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Self‑adjuvanting cancer nanovaccines
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Abstract 

Nanovaccines, a new generation of vaccines that use nanoparticles as carriers and/or adjuvants, have been widely 
used in the prevention and treatment of various diseases, including cancer. Nanovaccines have sparked considerable 
interest in cancer therapy due to a variety of advantages, including improved access to lymph nodes (LN), optimal 
packing and presentation of antigens, and induction of a persistent anti-tumor immune response. As a delivery 
system for cancer vaccines, various types of nanoparticles have been designed to facilitate the delivery of antigens 
and adjuvants to lymphoid organs and antigen-presenting cells (APCs). Particularly, some types of nanoparticles are 
able to confer an immune-enhancing capability and can themselves be utilized for adjuvant-like effect for vaccines, 
suggesting a direction for a better use of nanomaterials and the optimization of cancer vaccines. However, this role 
of nanoparticles in vaccines has not been well studied. To further elucidate the role of self-adjuvanting nanovaccines 
in cancer therapy, we review the mechanisms of antitumor vaccine adjuvants with respect to nanovaccines with 
self-adjuvanting properties, including enhancing cross-presentation, targeting signaling pathways, biomimicking of 
the natural invasion process of pathogens, and further unknown mechanisms. We surveyed self-adjuvanting cancer 
nanovaccines in clinical research and discussed their advantages and challenges. In this review, we classified self-
adjuvanting cancer nanovaccines according to the underlying immunomodulatory mechanism, which may provide 
mechanistic insights into the design of nanovaccines in the future.
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Introduction
With the successful identification of tumor antigens, 
personalized neoantigen vaccines and immune check-
point inhibitors that can reverse tumor-induced immune 
exhaustion, cancer vaccines have re-emerged as a prom-
ising tool for cancer immunotherapy [1]. Cancer vaccines 
are active immunotherapies using tumor cells, exosomes, 
peptides, proteins, and/or nucleic acid sequences that 
contain tumor-specific antigens (TSA) or tumor-asso-
ciated antigens (TAA) to induce a specific immune 
response and eventually inhibit tumor growth [2]. The 
development of an efficacious vaccine against the viral 
pathogen severe acute respiratory syndrome corona-
virus-2 (SARS-CoV-2) was unprecedented in terms of 
scale and speed, which has further accelerated the devel-
opment of cancer vaccines [3, 4]. BioNTech-Pfizer and 
Moderna’s mRNA vaccine are based on lipid nanopar-
ticles (LNP) without an exogenous traditional vaccine 
adjuvant, showcasing the potential for new approaches to 
develop effective vaccines [5]. Cancer vaccines have been 
explored as a potentially promising cancer treatment 
strategy with broad prospects for clinical application [6, 
7].

The addition of adjuvants into the vaccine components 
is to enhance the strength, breadth, and durability of the 
immune response induced by them [8, 9]. Aluminium 

was the first adjuvant discovered empirically and is now 
widely considered and used for vaccine development [10]. 
Aluminum facilitates the formation of antigen depots, 
enhances antigen transport, and promotes the antigen 
uptake and presentation by macrophages, and preferen-
tially induces Th2 cells, effectively activates inflammatory 
signals and immunity [11]. Oil-in-water emulsions are 
another example of an empirically validated adjuvant that 
promotes the antigen uptake by dendritic cells (DCs), 
and provides danger signals by inducing the release of 
ATP [12]. Aluminum based adjuvants and oil-in-water 
emulsion based adjuvants, like MF59, and also liposomal 
adjuvants like AS01 have been licensed for human vac-
cines [13]. In cancer vaccines, polyriboinosinic–polyri-
bocytidylic acid [poly(I:C)] and its derivative poly-ICLC 
which are synthetic mimics of viral dsRNA polymers, are 
often used as potent adjuvants [14, 15].

