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COMMENTARY

Nano‑pesticides: the lunch‑box principle—
deadly goodies (semio‑chemical functionalised 
nanoparticles that deliver pesticide 
only to target species)
J. J. Scott‑Fordsmand1*  , L. F. Fraceto2 and M. J. B. Amorim3* 

Abstract 

Nature contains many examples of “fake promises” to attract “prey”, e.g., predatory spiders that emit the same sex-
attractant-signals as moths to catch them at close range and male spiders that make empty silk-wrapped gifts in order 
to mate with a female. Nano-pesticides should ideally mimic nature by luring a target and killing it without harming 
other organisms/species. Here, we present such an approach, called the lunch-box or deadly-goodies approach. The 
lunch-box consists of three main elements (1) the lure (semio-chemicals anchored on the box), (2) the box (palatable 
nano-carrier), and (3) the kill (advanced targeted pesticide). To implement this approach, one needs to draw on the 
vast amount of chemical ecological knowledge available, combine this with recent nanomaterial techniques, and use 
novel advanced pesticides. Precision nano-pesticides can increase crop protection and food production whilst lower‑
ing environmental impacts.
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Background
Some of the biggest challenges for modern society, e.g., 
sustainable increase crop protection, elimination of vec-
tor borne diseases, all whilst keeping or promoting bio-
diversity. For example, FAO estimate that 20–40% of all 
crop production is lost to pests [1] and WHO estimate 
that globally vector borne diseases are responsible for 
17% of all infections [2]. To reduce the damage caused 
by these pests conventional pesticides are widely used. 
These pesticides are spread directly in nature as chemi-
cals in various formulations, in the order of three billion 
tonnes [3, 4]. This application approach entails a uniform 
cover of chemicals on the target environment at a defined 
time. However, a large proportion of the pesticide never 
reaches the target organisms but instead reach non-
target organisms, ground water, etc. To deal with some 
of these issues, progress has been made in the area of 
nano-pesticides, aimed at reducing general spreading of 
the pesticide and providing timed release, hence reduc-
ing overall emissions [5]. In recent years, nano-delivery-
systems, e.g., chitosan, pectin or zein-nano-carriers 
containing pesticides, have been developed as a way to 
use smaller amounts of pesticides. The aim is to distrib-
ute the pesticide in a more time resolved and targeted 
way [6–12]. In this approach, the encapsulated pesticide 
is released from its nanocarrier upon an environmental 
trigger, e.g., moisture. The pest organisms (or any other 
animal) may randomly contact the released pesticide or 
consume the encapsulated material. However, no study 
has yet examined whether it is possible to entice a spe-
cific pest-species to contact the nanocarrier.

We describe a concept, the nano lunch-box 
approach that eliminates the described randomness 

of encountering the pesticide by combining a nano-
delivery system with a semio-chemical, i.e., pheromone, 
allomone, kairomone or synomone. The aim is to make 
the pest organism wish to approach the encapsulated 
pesticide, i.e., using the attract-to-kill approach [13, 14] 
at the nanoscale. The attract-to-kill approach has been 
commonly used bait traps [13], but never on nanocar-
riers. The pest organism sets out on a deliberate quest 
to find the lunch-box, without knowing the contents 
are deadly. Hence, the target is to make an attractive 
lunch-box that contains a targeted killer. The attractive-
ness is obtained by anchoring species-specific semio-
chemicals on the surface of the nanocarrier. The box is 
a nanocarrier of a highly palatable material that can be 
digested in the midgut of the target pest. The killer is a 
pesticide that is species and life-stage specific.

From a purely natural perspective, the lunch-box 
approach is not very novel since nature has many exam-
ples carriers with chemotaxis—the novel part here is 
that human many be able to utilise this approach. In 
line with this, Nature contains many examples where 
“fake promises” are used to attract “prey”, e.g., preda-
tory spiders that emit the same sex-attractant-signals 
as moths for catching them at close range [15], male 
spiders that make empty silk-wrapped gifts in order to 
mate with a female [16], and plants that emit an odour 
that attracts certain species of insects [17]. Hence, the 
lunch-box approach mimics nature and we can draw on 
a vast amount of chemical ecological knowledge in the 
development of this approach.

