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Three birds with one stone: 
co‑encapsulation of diclofenac and DL‑menthol 
for realizing enhanced energy deposition, 
glycolysis inhibition and anti‑inflammation 
in HIFU surgery
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Abstract 

Despite attracting increasing attention in clinic, non-invasive high-intensity focused ultrasound (HIFU) surgery still 
commonly suffers from tumor recurrence and even matastasis due to the generation of thermo-resistance in non-
apoptotic tumor cells and adverse therapy-induced inflammation with enhanced secretion of growth factors in irradi-
ated region. In this work, inspired by the intrinsic property that the expression of thermo-resistant heat shock proteins 
(HSPs) is highly dependent with adenosine triphosphate (ATP), dual-functionalized diclofenac (DC) with anti-inflam-
mation and glycolysis-inhibition abilities was successfully co-encapsulated with phase-change dl-menthol (DLM) in 
poly(lactic-co-glycolic acid) nanoparticles (DC/DLM@PLGA NPs) to realize improved HIFU surgery without causing 
adverse inflammation. Both in vitro and in vivo studies demonstrated the great potential of DC/DLM@PLGA NPs for 
serving as an efficient synergistic agent for HIFU surgery, which can not only amplify HIFU ablation efficacy through 
DLM vaporization-induced energy deposition but also simultaneously sensitize tumor cells to hyperthermia by gly-
colysis inhibition as well as diminished inflammation. Thus, our study provides an efficient strategy for simultaneously 
improving the curative efficiency and diminishing the harmful inflammatory responses of clinical HIFU surgery.
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Introduction
Benefiting from the efficient sound-to-heat conver-
sion with outstanding temporal-spatial resolution, 
high-intensity focused ultrasound (HIFU) surgery is an 
emerging non-invasive treatment modality for localized 
tumor therapy [1–4]. Although promising and increas-
ingly used in clinic, the ultrasonic energy for HIFU 
surgery is inevitably attenuated by the different acousti-
cal impedance of human tissues, which could result in 
insufficient thermal necrosis from a single HIFU treat-
ment and may lead to a risk of residual tumor [5]. In 
addition, due to the irregular and ambiguous margins 
of tumor, ordinarily increasing the energy output of 
HIFU may also bring the adverse normal tissue injury 
as well as aggravate the pain of patients [6–11]. Moreo-
ver, clinical data have confirmed that tumor cells in the 
HIFU-irradiated central zones always experience ther-
mal coagulative necrosis accompanied by the release 
of their intracellular reactive oxygen species and other 
constituents which would trigger a cascade of inflam-
matory responses [12]. Although the complex relation-
ship between tumor cells and inflammation-related 
cytokines in the tumor microenvironment is still not 
fully understood, the post-treatment inflammation have 
been recognized as adverse effects which were help-
ful for stimulating tumor metastasis and recurrence [2, 
13–18]. Thus, simultaneously improving the curative 
efficiency and diminishing the harmful inflammatory 
responses of HIFU surgery is highly pursued.

Among various sensitized strategies for HIFU sur-
gery, the introduction of synergistic agents (SAs) based 
on biocompatible micro-/nanoparticles especially with 
some phase-change species has been demonstrated to 
be an efficient route for enhancing the energy deposi-
tion and ultrasonic cavitation in the desired tissues 
[19–23]. Despite largely improved ablation outcomes 
can be obtained, the effectiveness of HIFU enhance-
ment is only one-off due to the complete exhaustion 
of inner core media once the conventional SAs meet 
HIFU radiation, which could only realize transient cell 
ablation. Furthermore, the subsequent adverse harm-
ful inflammatory responses are still in suspense under 
the utilization of conventional SAs. On the other hand, 
tumor cells that apart from the HIFU irradiated cen-
tral zone would commonly activate and up-regulate 
the expression of intracellular heat shock proteins 
(HSPs) to establish resistance to heat. As the synthesis 
of HSPs is highly dependent on adenosine 5′-triphos-
phate (ATP), blocking the ATP production would be a 
feasible strategy for weakening the heat-resistance of 
tumor cells. In comparison to normal tissues, tumor 
cells are generally characterized with over-expressed 
glucose transport proteins (Gluts) to uptake much 
more glucose for rapid growth through energy-ineffi-
cient aerobic glycolysis [24, 25]. Therefore, it is logical 
that inhibiting the overexpression of Gluts in tumor 
cell membranes would reduce the intracellular uptake 
of glucose and the production of ATP [26–31], which 
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would be beneficial for lowering the expression of HSPs 
and then sensitizing tumor cells to HIFU surgery.

