparti-
cles and can also be combined with photothermal effects 
to achieve hydrogen-thermal combined antitumor ther-
apy [103].

Although PTT can kill cancer cells at high tempera-
ture, this process is often prone to inflammatory reac-
tions, leading to tumor recurrence, metastasis and other 
adverse consequences [214]. For this reason, Zhang et al. 
constructed a biofilm camouflage nanodrug (mPDAB) 
containing PDA and aminoborane (AB). In the acidic 
tumor microenvironment, AB releases  H2 and reacts with 
·OH in  situ, which reduces the inflammatory response 
induced by PTT by inhibiting the increase in intracellular 
ROS induced by PTT and downregulating the levels of 
TNF-α and IL-6. In addition, after labeling mPDAB with 
Cy5.5, the biological distribution of nanodrugs in  vivo 
was studied by using a small-animal fluorescence imaging 
system. The results showed that the fluorescence inten-
sity of Cy5.5 in the tumor site was significantly enhanced 
over time, indicating that the accumulation of mPDAB 
in the tumor site was stronger. This is due to biofilm 
recombination, which gives mPDAB a longer blood cir-
culation time and enables homologous targeting in vivo. 
In the mouse tumor model, the distant metastasis of 
tumors was greatly inhibited in the mPDAB + NIR group 
because the expression of the tumor proliferation marker 
Ki67 was significantly decreased (Fig. 7a) [104].

Recently, a Z-type SnS1.68-WO2.41 nanocatalyst 
was constructed by riveting WO2.41 nanodots on the 
surface of SnS1.68 nanowires (1.49 eV). WO2.41 nano-
particles injected hot electrons into SnS1.68 nanowires 
through the surface plasma effect to achieve NIR pho-
tocatalytic hydrogen production while enhancing the 
oxidation ability of the system so that the overexpressed 
GSH in tumors could be used as a reducer to realize 
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NIR photocatalytic hydrogen production in tumors. 
The increase in hydrogen and the deprivation of GSH 
synergistically inhibit the proliferation of cancer cells 
and induce their apoptosis, leading to the degeneration 
of overgrown tumor vessels and greatly reducing the 
content of tumor-associated macrophages (removal of 
tumor immunosuppression), thus effectively destroying 
the tumor microenvironment in which cancer cells sur-
vive (Fig. 7b) [105].

Photodynamic therapy‑triggered  H2 prodrug
H2 can affect the level of ROS in tumor cells through NIR 
and induce cancer cell injury and apoptosis [215]. How-
ever, the low solubility of  H2 in water makes it spread eas-
ily in the blood and prevents enrichment in the tumor 
site [209]. It is well known that the water content of the 
human body ais approximately 70%, which provides us 
with a way of thinking about how to introduce photocat-
alytic nanomaterials into tumors and suggests that cata-
lyzing water to produce  H2 will be a promising strategy 
to enhance  H2 accumulation in tumors [216]. In recent 
years, Z-scheme heterojunction systems have been widely 
used in the generation of PDT and  H2 because they can 
separate electron–hole pairs and improve redox potential 
[217]. Wang et  al. constructed a NIR-photoresponsive 
in  situ hydrolytic hydrogen production nanoplatform 
(UCCZ-FA) that uses ZIF-8 as its shell and introduces a 
 gC3N4/Cu3P Z-scheme heterojunction for light-induced 
ROS and  H2 production. Under the guidance of folic 
acid, when UCCZ nanoparticles were actively targeted 
to enrich the tumor, the acidic tumor microenvironment 
caused the ZIF-8 shell to collapse and release UCC com-
posite nanoparticles. Under 980 nm laser irradiation, the 
electrons produced by  gC3N4 recombine with the elec-
tron holes of the Z-scheme, while the high concentration 
of GSH in the tumor microenvironment can inhibit this 
process and transfer electrons to Cu3P to catalyze  H2O 
to produce  H2 and  O2 −. In addition, CU (I) reduced 
 H2O2 to highly toxic ·OH by the Fenton reaction. More 
importantly,  H2 can inhibit the inflammation caused by 
oxidative stress and PTT in PDT, which promotes the 
apoptosis of cancer cells by upregulating the expression 
of Caspase-3 protein. This combination of GT, PTT, PDT 
and CDT can effectively inhibit tumor growth (Fig.  7c) 
[106].