The lunch-box approach consists of three main 
steps—(1) the lure, (2) the box and (3) the kill (Fig. 1).
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The lure
The lunch-box approach requires that the pest organ-
ism senses an advantage in finding or being close to the 
“lunch” and is therefore lured into this “belief”. There are 
no previous reports on this approach, although studies 
have shown that pheromones can be embedded in poly-
mer fibres [18] or nanogels [19]. The approach involves 
anchoring highly attractive chemicals on the surface 
of a nanocarrier. Potential attractants include semio-
chemicals, e.g., volatile compounds that signal attrac-
tion and mating, that signal food, or more general host 
detecting chemicals. These chemicals can be highly 
species specific, can be detected by organisms even at 
very low concentrations and can induce a response that 
overrides many of the natural “fears” within an organ-
ism [14, 20]. Semio-chemical compounds are known 
for some of the main pest species [21] (e.g., see lists of 
the European Food Safety Authority (EFSA) published 
October 2019 of top pests for plant species [22], or for 
well-known global human pests [23–31]). For species 
where these compounds are not yet known, novel sensi-
tive detection techniques [32] or reverse chemical ecol-
ogy [27] can be used to identify, effective compounds. 
Once attractants (semio-chemicals) have been identified, 
novel synthetic biology methods (e.g., engineered yeast 
cultures) can be used to produce sufficient amounts at 
low cost [33, 34]. Obtaining an optimal anchoring (from 
a loading- and release-rate perspective) is important. 
However, binding semio-chemical cues to the surface 
of a nanocarrier may be challenging, e.g. when trying to 
maintain the correct chirality and general stereochem-
istry of the attached chemicals [15, 35]. Gonçalves et al. 
[36] showed that it was possible (via anchors) to bind 
odours to functionalised cotton surfaces in clothes. 
When the clothes were worn, the odour was released 
due to pH changes induced by sweat. The anchors were 

in this case carbohydrate-binding modules with an attach 
spacer (repetition of glycine-glutamine residues) to con-
fer conformational mobility [36]. Such a pH dependent 
approach can also be used for pheromones, which show 
pH dependent reversed binding to receptors via the 
C-terminal [37]. It may, depending on the specific cases, 
be considered whether release is necessary (and how 
much) or whether is it enough for the semio-chemical to 
be attached to the “box”. For example, if the media (air, 
soil or water) transport the nano-pesticide to the pest 
species, the pest species will detect the semio-chemical 
loaded carrier and a release of semio-chemicals may not 
be advantageous. Previous studies in related areas are: (1) 
studies on the surface modelling and functionalisation of 
nanomaterials providing information on how strong and 
weak binding sites can be formed on the nano surfaces 
[38–41], e.g., via cross-linker [42]. Further, models show 
that nanocarriers, depending on the size and material, 
may contains tens of thousands surface atoms, i.e. poten-
tial functionalisation sites [43]. (2) Studies on nanomate-
rial (bio-)corona interactions providing information on 
how organic molecules bind to nano-surfaces [44, 45]. 
(3) Studies on the reversible binding of pheromones to 
insect surfaces revealing how semio-chemicals can be 
reversibly bound to nanocarriers [21]. By integrating 
these three areas, we showed that it was possible to load 
semio-chemicals on nanocarriers and at the same time 
ensure their controlled release (Fig. 2). The reader may be 
reminded that the above “binding semio-chemical cues 
to the surface of a nanocarrier may be challenging” refers 
to challenging for humans, but for nature this is ubiqui-
tous occurring. We may obviously also learn from nature 
here, e.g., volatile compounds or semio-chemicals from 
surfaces of bacteria or pollen [46, 47].

The box
In this approach, if a pest organism is attracted to the 
lunch-box, it must then “open” it, which requires that 
the carrier is made of a palatable/digestible material, e.g., 
cellulose or pectin. The “opening” could be triggered by 
gut digestive enzymes or physical–chemical parameters 
[48–50]. Hence, the material properties are important for 
the carrier’s stability, the potential to be opened, and, in 
particular, the timing of the box’s opening is crucial. The 
encapsulation should consider materials already present 
in nature, i.e., nanomaterials based on compounds, such 
as sugars or polysaccharides (cellulose derivatives, chi-
tosan, pectin, lignin, etc.), proteins (zein, casein, etc.) or 
inorganic materials (silica, etc.). These may be produced/
extracted either directly or by recombinant methods 
[51, 52]. Many natural materials have properties suitable 
for nanocarrier systems and are degradable by enzymes 
present in organisms. Hence, they are good candidates 

