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Abstract 

Background: The maternal immune system needs to tolerate the semi‑allogeneic fetus in pregnancy. The adapta‑
tion occurs locally at the maternal–fetal interface as well as systemically through the maternal circulation. Failure to 
tolerate the paternal antigens may result in pregnancy complications, such as pregnancy loss and pre‑eclampsia. 
However, the mechanism that regulates maternal immune tolerance, especially at the systemic level, is still an enigma. 
Here we report that the first‑trimester placenta‑derived exosomes (pEXOs) contribute to maternal immune tolerance 
by reprogramming the circulating monocytes.

Results: pEXOs predominantly target monocytes and pEXO‑educated monocytes exhibit an immunosuppressive 
phenotype as demonstrated by reduced expression of marker genes for monocyte activation, T‑cell activation and 
antigen‑process/presentation at the transcriptomic level. They also have a greater propensity towards M2 polarization 
when compared to the monocytes without pEXO treatment. The inclusion of pEXOs in a monocyte‑T‑cell coculture 
model significantly reduces proliferation of the T helper cells and cytotoxic T cells and elevates the expansion of regu‑
latory T cells. By integrating the microRNAome of pEXO and the transcriptomes of pEXO‑educated monocytes as well 
as various immune cell functional assays, we demonstrate that the pEXO‑derived microRNA miR‑29a‑3p promotes the 
expression of programmed cell death ligand‑1, a well‑known surface receptor that suppresses the adaptive immune 
system, by down‑regulation of phosphatase and tensin homolog in monocytes.

Conclusions: This is the first report to show how human pEXO directly regulates monocyte functions and its 
molecular mechanism during early pregnancy. The results uncover the importance of pEXO in regulating the mater‑
nal systemic immune response during early pregnancy by reprogramming circulating monocytes. The study provides 
the basis for understanding the regulation of maternal immune tolerance to the fetal allograft.
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Background
Maternal tolerance towards the semi-allograft fetus is 
fundamental to a successful pregnancy. The mother’s 
immune cells encounter fetal antigens at two distinct 
sites: maternal–fetal interface starting 5–6  days after 
fertilization [1] and fetal villi bathing in maternal blood 
in the intervillous space after 9 weeks of gestational age 
when the utero-placenta circulation is established [2]. 
Since the maternal immune cells are in direct contact 
with the fetal semi-allogeneic trophoblast cells, adapta-
tions must be established in the maternal immune sys-
tem to avoid detrimental immune responses against the 
allogeneic fetus. In decidua, the immune cells undergo 
a phenotypic adaption and redistribution resulting in 
the accumulation of pregnancy-supporting natural killer 
(NK) cells and macrophages and reduction in the pro-
portion of T cells, B cells and dendritic cells (DCs) [1]. 
Adaptations in the maternal systemic immune response 
are also observed, such as a decreased T helper cell type 
(Th)1/Th2/Th17 ratio [3] and increased numbers of regu-
latory T cells (Tregs) in the maternal circulation during 
the first and second trimester of pregnancy [4].

Accumulating data suggest that altered functional 
activity of monocyte–macrophage system is involved in 
dysfunctional maternal tolerance in pregnancy-related 
complications, such as implantation failure, pregnancy 
loss, preeclampsia and fetal growth restriction (FGR) 
[5]. Monocytes, the major phagocytic cell population in 
the systemic circulation, are critical mediators of innate 
and adaptive immune responses. They represent ~ 10% 
of the leukocytes in human circulation [5]. In normal 
pregnancy, there are functional changes in the circulating 
monocytes of mothers, including increased production 

of oxygen free radicals and changes in cytokine produc-
tion [6]. From the start of pregnancy, monocytes are 
recruited to the maternal–fetal interface where they dif-
ferentiate to decidual macrophages (dMs), which regulate 
maternal immune tolerance and promote placentation 
through interaction with other immune cells and fetal 
trophoblasts [7].

The exact mechanisms by which pregnancy-induced 
monocyte functional changes are unknown. It has been 
suggested that the factors released by trophoblasts such 
as cytokines [8], fetal DNAs [9], or hormones contribute 
to the changes in monocytes [6]. Extracellular vesicles 
are a newly found mode of intercellular communica-
tions. Exosomes are involved in a wide range of autocrine 
and paracrine phenomena [10]. They are nanoparticles 
(30–200 nm in diameter) formed by the inward budding 
of endosomal membrane. The bilayer structure of exoso-
mal membrane protects the cargoes from degradation in 
extracellular environment. During pregnancy, placenta-
derived exosomes (pEXOs) are shed from the syncytio-
trophoblast into the circulation and their concentration 
in maternal blood increased as pregnancy proceeds [11, 
12]. However, their biological role in pregnancy is poorly 
understood. Some evidence suggests that they are impor-
tant in maintaining maternal tolerance, as pEXO pro-
motes T cell apoptosis and inhibit cytotoxicity of NK 
cells [11, 12].

Successful pregnancy is associated with the func-
tional regulation of monocytes [9, 11]. We hypothesized 
that the pEXO facilitates the establishment of maternal 
immune tolerance via regulating monocyte phenotype in 
early pregnancy. In this study, pEXOs were isolated from 
the first trimester placenta explants, and monocytes were 
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demonstrated to be the main immune cell type in blood 
that could uptake pEXO. By integrating the first miRNA 
expression profiles of pEXO and the gene-expression 
data of pEXO-educated monocytes, together with the 
immune cell functional assays, we demonstrated for 
the first time that pEXO is a key regulator of maternal 
systemic immune response in early pregnancy by pro-
gramming circulating monocytes via miRNA-29a-3p/
phosphatase and tensin homolog (PTEN)/programmed 
cell death ligand-1 (PD-L1) axis. The outcome of the 
study enhances our understanding of the establishment 
of the maternal immune tolerance to the fetal allograft. 
In the long term, the study proposed that pEXOs might 
have the potential to serve as a biomarker for the diag-
nosis and treatment of immune-associated pregnancy 
complications.