Although adjuvants have been examined, the clinical 
transformation of cancer vaccines still faces many obsta-
cles, including the highly immunosuppressive tumor 
microenvironment, down-regulation of major histocom-
patibility complex (MHC) class I (MHC-I) on cancer 
cells, ineffective activation of APCs, and inability to acti-
vate antitumor immunity [16]. Advances in nanotechnol-
ogy have led to the development of nanovaccines that not 
only can overcome the drawbacks of traditional vaccines, 
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but also possess advanced modulation abilities [17]. As a 
vaccine delivery system, nanoparticles can achieve supe-
rior efficacy for several reasons: (1) Nanoparticles can 
trigger tumor antigen release in situ to enhance immune 
response and load antigen and adjuvant simultaneously 
to effectively activate APCs, avoiding immune tolerance 
caused by immature APCs directly phagocytizing anti-
gen [18, 19]. (2) The use of nanoparticles often offers 
better spatial and temporal delivery of vaccines [20]. Vac-
cine accumulation in LN can be significantly enhanced 
by manipulating the size, charge and other physical and 
chemical features of nanoparticles [21, 22]. Compared 
with free antigen, nanoparticles with sizes between 20 
and 100  nm can be absorbed and retained within lym-
phatics [23]. As well as size, efficient LN accumulation 
and APCs uptake can be achieved by adjusting the sur-
face charge [24]. Furthermore, LN stromal and immune 
cells, especially APCs, are essential for inducing certain 
types of adaptive immune response. Through the sur-
face chemical decoration of nanoparticles, mannosylated 
nanovaccines achieve APC-targeting and cross-presen-
tation capacity [25]. (3) Nanoparticles provide different 
administration methods, including subcutaneous admin-
istration, intranasal administration and oral administra-
tion [26]. It is worth noting that different administration 
methods face different immune environments. (4) Adju-
vants can be delivered more precisely and with greater 
stability using nanomedicine platform [27].

In addition to serving as a delivery system, nanopar-
ticles also have the ability to trigger an array of immune 
response, and can themselves be used as adjuvants of 
vaccines [28]. Herein, we consider self-adjuvanting nano-
vaccines, to be comprised of nanomaterials with intrinsic 
immunostimulatory activity that may not need the use of 
additional adjuvant, or at least can minimize the dosage 
of additional adjuvants. This self-adjuvanting property 
of nanovaccines for cancer therapy has been reported 
but not yet been well explored. In this review, we focus 
on the mechanisms of existing adjuvants and self-adju-
vanting nanovaccines for cancer therapy, self-adjuvanting 
nanovaccines in clinical research, and the advantages and 
challenges of self-adjuvanting nanovaccines in cancer 
therapy.

Mechanism of vaccine adjuvants
Schijns classified the mechanism of adjuvants according 
to immunological concepts and defined five categories 
of adjuvants (Fig. 1): (1) adjuvants that facilitate antigen 
uptake, transport and presentation by APCs; (2) adju-
vants that show a depot effect of antigen depot formation 
and prolonged antigen delivery; (3) adjuvants that tar-
get the pattern recognition receptor (PRR) to activate an 

inherent immune response; (4) adjuvants that promote 
APC polarization, T cell differentiation and B cell activa-
tion; (5) adjuvants that provide the danger signal of tissue 
damage or increased stress [29].

Adjuvants that target PRR, such as Toll-like recep-
tors (TLRs), NOD-like receptors (NLRs), and RIG-I-like 
receptors (RLRs), have already been widely applied [30]. 
TLRs located on the surface of APC (TLR2, TLR4, TLR5) 
or endosomes (TLR3, TLR7, TLR8, TLR9) are targets of 
adjuvants and include Pam3Cys (TLR2 ligand), Poly(I:C) 
(TLR3 ligand), monophosphoryl lipid A (MPL; TLR4 
ligand), flagellin (TLR5 ligand), imiquimod (TLR7/8 
ligand), and CpG oligodeoxynucleotides (ODNs; TLR9 
ligand) [31]. When activated, TLRs recruit a group 
of adaptors, including myeloid differentiation factor 
88 (MyD88), Toll-interleukin receptor (TIR) domain 
containing adaptor protein (TIRAP), TIR-domain-
containing adaptor inducing interferon-β (TRIF), and 
TRIF-related adaptor molecule (TRAM), and then acti-
vate downstream signal transduction, thereby simultane-
ously activating the corresponding transcription factors, 
consequently leading to the secretion of chemokines 
and cytokines [32]. In the same way, adjuvants that tar-
get NLRs, such as muramyl dipeptide [33], and adjuvants 
that target RLRs, such as M8 [34], also activate the innate 
immune response and produce an immune-enhancing 
effect.

