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Abstract 

With the rapidly changing global climate, the agricultural systems are confronted with more unpredictable and 
harsh environmental conditions than before which lead to compromised food production. Thus, to ensure safer and 
sustainable crop production, the use of advanced nanotechnological approaches in plants (phytonanotechnology) is 
of great significance. In this review, we summarize recent advances in phytonanotechnology in agricultural systems 
that can assist to meet ever-growing demands of food sustainability. The application of phytonanotechnology can 
change traditional agricultural systems, allowing the target-specific delivery of biomolecules (such as nucleotides and 
proteins) and cater the organized release of agrochemicals (such as pesticides and fertilizers). An amended compre-
hension of the communications between crops and nanoparticles (NPs) can improve the production of crops by 
enhancing tolerance towards environmental stresses and optimizing the utilization of nutrients. Besides, approaches 
like nanoliposomes, nanoemulsions, edible coatings, and other kinds of NPs offer numerous selections in the posthar-
vest preservation of crops for minimizing food spoilage and thus establishing phtonanotechnology as a sustainable 
tool to architect modern agricultural practices.
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Introduction
Globally, the agricultural systems are being challenged 
with more and more unpredictable hazards. To safe-
guard sustainable agriculture and food production, the 
advanced agronomic application of nanotechnology in 
plants, termed phytonanotechnology, is of great signifi-
cance [1]. Phytonanotechnology can improve agricultural 
production by minimizing relevant losses and increas-
ing the efficiency of inputs, thus providing an important 
solution for keeping the feasible development of agro-
systems and related sectors [2]. The prospective use of 
phytonanotechnology can bring a revolution in the agro-
systems, through an enhancement in crop yields and pro-
ductivity, while maintaining environmental sustainability, 
and ecological and economic stability [3]. The applica-
tions of phytonanotechnology in agricultural systems 
have helped the progress of ‘intelligent’ cropping and 
promoted conventional agricultural ways and practices, 
offering more environmentally efficient, and ingenious 
management [4]. Compared with the production materi-
als used in traditional agricultural practices, phytonano-
technology offers many uses and scopes to be developed 
and understood.

Nanomaterials (NMs), have internal surface structures 
or external dimensions with three or two dimensions 
ranging from 1 to 100 nm [5]. NMs have special physico-
chemical characters, such as enhanced reactivity, atypi-
cal surface structure, and high surface-to-volume ratio 
which differ individually from those of their molecu-
lar counterparts [6]. NMs also offer multifunctional, 

programmed, self-regulated, target-specific, and time-
controlled abilities [7, 8]. Owing to these special and 
versatile physicochemical characters, NMs are utilized 
gradually in a large number of agricultural practices. In 
detail, NMs participate in the targeted-specific transfer 
of proteins, nucleotides, or other phytoactive molecules 
that can genetically regulate and modify the metabo-
lism in crops. As special carriers of agrochemicals, NMs 
can provide a larger specific surface area to herbicides, 
fertilizers, and pesticides and ensure their ‘on-demand’ 
release, whether it is for preventing pathogens, pests, and 
diseases, or nutritional needs [9]. Thus, NMs can pro-
mote controlled and targeted nutrient delivery, resulting 
in enhanced crop growth and development.

Numerous nanoparticles (NPs) have been widely uti-
lized in phytonanotechnology, such as mesoporous silica 
NPs (MSNs), carbon nanotubes (CNTs), quantum dots 
(QDs), magnetic NPs (MNPs), metallic NPs, and metal 
oxide NPs [1]. MSNs include honeycomb-like porous 
structures with tunable outer particle diameter and tun-
able pore size in the nanometer range. They have hun-
dreds of empty channels that are capable of absorbing or 
encapsulating different bioactive molecules or agrochem-
icals. Plasmids containing the Green Fluorescent Protein 
(GFP) gene can be delivered by MSNs, together enter-
ing into plant cells and finally triggering the expression 
of the target gene [10]. The enzyme or protein loaded by 
the system of MSNs can be used for genome modifica-
tions or biochemical analysis in plants [11]. This proce-
dure avoids the delivery of the reformed characters to 
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the next generations by integrating the transgene into 
the genome. CNTs are the allotropes of carbon that have 
cylindrical nanostructures with diameters between 1 and 
50  nm [12]. They are classified as multi-walled nano-
tubes (MWNTs) and single-walled nanotubes (SWNTs). 
QDs are nanocrystals of semiconductor materials with 
diameters between 2 and 10 nm [13]. They can generate 
distinctive fluorescence that can be utilized for subcel-
lular imaging or labeling. MNPs comprise different mag-
netic materials, e.g., Cobalt (Co), Nickel (Ni), Iron (Fe), 
and their derivative compounds. They are categorized 
as magnetic virus-like NPs (VNPs) [14], carbon-coated 
MNPs [15], and other magnetic NPs. They can be oper-
ated by using magnetic field gradients for targeted deliv-
ery. Au and Ag NPs are the most commonly used metallic 
NPs due to their better effectiveness in delivering biomol-
ecules in crops [3]. Likewise, metallic oxide NPs of ZnO, 
CuO,  SiO2, and  TiO2 NPs, have also been broadly utilized 
as a delivery carrier in plants system due to the greater 
light absorption, catalytic, and electrical characteristics 
[16]. Numerous metallic and metallic oxides NPs have 
been applied in diverse crop management procedures 
including fertilization and crop protection [17]. Despite 

all the beneficial effects, attention must be paid to design 
safety principles to address the community dealing with 
the possible opposing influences of new NMs on the eco-
system (for example, application of NMs in a daily neces-
sity product) [18].

Since the related research of phytonanotechnology in 
agricultural systems is exponentially increasing (Fig.  1), 
a complete review outlining the novel features of phyto-
nanotechnology and its roles in crop development and 
other agricultural production is imperative. Thus, this 
review is aimed to provide the readers with complete 
mechanistic insights into the new paradigms of phytona-
notechnology progressions in agriculture by investigat-
ing their roles in crop breeding, agrochemicals delivery, 
crop growth and development, and other allied functions 
to sustain and design a better agriculture system for the 
future (Fig. 2).