Results
Purification of placenta‑derived exosomes
To study the biological roles of exosome, it is essential to 
establish an approach to obtain high-quality and physi-
ological exosome from a consistent and reliable source 
[11]. Human first trimester placental explants were cul-
tured for 40 h, and pEXOs were isolated from the spent 
media of placenta explants by differential centrifugation 
(Fig.  1A). Consistent with the International Society of 
Extracellular Vesicles guideline and other studies [13], 
the isolated pEXOs displayed a typical round morphology 
under transmission electron microscopy (Fig. 1B) and an 
averaged diameter of 113  nm by nanoparticle tracking 
analysis (NTA). There were about 2.69 ×  108 pEXOs per 
microgram total protein (Fig.  1C). They were also posi-
tive for exosomal markers CD63, HSP70 and CD81, and 
negative for Golgi marker, GM130 (Fig. 1D).

Monocytes are the main immune cell type that interact 
with pEXO
To investigate the interactions between pEXOs and cir-
culating immune cells, fluorescent-labelled pEXOs were 
incubated with PBMC. pEXO-interacted T cells, B cells, 
NK cells, DCs, and monocytes were characterized and 
gated with CD3, CD19, CD56, CD11c, and CD14 (Addi-
tional file  1: Fig. S1). Flow cytometry analysis demon-
strated that the monocytes exhibited the highest median 
fluorescent index and were the major cell type interact-
ing with the pEXOs (Fig. 1E–G). In contrast, T cells and 
NK cells had minimal interaction with pEXOs. DCs were 
the second major immune population in the interaction. 
However, the median fluorescent index of DCs was less 
than 10% of that of the monocytes (Fig.  1F, G). These 
results indicated that the pEXO mainly targets the mono-
cytes in the maternal blood.

pEXO‑educated monocytes exhibited 
an immunosuppressive phenotype at the transcriptomic 
level
The selective interaction of pEXOs might modify the 
transcriptome and thus the functions of the target cells. 
Therefore, we examined the transcriptomic changes 
of pEXO-educated monocytes after 24  h of treatment. 
A total of 4864 differentially expressed genes (DEGs) 
were identified with 2324 upregulated and 2540 down-
regulated genes (fold change > 2, Qvalue < 0.05) in the 
pEXO-educated monocytes compared to the untreated 
control. DEGs with fold change > 16, Qvalue < 0.001 
were retrieved for further analysis (Fig.  2A and Addi-
tional file  2). Gene ontology (GO) enrichment analyses 
revealed that most of the up-regulated genes were asso-
ciated with inflammatory response, cytokine signaling 
pathway, and regulation of cell proliferation (Fig. 2B). The 
down-regulated genes were primarily associated with 
antigen processing and presentation, T cell proliferation, 
and differentiation (Fig.  2C). Notably, gene set enrich-
ment analysis (GSEA) showed marked enrichment of the 
REACTOME interleukin (IL)-10 signaling pathway (Rich 
ratio = 0.74, FDR q = 0) and IL-4 and IL-13 signaling 
pathway (Rich ratio = 0.49, FDR q = 0) (Fig. 2D).

Further analysis revealed that monocyte activa-
tion markers CD36, CD74, CD200R and other immune 
response-related genes were significantly down-regulated 
in the pEXO-educated monocytes (Additional file 1: Fig. 
S2A). We also found that the antigen-processing and 
presentation associated genes, including CD1A, CD1B, 
CD1C, CD1D, CD1E and major histocompatibility com-
plex (MHC) class II molecules such as human leukocyte 
antigen (HLA)-DR, HLA-DM, HLA-DP and HLA-DO 
were significantly suppressed in the pEXO-educated 
monocytes (Additional file  1: Fig. S2B, C). Consistently, 
the pEXO-educated monocytes displayed a decreased 
expression of genes that were positively correlated with T 
cell proliferation and activation, and an enhanced expres-
sion of genes that were negatively correlated with T cell 
proliferation and activation (Additional file 1: Fig. S2D). 
Together, these data indicated that the circulating mono-
cytes display a tolerogenic and immuno-suppressive phe-
notype after pEXO treatment.

pEXO induces  CD14+HLA‑DR−/low monocytic 
myeloid‑derived suppressor cells (M‑MDSCs) expansion
CD14+HLA-DR−/low M-MDSCs are monocytes 
with potent immunosuppressive activity which have 
attracted a lot of attention in the field of immunology in 
recent years [14]. They are capable of inhibiting T-cell 
responses and are highly increased in the early stages 
of pregnancy [14, 15]. Consistently, our data showed 



Page 4 of 16Bai et al. Journal of Nanobiotechnology           (2022) 20:86 

Fig. 1 Characterization of pEXOs and interaction by different immune cell populations. A Schematic illustration of the sequential centrifugation to 
isolate exosomes from conditioned medium of human placenta explant. B Transmission electron microscopy images of pEXO, Scale bar = 100 nm. 
C NTA of the isolated pEXO. Particle concentration of pEXO is approximately 2.75 ×  108 particles/μg exosome protein. The mean size is 113 nm. 
D Western blot analysis demonstrates the presence of exosome markers CD63, HSP70, CD81 and the absence of GM130 (Golgi marker). E Flow 
cytometric analysis demonstrating the interaction of fluorescently labelled pEXO with different immune cell populations after 24 h. pEXO were 
mainly interacted with  CD14+ monocytes. B cells and dendritic cells have a mild interaction with pEXO, while T cells and NK cells have barely no 
interaction. F Percentage of Carboxy‑fluorescein succinimidyl ester (CFSE)‑labelled pEXO positive cells and G Median fluorescent index (MFI) in 
different immune cell populations. Data are expressed as mean ± SD (n = 4), *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001 compared to the 
control group
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that the circulating  CD14+HLA-DR−/low M-MDSC 
population was significantly higher in pregnant women 
when compared to the non-pregnant control (Fig. 2E). 
Interestingly, 13 out of 16 genes that can distinguish 
M-MDSC from monocytes were up-regulated by 
pEXOs at mRNA level (Fig.  2F). The inhibitory effect 
of pEXOs on HLA-DRA expression in monocytes was 

confirmed by qPCR (Fig. 2G). The results indicated that 
pEXO is involved in regulating M-MDSCs expansion.