In this work, diclofenac (DC, a commonly used anti-
inflammatory drug in clinic and small molecule inhibitor 
with high selectivity toward Glut1[32]) and dl-menthol 
(DLM, a natural phase-change medium) were co-encap-
sulated in poly(lactic-co-glycolic acid) (PLGA) nanopar-
ticles (DC/DLM@PLGA NPs) via the typical oil-in-water 
emulsion method for simultaneously improving the 
curative efficiency and diminishing the harmful inflam-
matory responses of HIFU surgery (Scheme  1a). Once 
the as-prepared DC/DLM@PLGA NPs accumulated in 
the tumor region, the thermal effect of HIFU irradia-
tion would induce the phase transition of DLM, which 
could change the acoustic environment of the tumor site 
to enhance the ablation effect of HIFU surgery. Subse-
quently, the released DC would result in down-regulation 
of Glut1 and consequently inhibit glucose metabolism 
as well as ATP-dependent HSPs synthesis. Meanwhile, 
the anti-inflammatory effect of DC reduced the adverse 
inflammatory responses after HIFU surgery (Scheme 1b).

Result and discussion
SEM and TEM (Fig.  1a, b) were firstly used to confirm 
that the as-prepared DC/DLM@PLGA NPs were suc-
cessfully developed with a relatively uniform spherical 
morphology. Due to the existence of PVA molecules on 
their surfaces, the DC/DLM@PLGA NPs were homo-
geneous dispersed which could be confirmed by the 
typical Tyndall phenomenon as well as an average 
hydrodynamic diameter of around 400 nm (Fig. 1c) and 
negatively charged with a zeta potential of − 27.9 mV 
(Fig. 1d), respectively. To prove the successful loading of 
volatile DLM, the aqueous solution of obtained nanopar-
ticles was firstly heated from room temperature to 60 °C 
(the strong volatility of DLM render them the ability to 
bubbling at this temperature) and then the bubble-gen-
eration performance was checked by an inverted fluores-
cence microscope. As shown in Fig.  1e, the appearance 
of many bubbles after heating at 60  °C was ascribed to 
the liquid-gas phase transition of DLM, indicating its 
successful encapsulation in as-prepared NPs which was 
further confirmed by the result of thermogravimetric 

Scheme 1  Schematic illustration of sensitizing tumor cells to HIFU by tumor glycolysis inhibition via DC/DLM@PLGA NPs. a The synthesis process 
of PLGA NPs encapsulating DLM and DC; b principles of enhancing HIFU-mediated anti-tumor efficacy and decreased inflammation
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analysis showed that the loading content of DLM in 
DLM@PLGA NPs was approximately 11.8 wt% (Fig. 1f ). 
Benefiting from the characterized UV-vis absorption 
spectrum of DC, the appearance of an absorption peak 
at 277 nm demonstrated the successful encapsulation of 
DC in obtained DC/DLM@PLGA NPs (Fig. 1g), and the 
loading content of DC was calculated approximately as 
10.6% (Additional file 1: Figure S1). Furthermore, the as-
prepared DC/DLM@PLGA NPs exhibited good disper-
sity and stability in various media without obvious size 
change or macroscopic aggregates (Fig.  1  h, Additional 
file 1: Figure S2).