Special properties and surface modifications 
of NPs
The special properties of NPs make them more effec-
tive than ordinary materials, e.g., ions and molecules 
[19]. In a greenhouse experiment, crops were collected 

Fig. 1 Timeline of nanotechnology applications in agriculture. The applications of nanotechnology in genetic engineering and crop breeding were 
shown in blue boxes, and the applications of nanotechnology in crop growth were shown in red boxes
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after growing for 80  days in soil modified with  CuSO4 
or CuO particles (bulk or nano) [20]. The Cu-content 
in the root of nano-CuO treated crops was higher com-
pared with bulk CuO,  CuSO4, or control. This indicated 
that nano-CuO was more easily absorbed by crops. 
Time-resolved tests were performed to analyze the physi-
ological effects and the translocation of Zn in the com-
mon bean (Phaseolus vulgaris L.) [21]. The absorption 
spectroscopy of near-edge X-ray exhibited that  ZnSO4 
and ZnO (300 nm) were more difficult to be absorbed by 
roots of bean than ZnO (40 nm). It further demonstrated 
that ZnO in the nano state with smaller size was more 
easily absorbed by the crops. The highest level of Zn 
was found in ZnO NPs sprayed seedlings with ~ 78-fold 
in comparison to ~ 27-fold detected in  ZnSO4 treated 
plants [22]. It is inferred that the higher Zn accumula-
tion with ZnO NPs treatment was reasoned by the size 
property or better adhesion of the nano form compared 
to the ionic form, causing their more effective entry into 
the seedlings [23, 24]. The different transportation and 
accumulation features of silver (Ag) NPs and  Ag+ were 
reported in rice (Oryza sativa L.) [25]. Ag NPs are trans-
located and assimilated more validly on the root surface 

compared to  Ag+. Briefly, NPs are lightly transported in 
crop seedlings, so the optimum dosage of suitable size of 
NPs enhances their absorption in crops [26]. The activ-
ity, aggregation, catalytic charge, crystallinity, porosity, 
or redox potential can influence the uptake of NPs in 
crop seedlings. Furthermore, the high surface activity 
of NPs may speed up the metal component release [27]. 
The electrostatic attraction, hydrophilicity, lipophilicity, 
and physical adsorption of NPs, influence the accumula-
tion [28]. For instance, the NPs with neutral or positive 
charges are more beneficial for agglomeration, but the 
NPs with negative charges are more beneficial for trans-
locating in crops [29].

The absorption of NPs by crops can be enhanced by 
modifying their surface using numerous objects, such 
as iron, aminopropyl triethoxysilane, fluorescein iso-
thiocyanate, natural organic matter [29], humic acid 
[30], polyvinylpyrrolidone [31], citrate [26], or poly-
ethylene glycol [32]. In detail, the hydrophilic protec-
tive sheet makes NPs easily penetrable to crops [33], 
while the protein-encapsulated NPs are more stable 
in crops [34]. Nanocarriers allow the assimilation 
and carriage of nutrients such that nano-liposomes 

Fig. 2 Schematic illustrations of the applications of nanotechnology in agricultural systems
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aid the transport and absorption of nutrients in vari-
ous crops [35]. Organic macromolecules such as chi-
tosan decrease the agglomeration of NPs, increase the 
stability of NPs, and allow them effortlessly enter into 
epidermal cells of leaves by modifying their chemical 
and physical characteristics [36]. Moreover, the NPs 
surface charge can be improved by coating, which 
contributes to their translocation [37]. Recent reports 
found that the material of surface coating can prevent 
the closure of stomata by decreasing the indiscrimi-
nate gathering of NPs, thus enhancing the absorption 
of NPs in crops [38]. Moreover, the utilization of func-
tional groups and surfactants improves the bioavail-
ability of NPs by increasing the NPs adhesion on the 
surface of leaves [39, 40]. For instance, hydroxyapatite 
can be used to alter the surface of NPs to induce the 
absorption of leaves and decrease the aggregation of 
NPs [30].

Nanotechnology in genetic engineering and crop 
breeding
Crop breeding is acknowledged as a technology to 
improve the genetic characteristics of crops by generat-
ing high-yield and high-quality varieties [41]. Several 
conventional and molecular approaches have been used 
in crop breeding, including functional genomic tools, 
genetic selection, mutagenic breeding, physical maps, 
somaclonal variations, and whole-genome sequence-
based approaches [42]. Nanotechnology is a new pio-
neering approach to improve the efficiency and accuracy 
of crop breeding (Fig. 3).

Nanobiotechnology improves the efficacy of crop 
breeding by delivering exogenous biochemicals or nucle-
otides into plant cells [43]. As transportation across the 
cell wall and limited size of inserted genetic material 
signify main barriers to transport of external molecules 
into crop cells, the combination of biotechnology and 
nanotechnology offers more chances as novel means of 
biomolecule transport into the cells through the cell wall 

Fig. 3 Schematic diagram of the applications of nanotechnology in genetic engineering and crop breeding. Plasmids containing genes that 
encode Cas and the sgRNA are delivered into the plant cell through Agrobacterium-mediated transformation, protoplast transfection, particle 
bombardment, or even spray application with NMs. The CRISPR/Cas genome-editing system consists of the Cas endonuclease, which can 
site-specifically cleave double-stranded DNA, and an sgRNA that hybridizes to about 20 nucleotides of the target sequence
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[44]. Recently, a nanomaterial-mediated gene delivery 
system has been developed. High transformation effi-
ciency is achieved without external physical or chemical 
means in plant cells, showing excellent applications in 
plant genetic engineering [45]. For example, the foremost 
application of delivering NMs into crops was carried 
by Torney et  al. [10], where MSNs transported a target 
gene into the leaves of tobacco (Nicotiana benthamiana 
L.).  SiO2 NPs have been developed to transport DNA 
to crops, e.g., tobacco and maize (Zea mays L.) with no 
adverse effects [46]. The technology of particle bombard-
ment (or gene-gun) has been used to transform plants 
since the early 1980s, using either tungsten or gold parti-
cles as DNA carriers [47]. The current system is adapted 
to allow NPs delivery, which most likely decreases the cell 
damage caused by microprojectile hits during the bom-
bardment and thus improves the expression efficiency 
of the transgenes. The DNA-coated NPs are utilized as 
bullets in the gene-gun technology to bombard the tis-
sues or cells to deliver the desired genes into the target 
crops [48]. Silicon carbide-participated plant transfor-
mation has been found to transfer the sequences or 
fragments of DNA in various calli [maize, tobacco, rice, 
soybean (Glycine max L.), and cotton (Gossypium hir-
sutum L.)] as an effective method [49]. The complex of 
MNPs and β-glucuronidase target gene was permeated 
to the pollens of cotton by magnetic force, with no nega-
tive effects on the viability of pollens. By pollinating with 
magnetofected pollens, the transgenic cotton plants were 
effectively selected and exogenous genetic information 
was steadily inherited into offspring achieved by self-
ing, successfully combined into the genome, and finally 
expressed [50]. The scaffolds of carbon nanotubes were 
applied to deliver linear or plasmid DNA, in cotton, 
tobacco, and wheat (Triticum aestivum L.) leaves, causing 
a strong transient expression of GFP [51, 52]. In addition 
to the above-mentioned DNA delivery, NPs are also used 
to deliver RNA into plant cells. Chitosan NPs-embedded 
small interfering RNA (siRNA) delivery systems have 
offered a novel strategy for crop improvement by permit-
ting the unique dominance of the target pest as chitosan 
has the capability to validly bind with RNA and the ability 
to penetrate cell membranes [53]. The double-stranded 
RNAs (dsRNAs) carried on non-toxic and degradable 
clay nanosheets offer defense against cauliflower mosaic 
virus in leaves of tobacco [54]. The siRNA was transferred 
to tobacco seedlings constitutively expressing the GFP 
gene, resulting in a high percentage silencing of the target 
gene [51, 52]. The carbon nanotubes-mediated platform 
realized effective RNA transfer into intact crop cells and 
protected RNA from nuclease degradation, enabling gene 
silencing of endogenous GFP in mutants [52].