Mechanism of self‑adjuvanting nanovaccines 
for cancer therapy
Nanoparticles can have an immune-enhancing effect 
as adjuvants in nanovaccines for cancer therapy and 
improve the anti-tumor effect (Table  1). According to 
the mechanism underlying their self-adjuvanting prop-
erties, nanovaccines can be divided into four categories: 
(1) nanovaccines that enhance cross-presentation, which 
promote exogenous cancer antigens taken up by DCs 
and cross-presented for CD8+ T cell priming [35]; (2) 
nanovaccines that target the signaling pathways of the 
immune response; (3) nanovaccines that mimic desirable 
chemical and biological properties in nature; (4) nano-
vaccines with unknown mechanisms.

Enhancing cross‑presentation
The classical antigen presentation pathway is the presen-
tation of endogenous antigens by MHC class I molecules 
to activate CD8+ T cells and the presentation of exog-
enous antigens by MHC class II molecules to activate 
CD4+ T cells [36]. Cross-presentation empowers DCs 
to bind foreign antigens to MHC class I molecules, thus 
activating CD8+ T cells [35]. Cross-presentation allows T 
cells to be activated in a diversified manner, orchestrating 
specific humoral and cellular immunity, and contributing 
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to an anti-tumor immune response [37]. Effective cross-
presentation is crucial for vaccination against cancer and 
infections caused by intracellular viruses and bacteria. 
Inspired by this strategy, a variety of nanovaccines has 

been developed to enhance cross-presentation and prim-
ing of CD8+ T cells [38]. Indeed, some self-adjuvanting 
nanovaccines for cancer therapy can enhance cross-pres-
entation (Fig. 2A).

Fig. 1  Signaling pathways in vaccine adjuvant-activated APCs. APC antigen presenting cells; TLR Toll-like receptors; MyD88 myeloid differentiation 
factor 88; TIRAP Toll-interleukin receptor (TIR) domain containing adaptor protein; TRAM TIR-domain-containing adaptor-inducing interferon-β 
(TRIF); and TRIF-related adaptor molecule
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Superparamagnetic iron oxide nanoparticles (SPIO) 
are biocompatible and have been widely used in medi-
cal imaging and drug delivery [39, 40]. SPIO is a stand-
ard agent used in visualization research of vaccines, 
such as for the labeling of DCs to trace their migration 
to LN [41]. Recently, it has been reported that SPIO can 
enhance the intracellular delivery of antigens into APC by 
cross-presentation and that SPIO have the latent capacity 
to be a vaccine adjuvant [42]. Interestingly, in this study, 
positively charged SPIO enhanced cross-presentation, 
which resulted from increased cytosolic antigen delivery, 
while negatively charged SPIO inhibited the functions of 
DCs by autophagy [42]. In another study, Liu et al. found 
that the enhancement of cross-presentation by SPIO is 
related to IL-1β activity. Optimal IL-1β improved cross-
presentation, while excess IL-1β induced by negatively 
charged SPIO inhibited this process [43]. SPIO-ovalbu-
min (OVA) nanovaccine, composed of OVA antigen and 
Fe3O4 nanoparticles, has the ability to promote the acti-
vation of APCs and the production of Th1 bias immune 
cytokines. These are secreted by macrophages and DCs, 

which significantly inhibits the growth of tumors after 
intratumoral injection compared with controls [44]. In 
this instance, SPIO serves as both a vaccine delivery sys-
tem and an immune potentiator, providing a promising 
method to simplify the formulations of nanovaccines.

In addition to SPIO, Li et  al. conjugated OVA to 
α-Al2O3 nanoparticles and discovered that DCs pulsed 
with α-Al2O3-OVA efficiently cross-presented OVA anti-
gen to naïve OT-I T cells in vitro and in vivo [45] (Fig. 2B, 
C). Transmission electron microscopy (TEM) showed 
that this process is related to autophagy, and treatment 
with α-Al2O3-OVA led to tumor regression in tumor-
bearing mice [45].