Next, the in vitro synergistic effect of DLM was inves-
tigated by using the established experimental platform 
(Additional file  1: Figure S3). As shown in Additional 

file 1: Figure S4, the temperature elevation of PBS solu-
tion under HIFU irradiation showed a power-depend-
ent manner and the result demonstrated that the phase 
transition temperature of DLM could be easily achieved 
under HIFU irradiation with power input of 25 W for less 
than 2 min. Without the existence of DLM, the tempera-
ture elevation of PLGA aqueous solution (10 mg/mL, 600 
µL) could achieve 29.2 °C under 4 min HIFU irradiation 
(25  W), while the DLM@PLGA and DC/DLM@PLGA 
solution increased by 34.5 and 34.9  °C, respectively 
(Fig. 1i; Additional file 1: Figure S5). This DLM-enhanced 
temperature elevation could be attributed to the gasified 
DLM microbubbles which would intercept partial energy 
of HIFU, reducing the energy loss to the outside and 

Fig. 1  a SEM and b TEM images of DC/DLM@PLGA NPs. c hydrodynamic diameter distribution (inset: Tyndall effect of DC/DLM@PLGA NPs) and 
d zeta potential. e Microscopy images of DC/DLM@PLGA NPs under heating for 60 s. f TG curve of DC/DLM@PLGA NPs and g UV-vis spectra. h 
Stability of DC/DLM@PLGA NPs in various media. i Temperature elevation curves of different NPs under HIFU irradiation (power: 25 W; duty cycle: 
50%; 3 s on and 3 s off ). (Inset: experimental setup for monitoring temperature change by an infrared camera)
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enhancing the acoustic cavitation effect of the ultrasound 
[33].

Due to the main driven force for DC release was from 
solid–liquid–gas tri-phase transition of DLM (Fig.  2a), 
the in  vitro DC release behaviors were then first inves-
tigated at various temperatures. As shown in Fig. 2b, the 
amount of released DC was positively correlated with 
solution temperature. For instance, only 23.6% of DC 
(these DC molecules were speculated to be encapsulated 
in PLGA network) was released from the DC/DLM@
PLGA NPs within 48  h when the solution temperature 
was lower than the melting point of DLM. Once the tem-
perature exceeds the melting point of DLM, the amount 
of released DC increased rapidly. Particularly, due to the 
strong volatility of DLM and bubbling ability, heating the 
aqueous solution of DC/DLM@PLGA NPs to 60 °C could 
result in approximately 69.3% of DC release within 12 h. 
Inspired from the thermo-sensitive DC release profiles, 
HIFU, as a targeted heat source, was then expected to be 
appropriate for inducing more controllable drug release 
as previously reported [34]. With controlled HIFU irra-
diation for three rounds (5 min each round, power: 25 W; 
duty cycle: 50%; 3 s on and 3 s off), an enhancement of 
around 15% of DC release was successfully achieved by 
the volatilization of DLM caused by HIFU-generated 

heat and the mechanical effect of HIFU (Fig.  2c) [35], 
further confirmed by the structure destruction of DC/
DLM@PLGA NPs (Fig.  2d). In addition, the bubbling 
performance of DC/DLM@PLGA NPs under 60 °C water 
bath was further confirmed by naked eyes and monitored 
by a clinical ultrasound imaging system (Sonix-Touch). 
Satisfactorily, sustained acoustic signal increments in the 
in  vitro contrast ultrasound image of DC/DLM@PLGA 
NPs, indicating their good potential for real-time moni-
toring and programmed DC release (Fig.  2e, Additional 
file 1: Figure S6).

The biocompatibility of nanomaterials is a crucial fac-
tor that should be firstly considered for potential clinical 
applications. Following the typical protocol of hemo-
lytic assay, the hemolysis rate of as-prepared DC/DLM@
PLGA NPs was determined to be around 4.6% (lower 
than the threshold value of 5%) even at a dose as high as 
800  µg/mL, suggesting the NPs would be relatively safe 
in the blood circulation (Fig.  3a). Consistent result was 
obtained by co-incubation of HUVECs (used here as a 
normal cell line) with gradient concentrations of NPs. As 
shown in Fig. 3b and c, both standard MTT and CCK-8 
assays demonstrated the good cytobiocompatibility of 
DC/DLM@PLGA NPs as other reported PLGA-based 
nanoplatform [36, 37]. As the generation of HSPs is 