Gene editing has been broadly used in crop science and 
has a great possibility of becoming the ‘game changer’ 
in crop breeding [55]. The system of clustered regu-
larly interspaced short palindromic repeats (CRISPR)/
CRISPR-associated proteins (Cas), an RNA-based guard 
organization in prokaryotes, containing the Cas pro-
teins and CRISPR repeat spacer arrays, has effectively 
been utilized for genome editing in crops [56]. CRISPR/
Cas genome editing has been useful in plants by tradi-
tional transformation and regeneration processes [55]. 
Delivery, low HDR efficiency, species dependence, and 
tissue culture and regeneration are the four main chal-
lenges in genome editing of crops. With the character-
istics of small size, differently charged, high-throughput, 
and high tensile strength, NMs can enhance the speci-
ficity and efficiency of the CRISPR/Cas9 technique and 
minimize the possibility of off-target [57]. Contemporary 
developments in NMs-mediated particular transport of 
CRISPR/Cas9 single guide RNA (sgRNA) have started 
a novel period of genetic engineering. Moreover, MSNs 
have been applied to transport Cre recombinase in the 
immature embryos of maize as carriers, loading the sites 
of loxP site recombined into the chromosomal DNA. The 
loxP fragment was acceptably integrated after the deliv-
ery of modified MSNs in crop cells [11]. Cationic arginine 
gold NPs gathered Cas9En (E-tag)-ribonucleoproteins 
(RNP) transport of sgRNA in cultured cell lines offered 
high efficiency (around 30%) of active nuclear or cyto-
plasmic gene editing, which can significantly promote the 
study of crops [58]. Although current nanotechnology 
has promoted the CRISPR/Cas9 technique in numerous 
crops, phytonanotechnology-based approaches are also 
demanded to overcome other difficulties to the genome 
editing of crops. There are still a lot of challenges, e.g., 
the range of plant species that can be genetically engi-
neered, the forms of CRISPR/Cas genome editings that 
can be powerfully utilized in crops, the labor and time 
efforts essential for crop regeneration, and the low trans-
port efficiency.

Phytonanotechnology applications 
during the lifecycle of crops
NMs, such as MSNs, Au NPs,  SiO2 NPs, and Chitosan 
NPs are informed to enhance crop growth and develop-
ment from the initial phases of seed germination to death 
or senescence in numerous crop species including soy-
bean, rice, wheat, peanut (Arachis hypogaea L.), tomato 
(Solanum lycopersicum L.), potato (Solanum tuberosum 
L.), and onion (Allium cepa L.) [59]. NMs exhibit positive 
effects on crops by accelerating crop breeding, promot-
ing seed germination, increasing photosynthesis, enhanc-
ing mineral uptake, and improving crop quality and yield 
[60]. The application of nanotechnology to the overall 



Page 7 of 20Jiang et al. Journal of Nanobiotechnology          (2021) 19:430  

growth and development process in plants is primarily 
dependent on the concentration, composition, size, and 
chemical and physical characteristics of NMs [61].

Seed germination
Seed germination is the first step and the most sensitive 
period in the life cycle of plants [62]. Numerous studies 
have revealed that the application of nanotechnology has 
beneficial influences on the germination of seeds. Stud-
ies have shown that NMs increase water absorption and 
utilization and have the ability to penetrate the seed coat, 
which can eventually improve seed germination and 
seedling growth by stimulating the enzyme system [63–
65]. For instance, the application of Zn NPs significantly 
promotes the germination of seeds in different crop spe-
cies, e.g., onion, soybean, peanut, and wheat [66, 67]. 
The use of metal oxide NPs such as  TiO2 and  SiO2 NPs 
for seed treatment, was found to substantially improve 
seed germination in several crops [62]. Additionally, mul-
tiwalled carbon nanotubes (MWCNTs) applications also 
facilitate the germination of seeds in crops, such as soy-
bean, maize, peanut, wheat, tomato, garlic (Allium sati-
vum L.), and barley (Hordeum vulgare L.) [68–70]. At the 
molecular level (Fig.  4), single-walled nanotubes (SWC-
NTs) upregulated the expression of SLR1 and RTCS 
genes in maize root tissues and increased root growth 
[71]. Although a large number of studies on the positive 
interactions between NMs and the germination of the 
seeds are being reported in crops, the underlying mecha-
nisms of the superiority of NMs to traditional materials 
in seed germination remain hitherto unknown and need 
more comprehensive assessment.

Photosynthesis
Photosynthesis is a vital process for the growth and 
development of plants. It transforms light energy into 

chemical energy [72]. Thus, enhancing the efficiency of 
photosynthesis is critical for the better growth of crops 
[73]. It has been reported that NMs can enhance the sys-
tem and enzyme activity of photosynthesis and the con-
tent of chlorophylls, which can eventually improve the 
overall plant growth [74]. At the physiological level, the 
nano-anatase  TiO2 application enhances the rate of pho-
tosynthesis by stimulating the Rubisco enzyme activity, 
which could ultimately enhance the growth and devel-
opment of crops [75]. The  SiO2 NPs increase the capac-
ity of photosynthesis via enhancing the photosynthetic 
metabolism and the carbonic anhydrase enzyme activ-
ity in crops [76]. The highest photosynthetic ability and 
an increase in chlorophyll content were found, when the 
seedlings were treated with 0.5 g/L of  SiO2 NPs in wheat 
[77]. A comparable effect was also found by Rafique et al. 
[78], which showed that 60 mg/kg of  TiO2 NPs (< 20 nm) 
increased the content of chlorophylls by 32.3% compared 
to the control in wheat. At the molecular level (Fig.  4), 
 TiO2 NPs induce the light-harvesting complex II (LHCII) 
gene in Arabidopsis thaliana, and finally enhance the 
chloroplast light absorption efficiency and thylakoid 
membrane LHCII content [79]. It has been reported 
that the Si NPs can stimulate the PsbY and HemD gene 
expression related to the biosynthesis of chlorophyll, 
thereby resulting in a higher photosystem II activity and 
an increased chlorophyll content [80, 81].

Yield
NPs can influence the yield of crops by changing the 
physiology and biochemistry of plants. In detail,  Fe3O4 
NPs maintain iron homeostasis, decrease lipid peroxi-
dation, and induce ferritin content in maize [82]. Crops 
grown in the soil modified (hydrophilic or hydrophobic 
coating) or unmodified with nano-TiO2 for 2  months 
displayed that inorganic carbohydrate production, min-
eral uptake (P, Se, Mn, Fe, Mg, Ca, and Cu), chlorophyll, 
enzyme activity, and plant growth were enhanced sig-
nificantly with the application of coated NPs [83]. Simi-
larly, foliar applications of Mn,  Fe2O3, and Mo NPs also 
increase crop yield [28]. Moreover, various NPs have 
been used to enhance the dietary value and nutritional 
components of fruits or food grains. Foliar application of 
Cu NPs increases antioxidant enzyme activity, fruit firm-
ness, and vitamin content, thus enhancing fruit fresh-
ness and quality in tomatoes [84]. At the molecular level 
(Fig.  4), Ag NPs affect the expression of VIN3, VRN2, 
FRI, and FLC in the vernalization pathway, and cause 
the down-regulation of key flowering control genes AP1 
and FT, thereby delaying flowering [85]. The application 
of different NPs influences the quality and yield of crop 
seeds or fruits, which completely depends on the mode of 
treatment, property, size, and type of NPs used. Further 

Fig. 4 Molecular mechanisms of nanomaterial actions in plant cells
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investigation on dose-dependence, long-term exposure 
effects, as well as molecular studies such as metabolomics 
or proteomics can be an access device in determining the 
precise function of NPs on the quality and yield of seeds 
or fruits.