Autophagy in APCs has been reported to be related to 
cross-presentation [46]. However, due to the complexity 
of autophagy mechanisms and the diversity of autophagy 
substrates, the relationship between autophagy and 
cross-presentation is controversial [47]. In addition to 
inorganic nanovaccines, organic polymers like polyeth-
ylenimine (PEI-M) and biomimetic nanoparticles like 
virus-like particles (VLPs) can also play an adjuvant role 

Table 1  Self-adjuvanting nanovaccines for cancer therapy

Self-adjuvanting nanovaccines for cancer therapy

Nanovaccine Immune modulation Mechanism Refs.

SPIO-OVA IL-6, TNF-α, IFN-γ↑ Cross-presentation↑ [42–44]

α-Al2O3-OVA CD8+T↑ Autophagy-related cross-presentation↑ [45]

γ-PGA-OVA IgG2a, IgG2c, T cells, CTL↑ TLR4 and MyD88-dependent signaling pathway [52–54]

VSSP-E7(p) IFN-γ, IL-10, CD8+T↑ TLR4 [56, 58]

(R)-DOTAP-E7 IFN-γ, DC, CD4+T, CD8+T↑ TLR7, TLR9 [61, 62]

C1-mRNA IL-1β, IL-6, IL-12, DC↑ TLR4 [63]

CPTEG: CPH/OVA IgG1, IFN-γ, IL-12, DC, CD8+T↑ TLR2, TLR4, TLR5 [64–68]

3DSNA-OVA IL-12, IL-6, CTL↑ Phosphorylation of IKK-αβ, IkB-α, and p65 in BMDC↑, 
NF-κB activation

[71]

LDH-OVA, pcDNA3-OVA/LDH(R1) IgG1, IgG2a, INF-γ, CTL↑ NF-κB [72–74]

Ag-PMIDA-CoO IFN-γ, TNF-α, IL-12, IgG1, IgG2, MΦ, CD4+T, CTL↑ TNF-α↑, NF-κB [75, 76]

ECPs-OVA DC, CTL↑ MyD88-dependent
NF-κB

[77]

HMS-OVA, DMOHS‐2S-OVA
MSR-PEI: OVA

IL-1β, IFN-γ, IL-2, IL-4, IL-10, CD4+ and CD8+ 
effector memory T cells↑

NLRP3 inflammasome [80–86]

AuNP-OVA IL-1β, IL-18, TNF-α, IL-6, CD8 + T cells↑ NLRP3 inflammasome, NF-κB [89–91]

PSM-OVA IFN-I, TNF-α, IL-17a, DC↑, Th2↓ TRIF- and MAVS-dependent type I interferon secretion [96]

PC7A-OVA CTL, Th1, APCs↑ STING-dependent type I interferon secretion [97, 99]

SeaMac TNF-α, DC↑ STING [100]

CNP-OVA
Man-CTS-TCL

IgG, IL-2, IL-10, IFN-γ, NK↑ cGAS- and STING-dependent type I interferon secre‑
tion

[105–107]

PEI-4Bimi-OVA IFN-I, DC, CTL↑ STING [48]

VLPs Ab, Th1, CTL, B cells ↑ Similar structure to viruses [113]

CPMV, PVX, TMV, PapMV IFN-γ, TNFα, M1, NK, DC, CD8+T↑ ssRNA, can activate TLR7/TL8 [118–122]

Archaeosome-OVA DC, MΦ, CTL↑ Mimic the structure of microorganisms [126]

Q11-MUC1, Q11-HPV16 E7 44–62 IgG2a, IgM, Th1, CTL↑, Th2↓ Unclear [128–131]

CD-OVA TNF-α, IFN-γ, DC↑ Unclear [132]
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by encouraging cross-presentation in cancer vaccines 
[48, 49]. It is worth noting that the specific mechanisms 
underlying the enhancement of cross-presentation by 
nanoparticles requires further elucidation and research.

Targeting of signaling pathways
Nanovaccines for cancer therapy show a self-adjuvant-
ing effect of targeting signaling pathways in the immune 
response, including targeting TLRs, NF-κB, NLRP3, and 
IFN-related signaling pathways (Fig. 1).

Targeting of TLR‑related signaling pathways
Targeting TLRs is a common mechanism of adjuvants, 
and the self-adjuvanting effect of nanovaccines for can-
cer therapy is also related to this pattern recognition 
receptor.