pEXO modulates the M2 (alternatively activated) 
macrophage differentiation
pEXO-educated monocytes displayed M-MDSC char-
acteristics (Fig.  2F) and enhanced expression of M2 

Fig. 2 Transcriptional regulation of pEXO‑educated monocytes. Monocytes were treated with 20 μg/ml pEXO for 24 h and subject to mRNA 
sequencing. A Volcano plot of differential expressed genes (DEGs, fold change > 16, Qvalue < 0.001) in pEXO‑educated monocytes. Dots represent 
genes, colored as: not significant (NS, dark grey); UP (red) with log2FC ≥ 4.0 and adjusted p ≤ 0.001; DOWN (blue) with log2FC ≤ − 4.0 and adjusted 
p ≤ 0.001. p values are based on a two‑tailed Wald test and adjusted via the Benjamini–Hochberg procedure. B GO analysis of up‑regulated genes. 
C GO analysis of down‑regulated genes. D Hallmark Gene Set enrichment analysis of pEXO‑educated monocytes showing induction of gene 
sets regulating IL‑10, IL‑4 and IL‑13 signaling in pEXO‑educated monocytes. E Flow cytometry analysis of  CD14+HLA‑DR/DM/DP−/low monocytes 
from pregnant women and non‑pregnant control. N = 11, each dot represents one sample. Non‑p: non‑pregnant; P: pregnant. F The expression 
of MDSC marker, SLC27A2, TGFB1, CD14, S100A9, IL‑1α, IL‑1β, IL‑10, IL‑6, CD274, HIF‑1A, STAT3, VEGF‑A and ARG2 in pEXO‑educated monocytes. G 
Reduction of HLA‑DR at mRNA level in pEXO‑educated monocyte (n = 8). Data are expressed as mean ± SD (n = 4), *p < 0.05, **p < 0.01, ***p < 0.001, 
****p < 0.0001 compared to the control group
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macrophage markers, such as CD163, IL-10, CD206, 
CD209, IL-10, IDO-1 as demonstrated by mRNA-seq 
(Fig.  3A) and qPCR (Fig.  3B). These results suggested 
monocytes showed an M2 macrophage phenotype 
after pEXO treatment. To assess whether pEXOs affect 
macrophage differentiation,  CD14+ monocytes were 
differentiated into macrophages with macrophage 
colony-stimulating factor (M-CSF) stimulation in the 
presence (pEXO-polarized macrophage) or absence of 
pEXOs (control macrophage) (Fig. 3C). mRNA-seq data 
demonstrated that M2 macrophage markers (CCL1, 
CCL2, CCL23, CCL24, CCR2, CHI3L2, CXCL13, CD163, 
SOCS3, SLAMF1) were significantly increased in the 
pEXO-polarized macrophages when compared to the 
control macrophages (Fig. 3D, E, Additional file 3). Con-
sistently, GSEA revealed that the pEXO-polarized mac-
rophages resembled the M2a macrophages described 
in the published data [16] (Fig.  3F). The bioinformat-
ics analysis was confirmed by RT-PCR analysis of the 
M2 macrophage marker genes (CD163, CD206, CD209, 
IL-10, IDO-1, CCL2, CCL8) in the treatment group 
(Fig.  3G). Taken together, our data indicated that the 
pEXO promoted M2 macrophage differentiation of blood 
monocytes.

pEXO‑educated monocytes influence T cell proliferation 
and Treg expansion
T cells, the major cell population involved in cell-
mediated immune response, play a crucial role in 
maternal–fetal immune tolerance. An excessive inflam-
matory microenvironment by the up-regulation of effec-
tor T cells, such as  CD3+CD4+ T helper type 1 (Th1) and 
 CD3+CD8+ cytotoxic T cell, is associated with repro-
ductive failures [3]. Monocytes alone did not influence 
autologous T cell proliferation (Additional file  1: Fig. 
S3A). In contrast, the inclusion of pEXOs significantly 
reduced the proliferation of  CD3+CD4+ and  CD3+CD8+ 
T cells in comparison to the untreated control (Fig. 4A, 
B). pEXO treatment had no effect on viability and/or 
apoptosis of human monocytes (Additional file  1: Fig. 
S3A) and  CD3+CD4+/CD3+CD8+ T cells (Additional 
file 1: Fig. S3B). Direct co-culture with, but not the spent 

medium of pEXO-educated monocytes, decreased the 
 CD3+CD4+ and  CD3+CD8+ T cell proliferation in the 
presence of pEXO (Fig.  4C, D). Together, the data indi-
cated that the pEXO-induced suppression of T cell prolif-
eration required direct T cell-monocyte contact.