Fig. 2  a Schematic illustration of DC release from DC/DLM@PLGA NPs under HIFU irradiation. b DC release profiles under different temperatures 
and c DC release performances from PLGA NPs triggered by HIFU irradiation. d TEM image of typical DC/DLM@PLGA NPs after HIFU irradiation. e 
Sustained ultrasonic contrast images of DC/DLM@PLGA NPs (10 mg/mL, 3 mL) in a 60 °C water bath
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Fig. 3  a Hemolysis test of DC/DLM@PLGA NPs at different concentrations. b MTT and c CCK-8 assays. d Schematic diagram of experimental setup 
for 4T1 cells exposed to 50% duty cycle HIFU at 25 W. e Cytotoxicity of different DC/DLM@PLGA NPs with gradient concentrations. f Intracellular 
glucose contents of 4T1 cells and HUVECs after co-incubation with DC/DLM@PLGA NPs for 24 or 48 h. g Live/Dead fluorescent staining of 4T1 cells 
in PBS, DC/DLM@PLGA NPs, and DC/DLM@PLGA NPs + HIFU groups (60 and 120 s), Scale bar: 100 μm. h Intracellular ATP content measurement and 
i analysis of HSPs expression after treatment with DC/DLM@PLGA NPs, untreated cell served as a control group. j Schematic representation of the 
process of DC-induced reduction in protein synthesis
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highly ATP-dependent, the Glut1 inhibiting property 
of DC has been reported to be a potential strategy for 
weakening the glucose metabolism and thus reducing 
the expressed ATP levels [38]. This inhibitory effect was 
more obvious on tumor cells with over-expressed Glut1 
molecules, which was also consistent with cell-prolif-
eration inhibiting effect of DC confirmed by the typical 
MTT assay (Additional file 1: Figure S7) [39]. Therefore, 
the in vitro synergistic effect from HIFU-induced hyper-
thermia and glucose metabolism inhibition via DC was 
then investigated by a self-made experimental set-up 
(Fig. 3d). In comparison to reserved 80% cell viability of 
DC/DLM@PLGA treated only group, a much more cell 
killing effect was obtained for DC/DLM@PLGA NPs 
group under HIFU irradiation (Fig.  3e). In comparison 
to the DLM@PLGA NPs treated group, the intracellular 
glucose content in 4T1 tumor cells decreased to 70.9 and 
44% after treatment with DC/DLM@PLGA NPs for 24 
and 48 h, respectively, which was also lower than the glu-
cose content in HUVECs (Fig. 3f ). In addition, the syner-
gistic anti-tumor effect of HIFU surgery and released DC 
was further visually confirmed by Live/Dead cell stain-
ing assay. As shown in Fig.  3g, longer HIFU irradiation 
resulted in more cell death (red fluorescence). In com-
parison to DLM@PLGA NPs (Additional file  1: Figure 
S8), DC/DLM@PLGA NPs could induce more acute cell 
necrosis under HIFU irradiation which was ascribed to 
the down-regulated HSPs level in DC-treated 4T1 tumor 
cells. To verified the detailed molecular mechanisms, 
intracellular ATP and HSPs expression levels were then 
further detected by using ATP kit and Western blotting 
analysis, respectively. As shown in Fig.  3h, after being 
incubated with DC/DLM@PLGA NPs, striking decrease 
in intracellular ATP content was observed with increased 
incubation time while the ATP level of normal cells after 
treated with DC/DLM@PLGA NPs was slightly higher 
than tumor cells [40, 41]. Due to its highly ATP-depend-
ent performance, the intracellular HSP70 synthesis was 
further determined by typical Western-blot assay and 
significant reductions of HSP70 levels were observed in 
4T1 tumor cells treated with DC/DLM@PLGA NPs for 
24 and 48 h, respectively (Fig. 3i). Thus, the mechanism 
of thermosensitive tumor cells could be attributed to the 
fact that the released DC molecules inhibited the glucose 
uptake of tumor cells and subsequently sensitized tumor 
cells to HIFU surgery by down-regulating the expression 
of ATP-dependent thermoresistant HSPs (Fig. 3j).