Poly-γ-glutamic acid (γ-PGA) is a biocompatible 
polymer that is produced by culturing Bacillus licheni-
formis and Bacillus subtilis [50, 51]. Yoshikawa et  al. 

demonstrated that γ-PGA nanoparticles could be used 
as antigen carriers in cancer vaccines [52]. Immunizing 
mice with OVA entrapped γ-PGA nanoparticles activated 
the CTL response and effectively delayed tumor growth 
in mice without toxic reaction. In addition to serving as 
a carrier, γ-PGA nanoparticles also activate APCs and 
induce a potent antigen-specific T cell response through 
the TLR4 and MyD88-dependent signaling pathway, ele-
vating both innate and adaptive immune responses, espe-
cially cellular immunity [53]. Another profound virtue 
of γ-PGA nanoparticles is that the antigen-encapsulated 
nanovaccine can be vaccinated intranasally to induce 
antigen-specific CTL immunity, demonstrating the 
potential to manufacture non-invasive cancer vaccines in 
the future [54] (Fig. 3).

Similarly, very small size proteoliposomes (VSSP), 
formed by GM3 ganglioside and meningococcal outer 
membrane protein complex via hydrophobic interac-
tion [55], also target TLRs to potentiate the immune 

Fig. 2  Enhancement of cross-presentation in dendritic cells by nanoparticles. A Schematic illustration of nanoparticles enhancing 
cross-presentation in dendritic cells. B Representative bright field (left), fluorescence (middle) and overlaid (right) images of DCs after incubation 
with FITC-labelled α-Al2O3 (60 nm)-OVA for 0.5 (upper) and 24 h (lower). C Vaccination with α-Al2O3-OVA induced high frequency of OVA-specific 
IFN-γ producing CD8+ T cells in spleens of mice [45]. Copyright 2011 Nature Publishing Group
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response. Mesa et al. found that VSSP activated TLR4 on 
DCs, leading to an effective Th1 cell-mediated immune 
response [56]. Additionally, the activation of DCs by 
VSSP was observed on lipopolysaccharide (LPS)-hypore-
sponsive mice in this study, suggesting that other compo-
nents of VSSP can also stimulate immunity. Furthermore, 
VSSP has a similar function as LPS but less toxicity and 
a better effect in humans than MPL-A. Therefore, VSSP 
may be a feasible agent to employ in DC activation [57]. 
The immune-potentiating property of VSSP also suggests 
that VSSP could be a potent vaccine adjuvant. Torréns 
et al. reported that vaccination with the E7 oncoprotein 
of human papillomavirus (HPV) type 16 and VSSP pro-
tects mice from tumor invasion, induces the established 

tumor regression, and produces an E7-specific CD8+ T 
cell response [58].

In the adjuvant mechanism of the cationic lipid 
1,2-dioleoyl-3-trimethylammonium-propane (chlo-
ride salt) (DOTAP), it has been previously reported 
that DCs are activated through the extracellular-signal-
regulated kinase (ERK) pathway [59]. Used as a vaccine 
adjuvant, an optimal dose of DOTAP combined with 
HPV16 E7-derived peptide inhibits TC-1 tumor growth 
[60]. Among the enantiomers of DOTAP, (R)-DOTAP is 
regarded as a more effective adjuvant than (S)-DOTAP 
in stimulating CD8+ T cells to secret interferon gamma 
(IFN-γ) against tumors [61]. The adjuvant mechanism of 
(R)-DOTAP is also related to TLRs, which targets TLR7 

Fig. 3  Potent tumor immunity induced by poly (γ-glutamic acid) nanovaccine via a TLR4 and MyD88 signaling pathway. A Schematic illustration 
of nasal vaccination with antigen-entrapping γ-PGA NPs evoked tumor immunity by eliciting antigen-specific CTLs. B Biodistribution of intranasally 
administered FITC-OVA/γ-PGA NPs. Green (FITC-OVA), red (rhodamine-labeled UEA-1), and blue (DAPI) signals were digitally merged. C Therapeutic 
effect of intranasal vaccination of OVA/γ-PGA NPs against B16-OVA lung metastasis. Reproduced with permission [54]. Copyright 2011 Elsevier B.V
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and TLR9 to induce the production of Myd88-dependent 
type I IFN, eventually leading to tumor regression [62]. 
Additionally, Zhang et  al. developed a library of cati-
onic lipid-like compound and found that C1 LNP with 
a 12-carbon tail effectively delivered antigen-encoding 
mRNA into DCs [63]. C1 LNP activated TLR4 on DCs 
and activated immunity while delivering mRNA. C1 
LNP-formulated mRNA vaccine can be used as an effec-
tive tumor preventive and therapeutic cancer vaccine.