Fig. 1  Principle of components of the Lunch-Box approach. Three 
components are required (1) the lure (chemical ecology) based 
on semio-chemicals, (2) the box (nanotechnology), which include 
novel nanocarriers made of palatable natural materials, and (3) the 
kill (pesticides), which can include smart pesticide that are more 
targeted and ensure a protected environment until it reaches the 
target species. *For visual reasons we use a bucky-ball to illustrate the 
nano-container, we will not use bucky-balls but polymers but in a 
drawing, these would simply be opaque
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for promoting the release of active ingredients in site-
specific pest-control. In a recent review, Fraceto and co-
workers [53] presented an overview of the development 
of stimuli-responsive nanomaterials that can be used for 
nanocarriers. Such systems can enable the site-specific 
release of active ingredients (insecticides, repellents, 
acaricides, etc.) under biotic (fungi, insects, weeds, nem-
atodes, etc.) and abiotic stress conditions (pH, tempera-
ture, drought, salinity, etc.). Most of these site-specific 

release systems were inspired from drug delivery and 
food science research, whereas systems that promote 
agricultural release applications are still at an early stage. 
A few papers have reported that enzymes present in the 
salivary glands and midgut of larvae and insects are good 
candidates for triggering the release owing to the pres-
ence of carbohydrates, glycans and proteases [54–58]. 
For example, Oliveira et al. [58] showed that carrier sys-
tems based on zein nanoparticles (loaded with botanical 

Fig. 2  The nano-pesticide lunch-box principle. A Example with the Colorado potato beetle (Leptinotarsa decemlineata). The potato beetle almost 
exclusively targets night-shade plants (Solanum, containing the poisonous Solanine). A lunch-box covered with attractive chemical cues similar to 
the plant (kairomones) can be used to attract the beetle [77, 78] or pheromones that promote beetle aggregation [79]. While the beetle (and the 
larvae) is attracted, other organism (e.g., bees) will be repelled or not attracted. The kill could be Bt crystalline proteins or RNAi [80]. B Using various 
species. A similar approach can be used for various insect, e.g., planthoppers, beetles, and mosquitoes in each case the nanocarrier has different 
semio-chemicals attached to surface [29]. *For visual reasons we use a bucky-ball to illustrate the nano-container, we will not use bucky-balls but 
polymers but in a drawing, these would simply be opaque
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insecticides) had a potential dual advantage: (1) when 
consumed by larvae, they released the active compound 
(trypsin based hydrolyse in the midgut), and (2) when 
not consumed, there was only very slow release of the 
active compound. In another example, Kaziem et al. [59] 
developed a system based on cyclodextrin anchored in 
hollow mesoporous silica loaded with avermectin where 
the release was controlled by the α-amylase activity of 
Plutella xylostella. In summary, strategies to deliver pes-
ticides using site-specific nanoparticles are extremely 
interesting because they enable targeted effects on an 
organism whilst avoiding non-effective release of the 
active compound.

The kill
Once the lunch-box is open, the pesticide can perform 
its action at the target site without harming other organ-
isms. The approach goes beyond conventional chemi-
cals and allows the use of more benign and sophisticated 
approaches. For example, Bt (Bacillus thuringiensis) can 
be used against various pest species, Bt by inducing lethal 
midgut lesions, which kills the organism. Hence, Bt can 
be encapsulated in a pheromone-loaded carrier and used 
as an insecticide [60], a nanocarrier if the crystal is used 
and a microcarrier if the spores are used. Within the 
nanocarriers, novel natural or biosynthetic “compounds” 
can also be employed, e.g., natural chemicals [7], small-
molecule agonists [61], or novel synthetic RNAi virus like 
strings [62–64]. Alternatively, they can be used as a plat-
form for delivering CRISPR ribonucleoprotein for gene 
editing in the target [65] as for example used for vec-
tor-borne diseases from Mosquitoes [29, 66]. With this 
system, the pesticides can be more accurately targeted 
and are generally less damaging than conventional pes-
ticide chemicals because the carrier system can protect 
and ensure proper functioning. Since nanocarriers may 
cross the midgut membrane, the lunch-box may even be 
designed to target specific tissues before release, although 
development of the latter may take longer. Obviously, by 
controlling the size of the carrier, e.g., between nano and 
micro size, it is possible adjust what can be inside the car-
rier but also to enhance or inhibit cellular internalisation 
[67]. Finally, the expiry date of the kill substance should 
be considered, i.e., the degradation rate of the kill mate-
rial should be faster than that of the nanocarrier (when 
not triggered) as this will also help to prevent undesirable 
release of unused pesticide [68].

Lunch‑box example—based on combining 
previous research
Rice is one of the world’s most important foods, with 
750 million tonnes being produced globally, but rice is 
infested by numerous pests [69, 70]. We here show how 

the lunch-box principle can be applied to rice by using 
essential oil semio-chemicals, polymer nanocarriers 
and various pesticides.