The numbers of systemic  CD4+CD25+FoxP3+ Tregs 
increase during the first and second trimester of preg-
nancy [17]. To determine the role of pEXO in Tregs 
induction, T cells were co-cultured with monocytes for 
3  days in the presence of pEXO. Flow cytometry analy-
sis showed that the frequency of  CD4+CD25+FoxP3+ 
Tregs was doubled when the cells were co-cultured 
with pEXO-educated monocytes (Fig.  4E). Consistently, 
cytokine profiling showed constrained secretion of cyto-
toxic cytokines, IFN-γ and TNF-α, in the spent medium 
of pEXO-educated monocytes-T cell co-culture (Fig. 4F).

pEXO triggers PD‑L1 expression via PTEN signaling 
pathway in human monocytes
Programmed cell death ligand-1 (PD-L1) is one of the 
modulators in peripheral tolerance and Tregs differentia-
tion [18]. Monocytes express PD-L1, which when bound 
to T cells suppresses T cell proliferation and activation 
[18]. The mRNA-seq data showed that the monocyte 
PD-L1 expression was significantly increased after pEXO 
treatment  (log2FC = 7.05) (Fig.  2A). The up-regulation 
of PD-L1 on pEXO-educated monocytes was confirmed 
by qPCR and flow cytometry (Fig.  5A, B). Consistently, 
PD-L1 was remarkably increased in monocytes of preg-
nant women compared to that of non-pregnant control 
of similar age (Fig. 5C).

Small RNA sequencing showed that miRNA was the 
largest group of non-coding RNA in the pEXOs (Addi-
tional file 1: Fig. S6A). A total of 75 miRNAs in pEXOs 
with > 5000 reads are shown in Additional file  4. Their 
miRNA target genes were predicted using sequence-
based database tools, including Targetscan, Mirdb, 
Mirtarbase. We then conducted Gene Ontology (GO) 
analysis and Kyoto Encyclopedia of Genes and Genomes 
(KEGG) pathway analysis on the 570 predicted target 
mRNAs of the miRNAs in pEXOs. The target genes were 
mainly enriched in GO terms related to transcription and 

(See figure on next page.)
Fig. 3 pEXO treatment reprograms  CD14+ monocytes to an M2 macrophage phenotype. A Heatmap showing M2 markers were elevated in 
pEXO‑educated monocytes. B Upregulation of M2‑macrophages markers, CD163, CD206, CD209, IL‑10, IDO‑1, CCL‑2 and CCL‑8; cell adhesion 
molecule ICAM‑1 and down‑regulation of antigen‑presenting molecules HLA‑DRA were validated by RT‑qPCR. (N = 8). C pEXO promoted 
macrophage polarization toward an M2 phenotype in human monocyte‑derived macrophages. Schematic illustration of the strategy of human 
monocyte‑derived macrophage and treatment. To induce macrophages polarization, monocytes were treated with 50 ng/ml M‑CSF for 7 days 
and the medium was refreshed on DAY 4. Cells were harvested after 24 h of treatment with 20 ug/ml pEXO on day 7. D Volcano plot of differential 
expressed genes of the pEXO‑polarized macrophages. E Heatmap of 10 M2 markers in pEXO‑polarized macrophages compared to control group. 
F Gene set enrichment analysis (GSEA) with published M2 macrophage signature gene set comparing pEXO‑polarized and control macrophages. 
G M2 macrophage markers: CD163, CD206, CD209, IL‑10, CCL‑2, CCL‑8, IDO‑1, and HLA‑DRA of pEXO‑polarized and control macrophages were 
determined by RT‑qPCR. Data are expressed as mean ± SD (n = 8–12). *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001 compared to the control 
group
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kinase/phosphatase activities (Additional file 1: Fig. S4B). 
The KEGG pathway analysis showed that the target genes 
of the miRNAs were primarily enriched in the miRNA 
in cancer, phosphatidylinositol 3-kinase (PI3K)-pro-
tein kinase B (AKT), mitogen-activated protein kinase 

(MAPK), Ras signaling pathway, etc. (Additional file  1: 
Fig. S4C).

Nine miRNAs were selected for validation based on 
high read count and literature review (Fig.  5D). miR-
NAs mimics were transfected into human monocytes 

Fig. 3 (See legend on previous page.)
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respectively. The transfection efficiency was determined 
by FAM3™ dye-labelled pre-miR and the efficiency 
was ~ 45% (Additional file  1: Fig. S4C). Transfection 
of miR10a-5p, miR10b-5p, miR22-3p and miR29a-3p 
enhanced the PD-L1 expression in primary monocytes 
(Fig. 5E). Among the 17 common target genes of miR10-
5p, miR22-3p and miR29a-3p predicated by TargetScan 
7.2, PTEN is well known to be involved in down-regu-
lating PD-L1 expression by inhibiting AKT phospho-
rylation (Fig. 5F) [19]. Of these miRNAs, the suppressive 
effect of miRNA-29a-3p on PTEN and PD-L1 expression 
in monocytes was confirmed by Western blot (Fig.  5G, 
H). Consistently, the monocytic PTEN levels of preg-
nant women were significantly lower when compared 
to that of non-pregnant controls (Fig.  5I, J). Together, 
our findings suggested that exosomal miRNA-29a-3p 
increased PD-L1 expression by down-regulating PTEN in 
monocytes.

Discussion
The maternal immune system is modified during preg-
nancy to tolerate the semi-allogeneic fetus [1]. The 
modifications of the immune system occur both at the 
maternal–fetal interface and the systemic circulation. 
How the maternal immune system tolerates the paternal 
antigens is still an enigma [1]. Here, we demonstrated 
that pEXOs induced maternal immunosuppression at 
systemic level by modulating monocytes and T cell phe-
notype/functions. More importantly, the pEXO effects 
were monocytes-dependent, indicating that the pEXO-
educated monocytes are indispensable for maternal 
tolerance establishment in humans (Fig.  6). The obser-
vations are in line with reports showing that monocyte/
macrophage depletion compromised reproductive per-
formance in mice [20, 21].