Furthermore, the adjuvant property of polyanhydride is 
also considered to be related to targeting TLRs. Polyan-
hydride, a biodegradable synthetic biopolymer explored 
for drug delivery, is facile to synthesize, is inexpensive 
and has been reported to activate TLR2, TLR4, and TLR5 
on DCs, acting as an active Th1 adjuvant that efficiently 
trigger Th1 cell-mediated immune response [64, 65]. 
Wafa et  al. designed a cancer vaccine, 20:80 1,8-bis-(p-
carboxyphenoxy)-3,6-dioxaoctane (CPTEG):1,6-bis-(p-
carboxyphenoxy) hexane (CPH) / OVA, which activated 
specific CD8 + T cells, produced specific IgG1 antibody, 
and prevented thymoma formation in mice subcutane-
ously challenged with a OVA-expressing thymoma cell 
line [66]. In a further study, they reported that a single 
vaccination dose of 20:80 CPTEG:CPH polyanhydride 
particles was sufficient to activate anti-tumor immunity 
[67]. Similarly, Darling et  al. developed a prophylactic 
vaccine designed as a single-dose polyanhydride nano-
vaccine that activates DCs, induces antigen-specific 
CD8+ T cell memory, and reduces tumor burden [68].

Targeting of NF‑κB related signaling pathways
The NF-κB signaling pathway is composed of the dimer 
transcription factor NF-κB/Rel, inhibitor IκB, and 
upstream IκB kinase IKK. Activating IKK phosphorylates 
IκB, then IκB is degraded, and NF-κB enters the nucleus 
to induce changes in gene expression [69]. This signaling 
pathway is closely related to inflammation and tumors 
[70]. The adjuvant effect of some nanoparticles in cancer 
vaccines is also related to this signaling pathway.

One such adjuvant is 3DSNA, a supramolecular nano-
adjuvant that self-assembles from positively charged 
D-peptide derivatives [71]. A nanovaccine fabricated 
with 3DSNA and OVA effectively enhances the phos-
phorylation of IKK-αβ, IkB-α, and p65 in BMDCs, then 
activates the NF-κB signaling pathway, and eventually 
enhances the immune response. This vaccine has both 
preventive and protective effects on tumors in  situ [71] 
(Fig.  4). Despite this, upstream targets of the NF-κB 
remain unknown and require more research.

Layered hydroxide (LDH) nanoparticles, formulated 
with different ratios of Mg2+ and Al3+, can activate DCs 
possibly by increasing the expression of NF-κB in the 
nucleus in a dose-dependent manner and promote the 

reduction of total IκBα levels [72]. This pathway is related 
to uptake of LDH by DCs, induction of DC maturation 
and CCR7 upregulation. LDH nanomaterials in the form 
of nanoparticles or nanosheets as adjuvants of cancer 
vaccines have a significant effect on inhibiting tumor 
growth [73, 74].

In addition, the adjuvant effect of cobalt oxide (CoO) 
nanoparticles in cancer vaccines is also believed to be 
related to the NF-κB signaling pathway. Developed by 
Chattopadhyay et al. [75, 76], CL (human oral cancer cell 
lysate)-PMIDA (N-phosnomethyliminodiacetic acid)-
CoO nanoparticles deliver tumor lysates to macrophages. 
Subsequently, they induce the release of TNF-α, acti-
vate the NF-κB signaling pathway, and exert anti-tumor 
effects both in  vitro and in  vivo. Future studies may 
expand the application of this adjuvant to other tumor 
models.

Su et  al. developed a co-assembled hydrogel vac-
cine which was co-assembled by supramolecular anti-
gen epitope-conjugated peptides (ECPs) targeting CD8 
or CD4 T-cell receptors [77]. The co-assembled pep-
tide hydrogel vaccine effectively activated the MyD88-
dependent NF-κB signaling pathway in DCs, displaying 
superior antitumor effect than Alum-adjuvanted epitope 
vaccine in E.G7-OVA tumor model.