Quality
The significance of phytonanotechnology in crop-derived 
foods can be judged by evaluating their functions in the 
development of crop products in the fields of food qual-
ity, e.g., taste and nutritional value. The application of 
nanotechnology offers numerous ways to improve food 
taste. As compared to the larger materials which usually 
degrade substances over a longer time, the smaller NPs 
deliver favorable ways of enhancing the food bioavail-
ability because the nearly subcellular size contributes to a 
higher level of bioavailability. Several metallic oxide NPs, 
e.g.,  SiO2 and  TiO2, have been utilized as flow or color 
stuffs in food products [86]. Dekkers et al. [87] reported 
that  SiO2 NPs were used as applied-NM to deliver flavors 
or fragrances into the food items. The novel technology 
of nano-encapsulation has been utilized widely to pro-
vide the balance of culinary and to increase flavor pres-
ervation and release [88]. The encapsulation of ferritin 
nanocages can increase the thermal stability and solubil-
ity of ferritin obtained rutin [89].

Large numbers of bioactive substances e.g., vitamins, 
proteins, carbohydrates, and lipids are more sensitive 
to the enzyme activity of the duodenum and stomach, 
and the high acidic environment. Nano-encapsulation 
permits the bioactive substances to assimilate readily 
in food products and allows them to struggle with such 
opposing conditions, which is difficult to attain in the 
non-capsulated forms because of the low water-solubil-
ity of the bioactive substances. The nano-emulsification, 
nano-structuration, and nanocomposite are the diverse 
tools that have been used to encapsulate the compounds 
in tiny shapes to more efficiently transport nutrients like 
antioxidants or proteins for health or nutritional assis-
tance. Polymeric NPs are reported to be appropriate for 
bioactive substances encapsulation (such as vitamins or 
flavonoids) to transport and protect the bioactive sub-
stances for different purposes [90]. NPs-based tiny edible 
capsules are being made to develop the delivery of frag-
ile micronutrients, vitamins, and medicines of the daily 
use food item and thus, offer an important advantage for 
human health [91].

Postharvest preservation
Food safety has become a worldwide issue because of 
increasing food demand and compromised crop yields 
resulting from climate change, soil degradation, and 
crop disease proliferation [92]. As per estimates, the 

global population will reach 9.6  billion by 2050, con-
sequently, the demand for staple crops will increase by 
60% [93]. Nanotechnology, such as nanofabrication and 
nanoencapsulation, can provide new added value solu-
tions for the fortification of foods with bioactive and 
targeted controlled release in the gut to compensate for 
the food demand–supply objective [94].

A required packaging material must have moisture 
and gas permeability joint with biodegradability and 
strength [95]. As microcapsulization of vegetable oils 
have been used in postharvest preservation for a long 
time, nano-faciliated “active” and “smart” food packag-
ings provide numerous advantages over conventional 
techniques with improved antimicrobial films, barrier 
properties, and mechanical strength [96]. Nanoma-
terials can also support food preservation aspects by 
being added directly into a food matrix or food contact 
materials such as packaging. The increasing applica-
tion of nanotechnology offers numerous selections to 
extend the shelf-life of food for longer use. The use of 
nanotechnology in food preservation has revealed ben-
eficial effects on diminishing spoilage. Nanoliposomes, 
nanoemulsions, edible coatings, and other different 
kinds of NPs have been widely used in the postharvest 
preservation of crop-derived foods [97].

Nanoliposomes have been certified to be valid in the 
targeted transport of antimicrobial compounds, nutra-
ceuticals, nutrients, and vitamins owing to the small 
size with a larger area for surface contact [98]. It has 
been found that many factors are influencing the fusion 
of liposomes with bacterial cells, like bacterium surface 
pH, temperature, divalent cations, and characteristics 
of the bacterial membrane. The delivery of negatively 
charged liposomes into the cells is promoted by non-
specific receptors, followed by particle recognition, 
adhesion and ultimately causing endocytosis [99]. The 
lipid composition of the bacterial membrane plays an 
important role in the fusion of liposomes to the bacte-
rium [100].

Nanoemulsions are the mixtures of different immis-
cible liquids that are stabilized by a surfactant (e.g., 
modified starches, proteins, and lipids) with the average 
droplet size (20 to 200  nm). The food-grade surfactants 
like lecithins, sugar esters, and polysorbates emulsifying 
agents utilized in postharvest preservation of crops play 
key roles in the stabilization of nanoemulsions through 
adequate responses to environmental stresses, such as 
enhanced loading capacity, steric hindrance, and the 
repulsive electrostatic interactions [101]. The characteris-
tics of nanoemulsions cause them appropriate intermedia 
for transport of hydrophobic drugs, bioactive molecules, 
and nutraceuticals to encapsulate hydrophobic antioxi-
dant ingredients [102].
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Edible coatings have been reported to extend the 
shelf-life of perishable crop-derived foods, particu-
larly vegetables or fruits. Edible coatings are tradition-
ally thin materials applied with food-grade substances 
that are utilized on the surface of vegetables and fruits, 
therefore becoming a portion of crop-derived foods 
that stay on the outer surface during consumption and 
use [103]. The edible coatings contribute to postharvest 
preservation by controlling carbon dioxide and oxygen 
permeability, decreasing moisture loss, thus decreasing 
the rates of solute respiration, oxidation, and migra-
tion without compromising the quantity or quality of 
the crop-derived foods [104]. Edible coatings have good 
performance to play as a carrier vehicle for antimi-
crobial agents, micronutrients, flavoring compounds, 
colored pigments, and anti-browning mediums that 
assist in increasing valid period of crop-derived foods 
by preventing the survival of the pathogens on the 
outer surface of fresh vegetables and fruits during the 
food spoilage [105].