The release of exosomes is an important mean of inter-
cellular communication and exosomes can modulate lym-
phocyte and monocyte functions in different models [11, 
12]. During pregnancy, pEXOs are mainly synthesized by 
syncytiotrophoblast via the lysosomal pathway and are 
released into the maternal circulation. The levels of cir-
culating exosomes were 13.2-fold higher in pregnant than 
in non-pregnant women [22]. In this study, first trimester 
placenta explants were cultured under a hypoxia environ-
ment to imitate the in vivo condition [2] and pEXOs were 

isolated by differential ultracentrifugation. Compared to 
other pEXO isolation methods, the ultracentrifugation 
method is most widely used because of its consistency, 
reliability, easiness and high yield. Yet pEXOs isolated by 
different methods have unique biological effects [11]. The 
pEXOs in this study were characterized by three meth-
ods, namely expressions of specific markers, nanoparticle 
tracking analysis and electronic microscopy according to 
the International Society of Extracellular Vesicles guide-
lines [13]. However, the small size of the first trimester 
placental tissues obtained in the study forbid further 
characterization of the isolated pEXOs.

The regulatory role of exosomes in systemic immuno-
tolerance has been implicated in cancers [23]. Of inter-
est, monocytes are the primary cell type that internalizes 
cancer-derived exosomes in glioblastoma [24]. In our 
study, monocytes were the major cell type that interacted 
with pEXOs, and up to 95% of the monocytes uptook 
the PKH67-labelled exosomes. The pEXO-educated 
monocytes displayed immunosuppression phenotypes 
including expression of M-MDSC-associated markers, 
suppression of antigen-process and presentation asso-
ciated genes and MHC class II molecules. Consistently, 
the frequency of immunosuppressive monocytes, char-
acterized by  CD14+HLA-DR−/low, was increased in early 
pregnancy [15] and reduced MDSC levels in blood and 
endometrium were found in miscarriage patients when 
compared to the normal pregnant control [25].

The innate immune responses changed during preg-
nancy [26]. The numbers of circulating innate immune 
cells (e.g. monocytes and granulocytes) are higher in 
pregnant than in non-pregnant women, resulting in an 
increased number of total leukocytes in the former [27]. 
The innate immune cells also show phenotypic and func-
tional alternations during pregnancy. For instance, the 
circulating monocytes change their cytokine and oxygen 
radical production during pregnancy [26, 27]. Abnormal 
number or activities of monocytes/macrophages have 
been shown in several pregnancy complications [6, 7]. 
In preeclampsia, the monocytes are phenotypically and 
functionally activated as compared with those in normal 
pregnancy [27, 28].

In the current study, pEXO polarized macrophages to 
an M2-like phenotype with upregulation of M2 mark-
ers: CD163, CD206, CD209, IL-10 and IDO-1. GSEA and 

Fig. 4 pEXO‑educated monocytes facilitated immune tolerance by mediating T cell functions. A, B Representative histogram of CFSE‑labelled 
 CD4+ T cell and  CD8+ T cell proliferation; CFSE‑fluorescently labelled autologous T cells co‑culture with  CD14+ monocyte in the presence/
absence of 20 μg pEXO treatment in a ratio of 1:1. C pEXO‑educated monocyte inhibited autologous T cell proliferation in a direct co‑culture 
model. D Conditioned medium collected from pEXO‑educated monocytes had no effect on autologous T cells proliferation. E Flow cytometric 
analysis showing the increased population of Treg cells  (CD4+CD25+Foxp3+) in co‑culture of autologous T cells and pEXO‑educated monocytes. 
F The cytokine profile of supernatant of monocyte‑T cells co‑culture was analyzed by ELISA (IFN‑γ, TNF‑α, IL‑10 and TGF‑β). Data are expressed as 
mean ± SD (n = 4). *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001 compared to the control group

(See figure on next page.)
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Fig. 4 (See legend on previous page.)
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gene ontogeny analyses of the DEGs demonstrated that 
the pEXO-educated macrophages were similar to the 
IL-4/IL-13-treated M2a macrophages. Macrophages are 
broadly categorized into classically activated (M1) and 
alternatively activated macrophages (M2) [29]. Com-
pared with M1 macrophages, M2 macrophages have 
immunosuppressive capacities and promote Th2 immune 
responses [30]. Although dMs belong to neither the M1 
nor the M2 category [31], gene expression profiling of 
dMs shows an M2-dominant macrophages phenotype in 
the first trimester, characterized by expression of CD209 

and anti-inflammatory genes [32]. The polarization of 
dMs to an anti-inflammatory state in early gestation is 
critical for pregnancy success [11] and activation of dMs 
towards an M1 phenotype is associated with recurrent 
miscarriages [33]. Given the importance of dMs in preg-
nancy, further investigation is warranted to elucidate the 
underlying mechanism regulating the differentiation of 
monocytes to dMs.