NIR light‑triggered  SO2 prodrug
Sulfur dioxide  (SO2) has always been considered an air 
pollutant. In fact, it is also a therapeutic gas transmit-
ter, and can cause oxidative damage to tumor cells by 
exhausting glutathione in the tumor microenviron-
ment and destroying the membrane structure [218, 219]. 
According to recent studies,  SO2 has great therapeutic 
potential in a variety of diseases, including cardiovascular 
disease, inflammation and cancer [220–223]. However, 
the biological toxicity and low stability of  SO2 gas limit 
its clinical application in vivo. In this context, it is urgent 
to develop a gas-producing nanosystem for the targeted 
transport and controlled release of  SO2 gas. To date, 
small molecular prodrugs based on different endogenous 
and exogenous stimulus release mechanisms have been 
developed, including GSH, pH and light-induced release 

Fig. 7 a Schematic illustration of mPDAB for tumor therapy. 
Reproduced with permission from Ref [104] Copyright 2019, Elsevier 
Ltd. b Schematic illustration of combined hole/hydrogen therapy 
strategy and mechanisms with the NIR-activable Z-scheme  SnS1.68–
WO2.41 Nanocatalyst. Reproduced with permission from Ref [105]. 
Copyright 2021, Nature Publishing Group. c Schematic Illustration of 
the Multimodal Nanoplatform for  H2-Mediated Cascade-Amplifying 
Synergetic Therapy. Reproduced with permission from Ref [106]. 
Copyright 2020, American Chemical Society
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[224–226]. Among them, NIR more easily achieves the 
on-demand release of  SO2 in deep tumor tissues, which 
can prevent phototoxicity caused by ultraviolet light.

Photothermal therapy‑triggered  SO2 prodrug
MDR of cancer cells is one of the main obstacles hinder-
ing the effect of cancer chemotherapy [227]. A high con-
centration of GSH in the tumor microenvironment is 
one of the important causes of tumor MDR, which pro-
tects cancer cells from ROS and maintains tumor redox 
homeostasis [228]. According to studies, reducing the 
concentration of GSH can increase the efficacy of anti-
cancer drugs to overcome the MDR of tumor cells [229]. 
Chen et al. made great progress in the fight against tumor 
MDR by triggering the release of  SO2 gas and DOX by 
glutathione [224]. However, their research methods can-
not control and monitor the release of  SO2 and DOX in 
real time. Therefore, N.D. PradeepSingh et  al. designed 
a  SO2 gas drug delivery system (DDS) that overcomes 
the MDR of tumors by loading the anticancer drug chlo-
rambucil and using GSH and NIR as stimulation condi-
tions. In the tumor microenvironment, DDS reacts with 
a high concentration of GSH to produce  SO2 gas with 
green fluorescence, which helps to better distinguish can-
cer cells from normal cells. Under irradiation with NIR 
light, when the anticancer drug chlorambucil is released 
at the tumor site, blue fluorescence can be emitted. In 
addition, the released  SO2 can reduce the concentration 
of GSH and enhance the efficacy of chlorambucil, over-
coming the MDR of tumors. This dual stimulus gas deliv-
ery system monitors  SO2 gas release and chlorambucil 
in real time under two kinds of fluorescence, which not 
only enhances the anticancer efficacy but also ensures the 
biosafety of drugs [107].

Photodynamic therapy‑triggered  SO2 prodrug
SO2 can increase the level of ROS, lead to DNA damage, 
and finally induce apoptosis of cancer cells [230].Yang 
et al. developed an NIR-photoresponsive  SO2 gas nano-
platform (RUCSNs-DM) based on hollow mesoporous 
silica-embedded UCNPs and  SO2 donors (the 
1-(2,5-dimethylthien-1,1-dioxide-3-yl)-2-(2,5-dimethyl-
thien-3-yl)-hexaflfluorocyclopentene, DM). UCNPs can 
convert NIR light into ultraviolet light, which leads to the 
breaking of C-S bonds in DM and the controlled release 
of  SO2. RUCSNs-DM showed good biological safety, 
and the cytotoxicity to cancer cells without NIR irra-
diation was negligible. In addition, the  SO2 produced by 
RUCSNs-DM in cancer cells greatly increased the con-
centration of ROS, resulting in apoptosis and DNA dam-
age. In the mouse tumor model, the antitumor effect of 
RUCSNs-DM combined with NIR was significantly bet-
ter than that of the control groups. The 30-day survival 

rate of mice in this group reached 100%, while showing 
very low side effects (Fig. 8a) [108].

At present, a large number of precious metal nano-
particles are widely used in antitumor research, among 
which Au–Ag alloys are widely used in photothermal 
agents because of their excellent photothermal effect 
[231]. Li et  al. constructed a novel  SO2 gas generation 
nanoplatform based on Au–Ag high-temperature super-
conducting nanotubes (Au–Ag HTNS) as carriers and 
combined it with the  SO2 donor benzothiazole sulfinate 
(BTS). Au-Ag-BTS has excellent heat conversion ability 
and does not produce thermal attenuation after many 
experiments, so it can be used as an effective photosensi-
tizer for accurate tumor phototherapy. Under acidic con-
dition, the C-S bond of BTS was destroyed and released 
SO2 that combined with PTT up-regulated the expres-
sion of Bax and Caspase-3 and inhibited the expression 
of Bcl-2, which significantly promoted the apoptosis of 
cancer cells. According to the fluorescence localization 
imaging, Au-Ag-BTS HTNS can also be internalized 
and released SO2 by lysosome pathway, resulting in the 
increase of ROS. This method of synergistic elimination 
of deep tumors by PTT and GT has achieved excellent 
anti-tumor efficacy. In addition, Au-Ag-BTS HTNS can 
also be used as a contrast agent for computed tomogra-
phy (CT) to better guide the antitumor therapy of PTT 
and PDT. The nanosystem can effectively solve problems 
related to the biocompatibility, targeting, and intracellu-
lar and in vivo targeted delivery of  SO2 (Fig. 8b) [109].