The lure
Kuhnt et  al. [71] showed a sustained rose fragrance 
(semio-chemical) release from functionalised cellulose 
nanocrystals (CNC) (10–30  nm × 100–300  nm) deco-
rated with β-damascone. They linked the fragrance via 
a short thioether that served to bind the fragrance mol-
ecules to the hydroxyl bonds on the CNCs. The release 
was pH dependent, controlling release under neutral 
or basic conditions. The chemical group which dama-
scene belong to, i.e., damascenone, contains closely 
related chemical compounds, i.e., damascene and ion-
one, hence this indicates that β-ionone may also be 
bound to the cellulose by the same thioether technique. 
The β-ionone is an attractant [72] for the white-backed 
planthopper, Sogatella furcifera (Horváth) (Hemiptera: 
Delphacidae), one of the main agricultural insect rice 
pests in China.

The box
The CNC is made of cellulose, which is a natural poly-
saccharide with many hydroxy groups on the surface. To 
this group belong other polysaccharides such as chitosan, 
alginate and pectin, which also contain many hydroxyl 
groups on the surface. These polysaccharides are well 
known as nanocarriers for pesticides [73].

The kill
The polysaccharide nanocarriers have been loaded with a 
wide variety targeted insecticide, e.g., the neonicotinoids 
thiamethoxam (nanocellulose carrier) [74], the bacteri-
cide Iprofloxacin-HCl (nanochitosan carrier) [75], the 
botanical compound Geranolium (nanochitosan car-
rier) [76], and in human health studies the gene silencing 
siRNA [64]. These polysaccharide nanocarriers also show 
controllable release properties [73].

Hence, we here outline a lunch-box pesticide, where an 
attractant in the form of essential oils are attached to pol-
ysaccharides nanocarriers, a nanocarrier that is able to 
deliver a wide range of traditional and more benign pes-
ticides. This lunch-box pesticide can target a pest species 
(white-backed planthopper, Sogatella furcifera) affecting 
one of the main global agricultural crops (rice, Oryza 
glaberrima/sativa), which has shown resistance to tradi-
tional pesticides. The lunch-box system will enable deliv-
ery of more targeted and at the same time more generally 
benign pesticides directly to the pest species.
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Nano‑pesticide
The global pesticide usage has been estimated to two 
billion tonnes, but predictions are that this usage has 
currently increased to 3.5  billion tonnes [3, 4]. The 
current non-specific pesticide approach is to spread 
chemicals over a vast area, reaching both target and 
non-target organisms [81–85].

Thus, a large proportion of the pesticide does not 
reach the pests efficiently and may promote resistant 
populations. Novel methods of using naked or func-
tionalised nanocarriers containing pesticides reduce 
this problem and enable novel pesticides to be used. 
However, these novel methods are not species spe-
cific and rely on random encounters. The lunch-box 
or deadly goodies concept eliminates this randomness 
by using species-specific attractants on the nanocarri-
ers, which may also be life-stage specific (Fig. 2A) and 
can target different species (Fig. 2B). Hence, the lunch-
box approach can (1) be highly species-specific, (2) 
lower pesticide use, (3) utilise “benign” pesticides, (4) 
ensure the diversity of other species, and (5) decrease 
pesticide residues in food and the environment (Fig. 3). 
Nevertheless, it is important also for such an approach 
to fully understand the life-cycle fate of the nano-
carriers/-nanopesticides. How do they impact (bene-
fits/risk) the environment in which they are introduced, 
are they indeed able to provide better sustainability and 
less collateral ecotoxicity.

Wider perspective
The lunch-box approach can also help to sustain benefi-
cial species (e.g., important pollinators). For example, 
bees are reported to be increasingly affected by para-
sites (e.g., host specific Crithidia biomb, Paenibacillus 
larvae, Nosema ceranae, etc. [86]). Hence, a bee specific 
lunch-box that contains anti-parasitical compounds 
could help the bee population and in turn pollination 
while minimising effects on other species. The above 
approach is, to some extent, in line with the principle of 
nano-medicine, utilising functionalisation to reach the 
target, e.g., functionalised zein or virus-like nanoparti-
cles [8, 87–89]. However, for nano-pesticides, we aim 
to make the pest organism do the work of coming to 
the “medicine/cure”.

In summary, compared to present approaches the 
lunch-box concept seems to be highly promising for 
developing precision nano-pesticides that enable tar-
geted release, increased efficacy and avoid widespread 
undesirable effects of pesticides. The approach benefits 
from the interplay between chemical, nano-technologi-
cal, and ecological sciences.
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