Treatment with pEXO also significantly increased the 
PD-L1 expression of monocytes. PD-L1 is a member of 
the B7-CD28 family and is a ligand of PD-1 [34]. From 

Fig. 5 miRNA‑29a‑3p enhanced PD‑L1 expression by targeting PTEN expression. A Enhanced expression of PD‑L1 at mRNA level in pEXO‑educated 
monocyte (n = 8). B Flow cytometry analysis of the expression of PD‑L1 on pEXO‑educated monocytes. N = 3, each dot represents one sample. 
C Increased frequencies of  CD14+PD‑L1+ monocytes from pregnant women and non‑pregnant control. (Right). N = 11, each dot represents one 
sample. Non‑p: non‑pregnant; P: pregnant. D Representative histogram of PD‑L1 expression in monocyte after miRNAs transfection. E Quantitative 
analysis of PD‑L1 level in monocyte after miRNAs transfection. F Overlapped target genes between miRNA‑10‑5p, miRNA‑22‑3p and miRNA‑29‑3p 
by TargetScan 7.2 predication. G Western Blot analysis of PTEN expression after miRNAs mimics transfection. H Quantitative analysis of PTEN 
expression 24 h after miRNA‑29a‑3p mimics transfection. I The level of PTEN in monocytes of pregnant women and non‑pregnant women (P & 
Non‑P). J Quantitative analysis of PTEN expression of the circulating monocytes of pregnant women and non‑pregnant women. (N = 3) *p < 0.05, 
**p < 0.01, ***p < 0.001, ****p < 0.0001 compared to the control group
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the 4th month of gestation, the PD-L1 expression is sig-
nificantly enhanced in the placenta [35]. Recent stud-
ies demonstrate that the PD-L1/PD-1 pathway plays a 
role in establishing the unique phenotype of dMs, T cell 
homeostasis, peripheral tolerance and prevention of 
autoimmunity. Specifically, blocking the PD-L1/PD-1 
pathway activates the PI3K/AKT/m-TOR and MEK/
ERK signaling, changes the M2 phenotype of dMs to 
an M1 phenotype in  vitro and in  vivo [36], increases 
embryo resorption, abortions of allogeneic fetuses, 
reduces litter size, enhances expansion of Th1 cells, 
decreases number of Tregs and increase that of Th17 
cells at the feto-maternal interface in mice [37]

Apart from the innate immune response, pregnancy-
specific immune tolerance occurs in the T cells. The 
number of T cells is lower during pregnancy than 
before pregnancy [38]. Here we showed that the pEXO-
educated monocytes remarkably reduced CD3/CD28 
induced T cell proliferation. In addition, the levels of 
pro-inflammatory cytokines IFN-γ and TNF-α were 
reduced in the pEXO-educated monocytes, consistent 
with the impaired proliferation capacity. We also found 
that the inclusion of pEXO significantly reduced the 
proliferation of  CD3+CD8+ cytotoxic T cells in com-
parison to the untreated control. The observations are 
in line with the observed changes in subsets and func-
tional alterations of T-cell in pregnancy [38]. Compared 
to pre-pregnancy, the number of cytotoxic T cells was 
lower in the first trimester of pregnancy [39]. Upregula-
tion of effector T cells, such as Th1 and Th17 cells, and 
deficiency of Tregs are associated with implantation 

failure, recurrent spontaneous abortion, and pre-
eclampsia [3].

The pEXO-educated monocytes doubled the fre-
quency of  CD4+CD25+FoxP3+ Tregs in co-culture, sug-
gesting that the circulating pEXO-educated monocytes 
contribute to Treg differentiation. Tregs, constituting 
about 5–15% of the peripheral  CD4+ T cells [40], play 
a critical role in immune homeostasis and induction of 
maternal–fetal immunotolerance during pregnancy [41]. 
They strongly suppress the activation and proliferation 
of effector T cells and maintain immune tolerance by 
contact-dependent suppression or releasing anti-inflam-
matory cytokine IL-10 and TGF-b [42]. In human preg-
nancy, systemic and local expansion of the Treg pool 
occurs from the first trimester and peaks in the second 
trimester [43]. Abnormal function or a decreased num-
ber of Tregs is associated with pregnancy failure [44]. In 
mice, depletion of Tregs using anti-CD25 monoclonal 
antibodies induced implantation failure and abortion in 
allogenic pregnancies [45]. However, the origin of Treg 
cells in decidua and circulation during pregnancy is still 
unknown [46].

The action of the pEXO-educated monocytes on Tregs 
may be via increasing PD-L1 expression, which is nec-
essary for the development of Tregs. One study showed 
that PD-L1 utilized Tregs to control maternal anti-fetal 
T cells in allogeneic pregnancy [47]. Furthermore, PD-L1 
blockade reduces Tregs and increases the conversion of 
 CD4+Foxp3+ into IL-17-producing T cells [48]. In con-
trast, PD-L1-coated beads (artificial antigen present-
ing cells) induce Tregs proliferation in  vitro [18]. We 

Fig. 6 Schematic illustration showing the roles of pEXO on regulating maternal immune tolerance via reprogramming circulating monocytes. The 
maternal immune system needs to adapt to tolerate the semi‑allogeneic conceptus. During early pregnancy, pEXO facilitates the establishment of 
systemic immune tolerance by transforming monocytes to an immunosuppression phenotype, including the MDSC subset. These pEXO‑educated 
monocytes exhibited pleiotropic roles in promoting M2 macrophage polarization, suppressing T cell proliferation and inducing Treg cell 
differentiation
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speculate that PD-L1 was involved in pEXO-mediated T 
cell proliferation and elevated level of Treg cells. Inter-
estingly, we observed that four miRNAs enriched in 
pEXO: miR10a-5p, miR10b-5p, miR22-3p, miR29a-3p 
could increase PD-L1 expression in monocytes, and that 
miR29a-3p down-regulated PTEN, the upstream regula-
tory of PD-L1 [49, 50]. Together, our data indicated that 
pEXO-mediated PD-L1 upregulation on monocytes by a 
miR29a-3p/PTEN/PD-L1 signaling pathway.

In summary, our study demonstrated that mater-
nal monocytes facilitate the establishment of systemic 
immune tolerance by taking up pEXOs. The pEXO-
educated monocytes promoted Treg differentiation by 
upregulation of PD-L1 on monocytes. Mechanistically, 
exosomal miRNA-29a-3p enhanced PD-L1 expression 
via the PTEN signaling pathway. These results uncover 
the importance of pEXOs in regulating the maternal sys-
temic immune response during early pregnancy by repro-
gramming circulating monocytes. They form the basis for 
understanding the regulatory networks in the establish-
ment of maternal immune tolerance to the fetal allograft.