In addition, the group constructed gold nanorods@
mesoporous dopamine (GNRS@PDA-BTS) based on 
BTS. Because of the large amount of amino groups in 
PDA, the drug loading rate of the nanosystem  SO2 is 
as high as 80%. In an acidic environment, the Cmure S 
bond in BTS breaks and releases  SO2. PTT can then 
promote the continuous release of  SO2. In addition, 
 SO2 can enhance the efficacy of PDT by increasing the 
concentration of ROS, upregulating the expression of 
the proapoptotic proteins p53, bax, and caspase-3, and 
downregulating the expression of the antiapoptotic pro-
tein bcl-2 to effectively promote the apoptosis of cancer 
cells (Fig. 8c) [110].

Conclusions and outlook
In summary, gas therapy is a new and promising antican-
cer therapy strategy. In recent years, the introduction of 
nanotechnology into the construction of nanogas prod-
rugs has greatly promoted the development of preci-
sion gas nanomedicine in the field of biomedicine. NO, 
CO,  H2,  H2S and  SO2 at appropriate concentrations 
have excellent antitumor effects with low systemic side 
effects. NIR light mainly triggers the breaking of chemi-
cal bonds in nano-prodrugs by PTT and PDT to release 
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Fig. 8 a Intracellular localized  SO2 generation and therapeutic action upon NIR light irradiation after cell uptake of RUCSNs-DM. Reproduced with 
permission from Ref [108]. Copyright 2019, American Chemical Society. b Schematic illustration of synthetic procedure of Au-Ag-BTS HTNs, and a 
win–win therapeutic mechanism of Au-Ag-BTS HTNs by acting together on apoptosis protein—Bax and enhanced tumor penetration. Reproduced 
with permission from Ref [109]. Copyright 2020, Elsevier Ltd. c Schematic illustration of the preparation of GNRs@PDA-BTS and the design of GPBRs 
for gas therapy and photothermal therapy. Reproduced with permission from Ref [110]. Copyright 2020, Elsevier Ltd
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gas molecules on demand, which is highly controllable. 
Although great progress has been made in gas therapy, 
most gas molecules are prone to nonspecific distribu-
tion after systemic administration, resulting in strong 
toxicity to normal tissues. Therefore, developing nanogas 
prodrugs with targeted transport and controlled release 
is the main problem before clinical transformation. As 
a specific noninvasive stimulus with a high penetration 
depth, NIR light has been widely used in PTT/PDT-
triggered gas release from nano-prodrugs. This paper 
introduces in detail the latest progress in the application 
of NIR photoresponsive nanogas prodrugs in the field of 
antitumor therapy in recent years, including how to make 
use of the unique tumor microenvironment (such as pH, 
GSH,  H2O2 and ATP) to achieve the precise release of gas 
molecules in the tumor site. Although gas therapy has 
achieved exciting results so far, it still faces challenges 
that urgently need to be solved.

First, although therapeutic gas molecules show good 
biosafety and low toxicity at appropriate concentrations 
due to the controlled release of NIR light-responsive 
nanocarriers, nanocarriers will still have some unpredict-
able biosafety problems. For example, in some special 
physiological environments of organisms, nanocarri-
ers show a high degree of instability, which will lead to 
the premature release of gas molecules. In addition, 
although inorganic nanomaterials show a high degree 
of stability, they may pose a threat to the life of organ-
isms as endogenous toxicants. Therefore, the combina-
tion of organic–inorganic nanomaterials may be able to 
overcome the shortcomings of both and while maintain-
ing good biosafety at the same time. However, before the 
realization of clinical transformation, long-term system-
atic studies of their biosafety are still needed, including 
pharmacodynamics, pharmacokinetics and biodegrada-
bility. Second, although a variety of NIR light-responsive 
gas prodrugs have been developed, the progress of gas 
therapy has been greatly promoted. However, these gas 
molecules and nanocarriers are rarely used in clinical tri-
als. Some promising nanocarriers have excellent versa-
tility, but the complex preparation process greatly limits 
the possibility of clinical transformation. In clinical trans-
formation, improving the repeatability, stability and effi-
ciency of nanocarrier preparation is a key step to achieve 
clinical transformation.

Therefore, as a popular cutting-edge science, gas 
therapy can not only exert the therapeutic function of 
gas itself but can also be combined with gas therapy to 
increase the antitumor effect. Although gas therapy 
is currently still in its infancy, clinical conversion will 
benefit patients, which will require the joint efforts and 
contributions of researchers and experts from various 
industries.
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