Encouraged by the phase transition capacity of DLM 
after being heated, DLM-based NPs are supposed to 
enhance the tumor ablation through DLM vaporization 
induced energy deposition by both thermal and mechani-
cal effect of HIFU irradiation. After injecting with 100 
µL of PBS, PLGA NPs, DLM@PLGA NPs or DC/DLM@

PLGA NPs solution, the pork livers were irradiated with 
HIFU (25 w, 50% duty cycle, 3 s on and 3 s off) for 2 min 
(Fig. 4a). The area of thermal ablation in each liver slice 
was then measured for characterizing the synergistic 
ablation effect. The digital photographs (Fig. 4b) and cal-
culated volume of thermal ablation areas (Fig. 4c) clearly 
showed that the ablated areas of pork livers with DLM-
encapsulated PLGA NPs (including DLM@PLGA and 
DC/DLM@PLGA NPs) were significantly larger than 
those groups without DLM, confirming the enhanced 
ablation effect of vaporized DLM during localized HIFU 
surgery. To deeper understand the cell destruction pro-
cess in the HIFU irradiated zone, typical H&E histologi-
cal staining of pork liver slices were then further carried 
out. As shown in Fig. 4d, in comparison to control groups 
without treated with volatile DLM molecules, the typical 
cytological structures (such as cell membrane, nuclei) of 
liver cells were destructed at the HIFU irradiated central 
zone in the DLM-containing groups, indicating a typical 
feature of coagulative necrosis [42, 43].

In vivo tumor inhibition efficacy of HIFU surgery com-
bined with DC/DLM@PLGA NPs was then further eval-
uated by 4T1 breast tumor-bearing mice. As shown in 
Fig. 5a, the mice were randomly divided into six groups 
treated with PBS, DLM/PLGA NPs, DC/DLM@PLGA 
NPs, PBS + HIFU, DLM/PLGA NPs + HIFU, and DC/
DLM@PLGA NPs + HIFU, respectively. The treatment 
settings was shown in Additional file 1: Figure S9. With-
out HIFU irradiation, negligible tumor inhibition effect 
could be found in the group treated with DLM@PLGA 
NPs, indicating the good biocompatibility of PLGA-based 
nanocarriers as previously reported [44, 45]. As shown in 
Additional file  1: Figure S10, an in  vivo imaging system 
(IVIS) was further used to examine the distribution of 
fluorescent Cy5.5@PLGA NPs (which was used as a flu-
orescent substitution of PLGA-based NPs in this study) 
in tumor-bearing mice. After intratumoral injection, the 
Cy5.5@PLGA NPs were almost entirely retained at the 
tumor sites rather than moving to other vital organs, 
guaranteed the negligible side effects. In consistence with 
the in  vitro cell proliferation-inhibiting performance, 
the tumor growth in the DC/DLM@PLGA NPs treated 
group was slightly inhibited (Fig. 5b). Satisfactorily, either 
tumor volume or weight has been observed to be sig-
nificantly decreased in the presence of HIFU irradiation 
(Fig. 5c and d). As verified in in vitro experiments, DLM@
PLGA NPs exhibited enhanced tumor inhibition efficacy 
due to the DLM vaporization induced energy deposition 
under HIFU irradiation, which was supported by a signif-
icant increase in the grayscale of ultrasound images after 
HIFU exposure (Additional file  1: Figure S11), and the 
further cooperation with DC yielded the optimal tumor 
inhibition effect without obvious recurrence during the 
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two weeks treatment period. Moreover, typical haema-
toxylin–eosin (H&E) staining of the tumor slices con-
firmed that cells appeared obviously shrunk and nuclei 
ruptured after DC/DLM@PLGA + HIFU treatment, 
which were also observed from the standard TUNEL and 
Ki-67 staining results (Fig.  5e). Although hyperthermia 
has achieved remarkable efficacy in tumor treatment, the 
acute inflammation induced by the release of intracel-
lular ingredients associated with high temperature also 
may lead to tumor recurrence and metastasis due to the 

adverse inflammation. As DC is an anti-inflammatory 
drug widely used in clinic practice by inhibiting cycloox-
ygenase synthesis [46, 47], in the mean time, numerous 
studies have reported that in an inflammatory environ-
ment, massively expressed neutrophil extracellular bac-
tericidal networks (NETs) promote tumor metastasis 
by inducing inflammatory responses characterized by 
up-regulation of COX2 (cyclooxygenase 2) [48]. Thus, 
DC-encapsulated DLM@PLGA NPs with the property 
of inhibition to inflammation after HIFU hyperthermia 