In the long term, the study proposed that pEXOs might 
have the potential to serve as a biomarker for the diag-
nosis and treatment of immune-associated pregnancy 
complications. For example, preeclampsia patients have 
increased maternal blood levels of pEV-derived nepri-
lysin [11, 12]. In addition, vaccination of immune cells 
treated with exosomes had shown promising effects for 
cancer treatment in mouse models [51].

Methods
Study subjects
Human placenta samples were collected from women 
undergoing surgical abortion in the first trimes-
ter (7–10  weeks) after written informed consent was 
obtained. The gestation age was determined by ultra-
sound assessment before the surgical abortion. After the 
operation, placental villi were collected, washed with 
sterile saline (0.9%) and transported to the laboratory on 
ice within 2 h. Blood samples from natural pregnant and 
nonpregnant women (age 25–40) were also collected with 
written consent for the project. The whole blood samples 
were collected into heparin tubes. Peripheral blood mon-
onuclear cells were obtained by Ficoll-Hypaque gradient 
centrifugation (Sigma) according to the manufacturer’s 
protocol.

Placental explant culture
Placenta tissues were washed with sterile PBS, the pla-
centa villi were then removed from the chorion fron-
dosum (villous chorion). A total of ~ 200  mg wet villi 
tissue was cultured in 40  µm cell strainer contain-
ing 7  ml DMEM/F12 medium supplemented with 5% 

exosome-free fetal bovine serum (EXO-FBS-250-1, SBI) 
and 1% penicillin–streptomycin/amphotericin B. The 
explants were cultured at 37 °C in a 2% oxygen environ-
ment, mimicking the in  vivo environment of placenta 
development [2]. The culture medium was replaced after 
3 h to remove the cell debris and apoptotic bodies, and 
the explants were cultured for a further 40  h to collect 
the pEXO.

Isolation of placenta‑derived exosomes
pEXO were collected by a standard serial centrifuga-
tion protocol (Fig.  1A) according to the International 
Society of Extracellular Vesicles guidelines [13]. In brief, 
conditioned media of placental villi were centrifuged at 
300g, for 10  min to remove the dead cells. Cell debris 
was removed after centrifugation at 2000g for 20  min. 
Microvesicles were collected by centrifugation at 16,500g 
min at 4  °C for 30  min. Lastly, the supernatant after 
microvesicles collection was centrifuged at 120,000g for 
120 min at 4 °C to obtain the pEXO. The isolated pEXO 
were washed with PBS twice, the protein concentration 
was measured by bicinchoninic acid (BCA) method, and 
stored at − 80 °C for future study.

Characterization of purified exosomes
The morphology of the isolated pEXO was accessed using 
transmission electron microscopy (TEM). Briefly, pEXO 
were fixed in 4% PFA overnight and then dropped on 
formvar carbon-coated nickel grids. After the grids were 
stained with 4% uranyl acetate and 2% methylcellulose, 
air-dried and visualized using a Philip CM 100 transmis-
sion electron microscope (Electron Microscope Unit, The 
University of Hong Kong). The size and concentration of 
the pEXOs were analyzed by NTA using ZetaView (Parti-
cle Metrix, Meerbusch, Germany).

For characterization of the exosome markers, pEXO 
proteins (20  μg per well) were resolved in 10% SDS-
PAGE for Western blot analysis using primary antibod-
ies against CD63, CD81, HSP70 in appropriate dilutions 
(Additional file 1: Table S1).

Non‑coding RNA sequencing
pEXO from five patients were pooled together. The miR-
NAs were extracted by mirVanaTM RNA Isolation kit 
(Thermo Fisher Scientific) according to the manufactur-
er’s protocol. The quality of small RNAs was determined 
by Nanodrop2000 (Thermo Fisher Scientific). The sam-
ples were submitted to Centre for PanorOmic Sciences, 
The University of Hong Kong for library preparation and 
sequencing. Briefly, 100  ng of small RNA was used as 
the template. Libraries were prepared by the  NEBNext® 
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Multiplex Small RNA Library Prep Set for Illumina (New 
England Biolabs, MA, USA).

Sequencing reads were first filtered for adapter 
sequences and low-quality sequences followed by retain-
ing reads with a read length ≥ 15 bp. Filtered reads were 
mapped to the mature miRNA sequences (miRBase v21) 
and unmapped reads were further mapped to hairpin 
miRNA sequences (miRBase v21). Subsequently, lefto-
ver reads were mapped to piRNA sequences (RNAcen-
tral) and rRNA sequences. Bowtie2 was used for the 
alignment using default parameters for strand-specific 
RNASeq. The biological functions of miRNAs were by 
mirPath v3.0, TargetScan 7.2 and Starbase 2.0.

Exosome interaction
pEXO were labelled with the CellTrace™ CFSE (Thermo 
Fisher) according to the manufacturer’s protocol. 
Interaction of the CFSE-labelled pEXO by peripheral 
blood mononuclear cells for 24  h was analyzed by flow 
cytometry.