Nanocomposites have been widely applied for food 
packaging and preservation because of their antifungal 
or antibacterial properties [97]. The antimicrobial char-
acteristic owned by Ag NPs has been widely used for 
postharvest preservation owing to their inactivation of 
food spoilage microorganisms. Special properties of Ag 
such as low volatility and stability at high temperatures 
and toxicity against various types of microbes make it a 
beneficial choice for application in postharvest preserva-
tion [106]. Nanocomposites applied with Ag NPs have 
been utilized to prolong the shelf-life of different kinds of 
crop-derived foods [107]. Mechanism of Ag NPs action 
is mediated by the release of  Ag+ in the following steps: 
adhesion to the cell surface of pathogens, disruption of 
the cell membrane of pathogens, damage of DNA, and 
cell death [108]. The primary mechanism of Ag NPs has 
been extracted in three routes: interruption of ATP pro-
duction and DNA replication by the  Ag+ uptake, produc-
tion of reactive oxygen species (ROS) by Ag NPs and  Ag+ 
in the cells, and finally deterioration of the membrane of 
cells by Ag NPs [108]. Because of the excellent antimi-
crobial characteristic against microorganisms,  TiO2 NPs 
are extensively utilized in postharvest preservation [109]. 
Photocatalysis of  TiO2 inactivates food spoilage bacteria 
by inducing the lipid peroxidation of phospholipids in 
microorganisms’ cell membranes [110]. The antimicro-
bial mechanism of  TiO2 NPs can be described in three 
routes; ROS production upon the activation by the UV 
and visible wavelength of light, oxidative stress and lipid 
peroxidation in cells, and the death of cells [111]. Despite 
these, more studies are needed to explore the underlying 
mechanism of the interactions between NPs and crops to 
increase the shelf-life and delay the ripening.

Potential applications of phytonanotechnology 
in stress mitigation
The change in climate around the world results in 
extreme temperature, salinity, drought, and various 
environmental pollution with excessive heavy met-
als are thought as one of the main reasons that influ-
ence the growth and development of crops [112, 113] 
(Table  1). The augmented adaptation of crops needs a 
many-sided approach, e.g., regulation of hormones, 
activation of plant enzymatic system, expression of 
stress genes, avoidance of water deficit stress, and con-
trol of the heavy metal translocation and uptake [114, 
115]. Advances in NMs can raise the production of 
crops in the present opposing environment [59, 116]. 
The studies below display that nanotechnology can alle-
viate the bad influences of abiotic stress.

Extreme temperatures
Plants suffer due to extreme temperatures (heat or cold 
stress) as their growth, development, and productiv-
ity are generally compromised under such conditions 
[153]. Extreme temperature stresses cause slow growth, 
low germination rate, decreased photosynthetic rate, 
denaturation of biomolecules, and disintegration 
of membrane lipids in crops [154]. NPs can allevi-
ate these bad effects primarily by reducing oxidative 
stress and the overproduction of ROS [155].  TiO2 NPs 
decreased the energy dissipation of nonregulated PS II 
and increased the energy dissipation of regulated pho-
tosystem II (PS II) during the high-temperature stress 
in tomato seedlings and finally stimulated the photo-
synthesis system [119]. The application of  TiO2 NPs not 
only prevented membrane damage under cold stress 
but also alleviated oxidative stress in chickpea (Cicer 
arietinum L.) [156]. NPs promoted crop growth under 
extreme temperature stress by altering various pro-
cesses at the physiological, biochemical, and molecular 
levels (Fig. 4). Moreover,  TiO2 NPs treatment increased 
the crop tolerance to cold stress via maintaining the 
stability of carotenoid and chlorophyll accumulations, 
inducing the activities of ascorbate peroxidase and 
catalase [157], and enhancing gene expression of chlo-
rophyll- and Rubisco-binding proteins [125]. Khodako-
vkaya et al. [158] showed that MWCNTs triggered the 
response of stresses in crops leading to the upregula-
tion in the expression of different stresses-associated 
genes including HSP90. Similarly, Zhao et  al. [118] 
found that  CeO2 NPs upregulated the expression of 
HSP70 and diminishes the content of  H2O2. The use of 
ZnO NPs increased the chilling stress-triggered gene 
expression by modulating the cold response transcrip-
tion factors in leaves [126].
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Table 1 Ameliorative effects of NMs on abiotic stress in crops

Abiotic stress Nanomaterials (size) Plant species Ameliorative effects References

Heat MWCNTs (10–35 nm) Tomato (Solanum lycopersicum L.) Upregulated the expression of vari-
ous stress-related genes including 
HSP90

Khodakovskaya et al. [117]

CeO2 NPs (~ 10 nm) Maize (Zea mays L.) Decreased production of hydrogen 
peroxide  (H2O2) and upregulation 
of HSP70

Zhao et al. [118]

TiO2 NPs (~ 16 nm) Tomato (S. lycopersicum L.) Enhanced photosynthesis, 
regulated energy dissipation, and 
induced stomatal opening

Qi et al. [119]

Ag NPs (10–20 nm) Wheat (Triticum aestivum L.) Protected plants against heat 
stress and improved plant growth 
significantly

Iqbal et al. [120]

Ag NPs (15–30 nm) Wheat (T. aestivum L.) Alleviated the harmful effects of 
salinity stress

Abou-Zeid and Ismail [121]

Se NPs (10–40 nm) Tomato (S. lycopersicum L.) Increased chlorophyll content, 
hydration of plants, and growth

Djanaguiraman et al. [122]

Cold SiO2 NPs (10–15 nm) Wheatgrass (Agropyron elongatum 
L.)

Overcame seed dormancy, 
enhanced seed germination and 
seedling weight

Azimi et al. [123]

Na2SeO4 NPs (20–35 nm) Tomato (S. lycopersicum L.) Improved plant growth, chlo-
rophyll, and leaf-relative water 
contents

Haghighi et al. [124]

TiO2 NPs (~ 20 nm) Chickpea (Cicer arietinum L.) Enhanced expression of Rubisco- 
and chlorophyll-binding protein 
genes

Hasanpour et al. [125]

ZnO NPs (~ 30 nm) Rice (Oryza sativa L.) Alleviated chilling stress by regulat-
ing the chilling response transcrip-
tion factors

Song et al. [126

Salinity SiO2 NPs (~ 20 nm) Tomato (S. lycopersicum L.) Alleviated the effect of salinity 
on fresh weight, chlorophyll, and 
photosynthetic rate

Haghighi and Pourkhaloee [127]

SiO2 NPs (~ 12 nm) Squash (Cucurbita pepo L.) Reduced levels of malondialde-
hyde (MDA),  H2O2, and electrolyte 
leakage

Siddiqui et al. [76]

SiO2 NPs (~ 20 nm) Tomato (S. lycopersicum L.) Suppressed the effect of salinity on 
germination rate, root length, and 
fresh weight

Almutairi [128]

Chitosan NPs (~ 38 nm) Maize (Z. mays L.) Alleviated the harmful effects of 
salinity stress

Bruna et al. [129]

MWCNTs (30–100 nm) Cabbage (Brassica oleracea L.) Alleviated the harmful effects of 
salinity stress

Martinez-Ballesta et al. [130]

ZnO NPs (~ 20 nm) Sunflower (Helianthus annuus L.) Increased net  CO2 assimilation rate, 
sub-stomatal  CO2 content, and Fv/
Fm ratio

Torabian et al. [131]

Fe2O3 NPs (~ 50 nm) Peppermint (Mentha piperita L.) Increased leaf dry weight, phos-
phorus, potassium, iron, zinc, and 
calcium contents

Askary et al. [132]

Fe2O3 NPs (~ 20 nm) Wheat (T. aestivum L.) Improved the growth of both root 
and shoot

Fathi et al. [133]