Fig. 4  a Schematic diagram of experimental setup for in vitro pig liver ablation. b Digital photographs of the ablation areas of pig livers after 
injection of 200 µL solution of PBS, PLGA, DLM@PLGA, or DC/DLM@PLGA NPs and irradiation with HIFU at 25 W and 50% duty cycle for 2 min. c 
Corresponding calculation of the ablation volumes. d H&E histological staining of pork liver. Scale bar: 50 μm
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was desired, which may contribute to the suppression 
of tumor recurrence. After being irradiated by HIFU for 
24 h, the serum of mice was taken to detect its levels of 

inflammatory cytokines. As shown in Fig.  6a–c, HIFU-
treated mice with injection of PBS or DLM@PLGA NPs 
had been detected with significant increases in the level 

Fig. 5  a Schematic illustration for experimental design. b Changes in tumor volumes in different groups of tumor-bearing mice after treatment 
(*p < 0.05, **p < 0.01). c Typical images to tumor tissues. d Average tumor weight obtained on the 14th day (*p < 0.05, **p < 0.01); (e) Typical H&E, 
TUNEL and Ki67 staining of tumor slices. Scale bar: 50 μm
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of TNF-α, IL-6, and IL-1β. In dramatic contrast, benefit-
ing from the anti-inflammatory property of DC, the lev-
els of inflammatory cytokines in the DC/DLM@PLGA 
NPs + HIFU group was significantly decreased. Similarly, 
immunohistochemical staining of TNF-α, IL-6, and IL-1β 
also confirmed that DC/DLM@PLGA NPs could effec-
tively alleviate the inflammation caused by HIFU hyper-
thermia (Fig.  6d). Moreover, the results of body weight, 
pathological examination and blood biochemical analysis 
of the main organs of mice after the 14 days treatments 
showed that DC/DLM@PLGA NPs were negligible toxic 
which could have great potential for clinical applica-
tions (Additional file  1: Figures  S12–S14). Furthermore, 
survival analysis also illustrated better therapeutic activ-
ity of HIFU jointed with DC/DLM@PLGA NPs (Addi-
tional file  1: Figure S15). After counting the changes in 
tumor volume of each mouse after treatment in different 
groups, we found that compared with other groups, the 
tumor recurrence of the mice in the DC/DLM@PLGA 
NPs group was delayed to a certain extent, which may be 

attributed to the anti-inflammatory effect of DC (Addi-
tional file 1: Figure S16).

Conclusions
In summary, dual-functionalized DC with anti-inflam-
mation and glycolysis-inhibition abilities were success-
fully co-encapsulated with phase-change medium DLM 
in PLGA NPs to realize improved HIFU surgery with-
out causing adverse inflammation. The solid-liquid-gas 
transition of DLM would not only enhance the energy 
deposition in tumor region during HIFU surgery but also 
promote the release of encapsulated DC. As a welfare, 
the released DC molecules inhibited the glucose uptake 
of tumor cells and subsequently sensitized tumor cells to 
HIFU surgery through down-regulating the expression 
of thermo-resistant HSPs. Meanwhile, the anti-inflam-
matory DC could effectively reduce the occurrence of 
adverse inflammation caused by HIFU induced coagula-
tive necrosis. Thus, as a proof-of-concept study, our work 
provides a efficient strategy for simultaneously improving 

Fig. 6  Detection of serum inflammatory cytokines, including a TNF-α, b IL-6 and c IL-1β in BALB/c mice after different treatments (*p < 0.05, 
**p < 0.01). d Immunohistochemical staining of typical inflammatory cytokines. Scale bar: 50 μm
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the curative efficiency and diminishing the harmful 
inflammatory responses of clinical HIFU surgery.
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