Immune cell isolation
Human monocytes were purified from the buffy coat 
of healthy female donors by positive immunomagnetic 
selection, using  CD14+ microbeads, according to the 
manufacturer’s instructions (Miltenyi Biotec). CD14 
binding does not activate monocytes since it lacks a cyto-
plasmatic domain. Autologous human T cells were puri-
fied from the sample donor using immune-depletion on 
a Ficoll-Hypaque gradient (RosetteSep, Stemcell Tech-
nology) according to the manufacturer’s protocol. The 
enriched monocytes and T cells were resuspended in 
RPMI-1640 medium supplemented with 10% FBS.

pEXO treatment
Monocyte (1 ×  106 cells) were treated with pEXO (20 μg) 
for 24 h in our study and used for qPCR and flow cytom-
etry analysis.

pEXO‑polarized macrophages
M-CSF is highly expressed in decidua and promotes dM 
and M2 polarization [16]. Macrophages (2 ×  106 cells 
were differentiated from monocytes by treatment with 
50  ng/ml M-CSF (BioLegend, San Diego, CA, USA) 
for 7 days. The cells were further incubated with pEXO 
(20 µg/ml) on the 7th day for 24 h.

pEXO‑educated monocyte/T cell co‑culture
T cells (2 ×  105 cells) were cocultured with monocytes 
in a ratio of 1:1 and were stimulated with CD3/CD28 
microbeads, IL-2 (30 UI/ml) for 3 days. pEXO or pEXO-
educated monocytes were added to the co-culture sys-
tem. To study the potential suppressive effector of T cell 

proliferation, monocytes (2 ×  105 cells/100 μl) or mono-
cyte spent medium (100 μl) were added to the autologous 
T cells and cultured for 3  days. CFSE dye was used for 
tracking cell division according to the manufacturer’s 
protocol (Thermo Fisher Scientific). In brief, 1 ×  106  T 
cells were labelled with 5  mM CFSE in PBS for 20  min 
and the reaction was stopped by the RPMI-1640 medium 
supplemented with 10% FBS for flow cytometric analysis. 
Unstimulated CFSE-labelled T cells were used as non-
dividing control.

Reverse transfection of human monocytes with miRNA 
mimics
miRNA mimics transfection was performed using 
Lipofectamine RNAiMAX reagent. Briefly, monocytes 
(1 ×  106  cells/ml) were gently mixed with the miRNA 
mimics-Lipofectamine RNAiMAX mixture and incu-
bated for 24  h. Fluorescent pre-miNRAs (FAM3™ dye-
labelled, ThermoFisher, USA) were used as control. The 
transfection efficiencies were tested by flow cytometry.

Flow cytometry analysis
Cells were washed with ice-cold PBS after the treatments. 
For antibody staining, Fc receptors of monocytes were 
blocked with the Fc block (Biolegend) to avoid non-spe-
cific binding. Membrane proteins were stained for 30 min 
at 4  °C. Intracellular proteins were stained for 60  min 
at 4  °C after treatment with commercial fixation/per-
meabilization reagents (eBioscience) (Additional file  1: 
Table  S1). For the apoptosis assay, T cells were stained 
with YO-PRO-1 (Thermo Fisher Scientific) according 
to the manufacturer’s instructions. All flow cytometric 
measurements were performed by Cytoflex (Beckman 
coulter) and data were analyzed by flowJo v10 (Tree Star, 
Inc., Ashland, OR, USA).

Enzyme‑linked immunosorbent assay (ELISA)
The conditioned media of co-culture of pEXO-educated 
monocytes with T cells were collected. The level of IFN-
γ, TNF-α, IL-10 and TGF-β in the media were quantified 
by ELISA kits following the manufacturer’s instruction 
(eBioscience).

Quantitative PCR (qPCR)
Total RNA was isolated from  CD14+ monocytes using 
the illustra™ RNAspin mini kit (GE), and reverse tran-
scribed into first-strand complementary DNA (cDNA) 
with random primer using the PrimeScript RT rea-
gent kit (Takara). The samples were then analyzed in an 
Applied Biosystems QuantStudio5 Real-Time PCR sys-
tem (Thermo Fisher Scientific). 18S ribosomal RNA was 
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used as the internal control. For the primer information, 
please refer to Additional file 1: Table S2.

mRNA‑seq and bioinformatic analysis
Human monocytes were collected for mRNA isolation 
after pEXO treatment for 24 h. The quality of the isolated 
mRNA was determined by Nanodrop 2000. All samples 
were submitted to BGI Genomics (BGI Group, Shen-
zhen, China) for mRNA sequencing. The quality of raw 
sequencing data was first assessed using the fastQC (ver-
sion 0.11.8), before cleaning the data by the fastp (version 
0.20.0). Low-quality reads whose phred quality ≤ Q15 
were removed. The clean reads were aligned to the human 
reference genome (hg38) using the Hisat2 (version 2.1.0). 
Gene counts were calculated by the featureCounts (ver-
sion 1.6.4) [52]. To analyze the differential gene expres-
sion, the gene-level read count matrix was then imported 
into the R (version 4.0.3). In this process, the DEseq2 
(verst1sion 1.30.0) [53], edgeR (version 3.32.0) [54] and 
limma (version 3.46.0) [55] packages were used. DEGs 
with raw p-value < 0.001 and fold change contrast ≥ 16 
from each package were preserved. The intersect of the 
filtered DEGs from each package were selected as inter-
ested DEGs for each group comparison, with functional 
analysis (GO and KEGG analysis) by the clusterProfiler 
(version 3.18.1) [56]. Besides, the DEGs were used to plot 
heatmaps by the pheatmap (version 1.0.12) with scaling 
value of the normalized read count matrix. The analyzed 
data were deposited in the NCBI GEO database under 
the accession code GSE184195.

Statistical analysis
Data were expressed as mean ± standard deviation (SD), 
and analyzed by the Graph Pad Prism 7 (Graph Pad Soft-
ware Inc., CA, USA). All the data were analyzed by the 
Kolmogrov–Smirnov normality test followed by either 
the non-parametric Mann Whitney U test or the para-
metric Student’s t-test. p < 0.05 was considered as a sig-
nificant difference.
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