ZnO NPs (~ 20 nm) Wheat (T. aestivum L.) Improved the growth of both root 
and shoot

Fathi et al. [133]

SiO2 NPs (~ 10 nm) Cucumber (Cucumis sativus L.) Increased plant germination and 
growth characteristics

Alsaeedi et al. [134]

SiO2 NPs (20–30 nm) Soybean (Glycine max L.) Reduced oxidative damage due 
to expression of antioxidative 
enzymes

Farhangi-Abriz and Torabian 
[135]

Chitosan NPs (~ 25 nm) Tomato (S. lycopersicum L.) Alleviated the harmful effects of 
salinity stress

Hernandez-Hernandez et al. 
[136]
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Osmotic stress
NPs improve the tolerance of crops to osmotic stresses, 
e.g., high salinity and drought. The stress caused by 
over-accumulation of anions of  SO4

2− and  Cl− as well 
as cations of  Na+,  Mg2+, and  Ca2+, commonly known 
as salinity, limits the production of crops in about one-
fifth of the cultivated land around the world [159]. NPs 
can alleviate the damage caused by high salinity stress to 
crops in many ways like by restoring the damage to the 

photosynthesis system and altering the accumulation of 
metals in crops. Siddiqui and Al-Whaibi [160] found that 
 SiO2 NPs treatment increased plant dry weight, seed ger-
mination, proline accumulation, and chlorophyll content 
in squash and tomato plants under NaCl stress. Foliar 
application of  FeSO4 NPs not only induced shoot dry 
weight, chlorophyll content, leaf area, maximum photo-
chemical efficiency of photosystem II (Fv/Fm), and net 
 CO2 assimilation rate, but also reduced Na content in 

Table 1 (continued)

Abiotic stress Nanomaterials (size) Plant species Ameliorative effects References

CeO2 NPs (~ 8.5 nm) Cotton (Gossypium hirsutum L.) Modulated α-amylase activities and 
ROS homeostasis

Khan et al. [137]

CeO2 NPs (~ 8 nm) Rapeseed (Brassica napus L.) Enabled better ability to maintain 
cytosolic  K+/Na+ ratio

Liu et al. [138]

Drought TiO2 NPs (~ 20 nm) Wheat (T. aestivum L.) Increased growth, yield, gluten, and 
starch content

Jaberzadeh et al. [139]

ZnO NPs (~ 20 nm) Soybean (G. max L.) Increased germination percentage 
and rate, decrease in fresh and dry 
weights

Sedghi et al. [67]

Fe2O3 NPs (20–100 nm) Sunflower (H. annuus L.) Counteracted drought stress with 
no effect on proline and total 
amino acids

Martinez-Fernandez et al. [140]

TiO2 NPs (10–25 nm) Lin seed (Linum usitatissimum L.) Enhanced chlorophyll and carot-
enoid content, decreased  H2O2 and 
MDA contents

Aghdam et al. [141]

MWCNTs (20–30 nm) Barley (Hordeum vulgare L.) Boosted seed water absorption and 
increased seedling water content

Karami and Sepehri [142]

CeO2 NPs (6–24 nm) Soybean (G. max L.) Enhanced growth, development, 
and yield

Cao et al. [143]

Fe NPs (40–53 nm) Strawberry (Fragaria ananassa L.) Enhanced acclimation and resist-
ance of plants to drought

Mozafari et al. [144]

Heavy metal Fe3O4 NPs (~ 20 nm) Rice (O. sativa L.) Reduced As transport from the root 
to the shoot

Huang et al.[145]

Si NPs (~ 50 nm) Wheat (T. aestivum L.) Alleviated Cd toxicity by reduc-
ing  Cd2+ uptake and enhancing 
antioxidative capacity

Ali et al. [146]

CuO NPs (9–22 nm) Rice (O. sativa L.) Reduced total As by 23% and 45% 
in roots and shoots

Wang et al. [147]

ZnO NPs (30–40 nm) Rice (O. sativa L.) Improved plant growth and allevi-
ated the toxic effects of Cd

Zhang et al. [148]

SiO2 NPs (~ 100 nm) Rice (O. sativa L.) Inhibited As uptake into rice sus-
pension cells via improving pectin 
synthesis

Cui et al. [149]

TiO2 NPs (36–140 nm) Rice (O. sativa L.) Reduced As toxicity and reduced 
As bioaccumulation in rice seed-
lings by 40–90%

Wu et al.[150]

Au NPs (~ 40 nm) Rice (O. sativa L.) Suppressed Cd uptake and allevi-
ated Cd toxicity

Jiang et al. [151]

ZnO NPs (20–40 nm) Rice (O. sativa L.) Modulated early growth and 
enhanced physio-biochemical and 
metabolic profiles

Li et al. [65]

ZnO NPs (20–30 nm) Rice (O. sativa L.) Alleviated the As toxicity and 
decreased the accumulation of As

Yan et al. [45, 152]
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leaves of sunflower cultivars under salinity stress [161]. 
Recent studies on the use of chitosan NPs in tomato [136] 
and maize [129], MWCNTs in broccoli [130], and Ag NPs 
in wheat seedlings [121], further reveal the mitigating 
effect of NPs on high salinity stress.  CeO2 NPs enhance 
salt tolerance by enabling better ability to maintain cyto-
solic  K+/Na+ ratio in cotton [138]. Nanoceria seed prim-
ing improves salt tolerance by modulating α-amylase 
activities and ROS homeostasis in rapeseed [137].

The increasing scarcity of agricultural water has 
adversely affected agricultural production and destroyed 
the green crops in the semiarid and arid areas of the 
world [162]. Huge achievements have been attained to 
alleviate the bad influences of drought on crop seedlings 
by using phytonanotechnology in different aspects, such 
as restoring the plant growth damage caused by severe 
drought, enhancing water accumulation, and inducing 
water absorption of seed in crops. Sodium nitroprus-
side (SN) NPs and MWCNTs enhanced the tolerance to 
drought stress by increasing seedling water content and 
boosting seed water absorption in barley [142]. The use of 
 CeO2 NPs [143] and micronutrient NPs [163] enhanced 
crop growth and development exposed to drought stress 
in soybean.

Heavy metals
Rapid urbanization and industrialization in recent dec-
ades have greatly contributed to soil pollution. Heavy 
metals, e.g., Arsenic (As), Mercury (Hg), Chromium (Cr), 
Cadmium (Cd), and Lead (Pb), are among the chief pol-
lutants in soil [164]. Phytonanotechnology, is one of the 
effective ways to remediate or detoxify dangerous pol-
lutants like toxic heavy metals (HMs) by different routes, 
such as by decreasing the overproduction of ROS and 
oxidative stress caused by HMs, reducing their accumu-
lation in food crops, and inhibiting heavy metals-trig-
gered expression of the metal(s) transporter-associated 
genes in food crops. For example, it was reported that the 
use of 2.5 mM Si NPs can greatly enhance the tolerance 
to Cd stress in rice seedlings by minimizing the exces-
sive ROS caused by Cd [165]. Wang et al. [166] also found 
that Si NPs have a benefit over conventional fertilizers in 
decreasing the accumulation of HMs in plants. The ZnO 
NPs reduced the Cd uptake in wheat [167] and decreased 
the accumulation of As in rice plants [152]. Jiang et  al. 
[151] reported that the application of Au NPs synthesized 
with melatonin (Mel-Au NPs) alleviated Cd stress in rice, 
by reducing Cd-generated oxidative stresses and prevent-
ing the uptake of Cd. Moreover, Mel-Au NPs treatment 
inhibited the expression of metal transporter-related 
genes under Cd stress in rice roots. ZnO NPs-based 
seed priming modulates early growth and enhances 

physio-biochemical and metabolic profiles of fragrant 
rice under Cd toxicity [65].