Targeting of NLRP3 inflammasome related signaling 
pathways
Inflammasomes are protein complexes composed of 
NLRs and melanoma 2 (AIM2)-like receptors (ALRs), 
which activate the pro-inflammatory factors caspase-1 
and caspase-11 [78]. NLRP3 inflammasome, the most 
widely studied inflammasome, is closely related to the 
occurrence of infection and tumors [79, 80].

The adjuvant effect of silica particles was found to be 
related to the NLRP3 inflammasome in APCs. Amor-
phous silica particles can activate NADPH oxidase, 
leading to ROS production, endosomal rupture, cathep-
sin B leakage to the cytoplasm, and NLRP3 inflamma-
some assembly on THP-1 macrophage-like cells, thereby 
inducing IL-1β production [81] (Fig.  5A). Furthermore, 
NLRP3 inflammasomes in DCs play a key role in stimu-
lating the production of IL-1β and regulating the infil-
tration of immune cells by mesoporous silica microrods 
(MSRs) [82]. Different structures of mesoporous silica 
nanoparticles (MSNs) were designed as a versatile plat-
form for cancer vaccines to both deliver antigens and 
amplify antigen-specific immune responses, such as 
hollow mesoporous silica (HMS) nanospheres, dou-
ble‐shelled dendritic mesoporous organosilica hollow 
spheres (DMOHS‐2S), and MSR [83–86].

Gold nanoparticles provide strong optical proper-
ties and unique surface plasmon resonance (SPR) 
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properties and have been used in optical imaging, immu-
noassays, drug delivery, and other fields [87, 88]. Gold 
nanoparticles are considered a versatile tool in the diag-
nosis and treatment of tumors [88]. Almeida et al. found 
that AuNP-OVA particles promoted an antigen-specific 
immune response and exerted anti-tumor effects in both 
preventive and therapeutic models, which suggested that 
gold nanoparticles could be used as adjuvants with supe-
rior immune stimulation [89]. Importantly, this immune-
stimulating effect of gold nanoparticles depends on the 
nanoparticle size and shape [90]. In 2020, a study by 

Zhu demonstrated that ultrasmall (4.5  nm) gold nano-
particles triggered the ROS production and targeted the 
microtubule-associated protein 1 light chain 3B (LC3) 
to eventually activate the NLRP3 inflammasome in DCs, 
thus enhancing antibody production [91] (Fig. 5B). This 
study also showed that large gold nanoparticles (3, 30, 
and 70 nm) triggered the NF-kB signaling pathway [91], 
but no further study was conducted.

In addition, there are also organic polymers that can 
activate NLRP3 inflammasome related signaling path-
ways. For example, Manna et  al. developed a minimal 

Fig. 4  3DSNA nanovaccine activated the innate and specific immunity by the NF-κB signaling pathway. A Schematic of 3DSNA as versatile 
adjuvants that initiate antigen-specific CTL responses for cancer immunotherapy. B The analysis of p-p65 by laser scanning confocal microscopy. 
C The survival of tumor-bearing mice treated with different formulations after tumor challenge. Reproduced with permission [71]. Copyright 2019 
Ivyspring International Publisher
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activation system using only a short peptide coupled 
with an ethylene glycol sequence to activate the NLRP3 
inflammasomes in DCs [92]. The NLRP3 inflammas-
omes may also be triggered by dendronized polypeptides 
(denpols) and eventually enhance cross-presentation 
[93]. The self-adjuvanting properties of these organic 

polymers suggest their potential for the development of 
cancer nanovaccines.

Targeting of IFN‑related signaling pathways
IFN is a cytokine with significant anti-tumor and 
immunomodulatory effects [94]. Some nanoparticles 

Fig. 5  Adjuvants activated the NLRP3 inflammasome to improve the ability of nanovaccines to induce immune responses. A Model of 
mSP1000-induced IL-1β maturation via assembly of NALP3 inflammasomes. Reproduced with permission [81]. Copyright 2010 Elsevier Ltd. B 
Schematic illustration of Au4.5-induced NLRP3 inflammasome activation. Reproduced with permission [91]. Copyright 2020 American Chemical 
Society
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exhibit a self-adjuvanting effect in cancer vaccines 
through IFN-related signaling pathways.