However, the overuse of NPs may pollute the environ-
ment (soil and water) by dispersing from agricultural 
fields or remediation activities, e.g. fertilizers and pes-
ticides [168]. The high concentration of NPs also harms 
the growth and development of crops [169]. High levels 
of NPs have significant effects on gene expression and 
can induce oxidative stress, resulting in membrane dam-
age, electrolyte leakage, and decreased photosynthetic 
pigment content in crops [170]. For example, 1 g/kg ZnO 
or CuO NPs may badly affect the function and struc-
ture of photosynthetic machinery in crops and limit the 
development of roots and shoots [171, 172]. The appro-
priate dose of NPs is important for the application of 
phytonanotechnology.

Nanotechnology in agrochemicals for crop 
and disease management
Agrochemicals are chemical products that comprise fer-
tilizers, pesticides (insecticides, herbicides, and bacteri-
cides), and plant growth regulators used in agricultural 
practices to improve crop yield and quality [173]. Nano-
technology is widely utilized in agrochemicals, and the 
details of nanotechnology used in agrochemicals are dis-
cussed below.

Nanotechnology in fertilizers
Fertilizers are necessary for enhancing soil fertility and 
crop productivity [174]. The environmental restric-
tions and the incomplete use of nutrients related to the 
utilization of traditional fertilizers are still big issues 
for accomplishing sustainability in agricultural systems 
[175]. Additionally, nanofertilizers can be the best choice 
to conquer problems like eutrophication and enhance 
nutrient use efficiency in agriculture [176, 177]. Based on 
the functions, nanofertilizers can be classified as nano-
composite fertilizers, controlled-release fertilizers, or 
controlled loss fertilizers as combined nano-device to 
provide different macro- and micro-nutrients with ideal 
characteristics [178].

The application of nano-composite fertilizers for the 
controlled release can improve soil health, promote the 
crop uptake process, regulate rhizosphere microorgan-
isms, and stimulate the productivity and growth of crops 
[179]. The absorption of NPs not only enhances the con-
tent of absorbed elements, but also increases the content 
of other elements in crops. For example, a study con-
ducted on sandy loam soil-cultivated cucumber seedlings 
showed that 0.5  g/kg of  TiO2 NPs exposure produced 
approximately 34% more P content and 35% more K 
content than those in the control [180]. Similarly, the 
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influence of ZnO NPs on mineral uptake in cucumber 
seedlings indicated that ZnO NPs greatly induced uptake 
of minerals [181]. The uptake of Al in seedlings of lettuce 
treated by 10  mg/L Fe/Fe2O3 NPs was increased [182]. 
A greatly induced absorption of Fe, Zn, S, and Al, and a 
decreased uptake of P, Mn, and Mg were found in lettuce 
seedlings when treated with 10 or 20 mg/L Cu/CuO NPs 
[182]. Similarly, 1 g/kg  CeO2 exposure to soybean grown 
in soil induced the accumulations of Cu and P, while it 
reduced the content of Ca in pods [183]. Nanocalcite 
(40%  CaCO3) with nano  Fe2O3 (1%), MgO (1%), and  SiO2 
(4%) remarkably increased the intake of P with micro-
nutrients Mn and Zn, and enhanced the Fe, Ca, and Mg 
uptake [184]. The Zn, Fe, Ca, and K contents increased 
after the seedlings were treated with Au NPs in wheat 
[185]. The supplementation of ZnO NPs with other fer-
tilizers in the Zn deficient soil enhanced the productivity 
of barley by 91% compared to the control and increased 
nutrient use efficiency, while the conventional bulk 
 ZnSO4 enhanced productivity by only 31% compared to 
the control [186]. Moreover, NPs with different hydro-
phobic properties have different changes in the content 
of elements in crops. Three different types (hydrophobic, 
hydrophilic, and unmodified) of  TiO2 NPs exposure to 
the seedlings have been reported to influence the mineral 
uptake in basil (Ocimum basilicum L.). At the concentra-
tion of 0.5 g/kg treatment, the hydrophobic NPs induced 
Mn content by 339%, the hydrophilic NPs induced the 
increase of Fe content by 90%, and the unmodified ones 
increased the Cu by 104%) and Fe by 90% [83]. Further-
more, nano-composite fertilizers showed helpful influ-
ences on rhizosphere microorganisms by inducing the 
secondary metabolite production [187, 188], improving 
the plant growth [189], and assisting the colonization on 
the root surface.

The application of controlled-release fertilizers, e.g., 
porous NMs, greatly improves the uptake process in 
crops by adjusting the demanded release [190]. A carbon-
based NM, graphene oxide film, can extend the release of 
 KNO3, which minimizes loss by runoff and leaching, and 
prolongs the time of effect [191]. Numerous studies have 
revealed that the decreasing size of NMs is beneficial to 
the increase of the surface mass ratio of particles. Various 
nutrient ions can be desorbed and adsorbed steadily and 
slowly for an extended period of time [192]. For example, 
the use of ‘controlled release fertilizer’ not only increased 
the wheat production and soil residual mineral nitrogen 
by 6% and 10%, but also reduced nitrogen leaching and 
runoff loss by 25% and 22%, respectively as compared to 
conventional fertilizers [193, 194]. Nano-fertilizers bal-
ance the nutrition during the life cycle and ultimately 
increase the production of crops.

Numerous studies were conducted on this topic, but 
the research and information on wider capacity are still 
inadequate. The study of the toxicity of NPs utilized for 
nano-composite fertilizer production and the safety of 
different nano-fertilizers applications should be the pri-
ority for research. Moreover, a further evaluation of the 
different effects of nano-fertilizers in soils with diverse 
physiochemical features is essential to endorse a specific 
nanofertilizer for a particular soil type or crop.

Nanotechnology in pesticides
The application of nanotechnology over conventional 
crop protection, e.g., over-dose and large-scale pesticide 
use, has rapidly increased to reach higher and better crop 
production.

Insecticides
At least 90% of the applied pesticides are either incapa-
ble to achieve the goals for effective control of insects or 
scattered in the environmental systems [195]. This situ-
ation not only leads to the deterioration of the environ-
ment but also increases the costs of crop production. It 
is important to note that the occurrence of active ingre-
dients in the formulation at the lowest effective concen-
tration at the target site is necessary to ensure improved 
protection of crops from an invasion of insects and sub-
sequent loss of crops. Nano-encapsulation and nano-
formulation of insecticides have completely changed 
crop protection. Nano-encapsulation of pesticides is a 
technology in which the active ingredients of insecticides 
are coated with various sizes of NMs [195]. Nano-formu-
lation of insecticides includes a few particles, which can 
be used as insecticide active ingredients, and other engi-
neered nano-structures have beneficial insecticidal fea-
tures [196]. Nano-encapsulation and nano-formulation of 
insecticides assist the controlled release and persistence 
of active ingredients inside crops or in root zones with-
out influencing the efficiency. Conventional formulations 
of insecticides not only harm non-target organisms, but 
also limit the water solubility of insecticides, causing 
increased resistance to target organisms. Nano-encapsu-
lation and nano-formulation help to overcome the above 
limits [196]. Nano-encapsulation and nano-formulation 
of insecticides display many valuable features, such as 
increased thermal stability, crystallinity, solubility, per-
meability, stiffness, and also biodegradability essential 
for sustainable agricultural systems [197]. For instance, 
nanofibers formulation of pheromone in oriental fruit 
moth (Grapholita molesta L.) has no influences on mor-
tality over time, signifying long-time attract-and-kill 
influence of insecticide and pheromone and a controlled 
release of active ingredients [198]. Moreover, some 
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studies have delivered suggestions that the nanoformula-
tions of insecticides help the broadening of plant-medi-
ated universal resistance against insects. For instance, the 
formulations of  SiO2 nanosphere can enhance the capa-
bility of insecticides to attain the cell sap and infiltrate 
through crops, thus applying the full function to regu-
late sucking or chewing type insects [199]. Hence, the 
NMs in insecticides have a marvelous possibility in pest 
management.

Herbicides
Weeds are invasive plants that reproduce or grow aggres-
sively outside their original habitat [200]. The chemical 
ingredients of synthetic and biological sources, which 
restrain the growth of plants or kill them, are called her-
bicides [201]. Modern herbicides are frequently synthetic 
substances of endogenous hormones in varied plants, 
which can inhibit the development of objective crops. 
Although weeds are killed by the use of herbicides, occa-
sionally overused herbicide applications largely influ-
ence plant growth, which also delivers harmfulness to 
human beings [202]. Nanotechnology has the ability for 
the effective transport of biological or synthetic herbi-
cides by using NMs-based agrochemical formulations or 
nano-sized preparations [202]. The herbicides are loaded 
on different types of NPs to improve better removal of 
weeds and enable higher bioavailability. We can utilize 
the special characteristics (biodegradability, crystallin-
ity, permeability, solubility, stiffness, and thermal stabil-
ity) of NMs to develop different kinds of nanoherbicides. 
Nanoherbicides increase the affinity for the target by pro-
viding a larger specific surface area. Herbicides encapsu-
lated in nanoscale help to efficient spraying by reducing 
the splash losses and spray drift. Nanoherbicides are 
mixed with the particles of soil and can damage weeds 
or weed seeds. Herbicides, such as triazine and atrazine 
could be encapsulated to develop effective release to 
crops [203]. The majority of accessible herbicides just kill 
aboveground sections of weeds, but do not prevent the 
growth of the underground viable sections like tubers or 
rhizomes that function as an origin for the next genera-
tion of weeds [204]. The development of particular mol-
ecules of the herbicides encapsulated with NPs aims to 
target receptors in the weed roots, which penetrates the 
weed roots and achieves sections that prevent the glyco-
lysis process in roots, hence causing the death of specific 
weeds [205]. Long-term overuse of herbicides can leave 
their remains in soils and inhibit the growth of subse-
quent crops, so detoxification of herbicide remains is 
essential for sustainable development [206]. The detoxi-
fication rate of carboxymethyl cellulose NPs to atrazine 
herbicides is as high as 88% [207]. Thus, nanotechnology 

has the potential to improve the application range of her-
bicides and increase the duration of their effect.

Bactericides
Bactericides are any chemical substance of a synthetic 
or biological origin, which can inhibit bacterial growth 
or kill them [208]. The misuse of bactericide has led to 
the development of multi-drug-resistant bacteria, which 
is a significant global threat and is one of the biggest 
challenges for agricultural activities. Nanotechnology-
driven innovations provide hope for overcoming this 
problem [209]. The effectiveness of NPs depends on their 
interaction with microorganisms. The development of 
effective NMs requires in-depth knowledge of the bio-
logical aspects of microorganisms and the physicochemi-
cal properties of NPs. Metallic oxide NPs, such as MgO 
[210],  Al2O3 [211], MnO, SiO, and TiO [212], ZnO and 
CuO [213], have been shown to successfully regulate var-
ious crops and soil-borne diseases produced by Ralstonia 
solanacearum [210], Fusarium oxysporum [211, 212], 
Verticillium Dahliae, Fusarium solani, Monilinia fructi-
cola, Colletotrichum gloeosporioides, Botrytis cinerea, and 
Alternaria alternate [213] in various crops. Furthermore, 
communities of the microorganism of soil have a direct 
influence on the quality of soil by various processes, 
such as symbiotic relationships with the decomposition 
of organic matter, terrestrial crops, and nutrient cycling 
[214]. Thus, the protection of soil microbial diversity and 
biomass is the main task for agricultural systems. The 
metallic oxide NPs, such as CuO and  Fe3O4 NPs, have a 
big influence on the size and composition of the micro-
bial communities in the soils [215]. Due to the physico-
chemical properties of NPs, they provide hope for the 
development of effective antimicrobial agents for the 
future.

Conclusions
In the last decade, nanotechnology obtain enormous 
achievements in the design and synthesis of NMs and 
their use in therapy, diagnosis, or other medical pur-
poses. Due to high cost or other factors, applications of 
nanotechnology in crops cannot be widely utilized in 
agricultural activities or practices. (i) Despite the great 
improvement of nanotechnology in plant genetics and 
crop breeding, the delivery of exogenous enzymes or 
DNA for genome editing is still a tough task. Based on 
evidence found in plant cells, soft materials, like poly-
meric nanostructures, and nanogels can be utilized as 
promising substances to advance novel approaches for 
genome editing and controlled release of biomolecules 
in crops. (ii) The troubles of phytonanotechnology can 
be conquered by encouraging multidisciplinary man-
ners for the synthesis or design of intelligent NMs. To 
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this end, a joint collaborative initiative that merges 
the complementary professional capabilities of chem-
ists, biochemists, engineers, geneticists, and botanists 
may reveal a new horizon in phytonanotechnology. 
(iii) Regarding crop growth and development, current 
applications propose that more studies are needed for 
this direction to ameliorate the sustainability of agricul-
tural systems. Future studies involving open-field trials 
may further benefit to recognizing the mechanism of 
NPs action on crops.

When used in the agricultural system, these NPs need 
to be carefully designed, considering their treatment 
methods (soil or foliar), so that they can have a high 
impact and ensure a better quality of crops. Meanwhile, 
excessive use of these NMs may pollute the environ-
ment, thus special care must be adopted while working 
with NMs in plant systems. However, it is an undeniable 
fact that the positive functions of NPs have shown great 
efforts to numerous aspects in agricultural systems start-
ing from germination to postharvest.
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