Porous silicon nanoparticles, as nanoparticles with 
controllable geometry, adjustable nanostructures, and 
a variety of surface chemical properties, have been 
increasingly applied in the field of drug delivery and 
cancer immunotherapy [95]. Cancer vaccine based on 
porous silicon can be phagocytosed by DCs and induce 
DCs to secrete TRIF- and MAVS-dependent type I IFN, 
resulting in strong anti-tumor efficacy [96].

Moreover, PC7A nanoparticles were screened in vivo 
from an ultra-pH sensitive (UPS) nanoparticle library 
developed by Luo’s laboratory. These nanoparticles have 
the ability to induce specific CTL and Th1 responses 
and promote type I IFN secretion by stimulating the 
STING pathway [97, 98]. Luo et al. also reported a syn-
ergistic effect between the PC7A nanovaccine and radi-
otherapy [99]. Self-adjuvantinged molecular activator 

(SeaMac) nanovaccines constructed by PC7A nanopar-
ticles significantly inhibited tumor growth in CT26 and 
B16-F10 tumor models [100] (Fig. 6).

Chitosan, a linear polysaccharide composed of β-(1,4)-
linked N-acetyl-D-glucosamine units, is a bioactive poly-
mer with multiple applications in wound healing [101], 
antibiosis [102], and drug delivery [103]. Lin et  al. cul-
tivated monocytes in chitosan substrate and found that 
chitosan induced the differentiation of monocytes into 
DCs [104]. On this basis, vaccination of DCs pulsed by 
tumor lysate demonstrated a strong anti-tumor effect. 
Chitosan nanoparticles also have the capability to pro-
mote both cellular and humoral immune responses [105]. 
Furthermore, Carroll et al. found that chitosan promoted 
the cellular immunity by activating cGAS-STING in DCs, 
leading to type I IFN-dependent DC activation [106]. 
Based on the above studies, it can be inferred that chi-
tosan nanoparticles may be a promising vaccine adjuvant. 

Fig. 6  PC7A nanovaccine activated the STING pathway and inhibited tumor growth. A Schematic of the design and mechanism of the PC7A 
nanovaccine. B p-TBK1 is recruited into the STING–PC7A condensates. Reproduced with permission [98]. Copyright 2021 The Author(s), under 
exclusive licence to Springer Nature Limited. C Tumor growth inhibition study of B16F10 melanoma [97]. Copyright 2017 Nature Publishing Group
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Shi et  al. developed mannose(Man)-chitosan-tumor cell 
lysate (TCL) nanoparticles as cancer vaccine, which dis-
played a significant anti-tumor effect in vitro and in vivo 
[107].

In addition, Zhao et  al. constructed a series of azole 
molecules end-capped PEI-M which could activate the 
STING pathway and induce type I IFN secretion from 
DCs [48]. Further, they designed a minimalist binary 
nanovaccine (BiVax) consisted of OVA and PEI-4BImi, 
and the BiVax showed better performance than both tra-
ditional PEI/cGAMP/antigen ternary vaccine and Alum 
adjuvant-based vaccine in antitumor activity in B16-OVA 
tumor-bearing mice. Interestingly, the BiVax composed 
of antigens from resected tumor tissues with PEI-4BImi 
inhibited the recurrence of postoperative MC38 tumor 
effectively, which displayed the great prospect of person-
alized vaccine.

Biomimicking the natural invasion process of pathogens
A biomimetic design is another way to enhance the vac-
cine efficacy of nanoparticles. Simulating natural infec-
tions can activate innate immune responses through via 
pattern recognition receptors (PRRs), which contrib-
ute to generate lasting adaptive immunity [108]. Cancer 
vaccines based on recombinant plant viruses, virus-like 
particles, and archaeosomes use this method to exert a 
self-adjuvanting effect.

Biomimicking the structure of virus
VLPs are formed by the self-assembly of envelope and/
or capsid proteins from many viruses. VLPs have a sim-
ilar structure to viruses, but lack the viral genome and 
therefore cannot replicate [109]. VLPs could be a safe 
and versatile platform for vaccines due to their capac-
ity of rapid drainage to LNs, efficient antigen display, 
and effective delivery of adjuvants [110]. VLPs have a 
unique repetitive surface structure with an effective 
pathogen associated structural pattern (PASP) that 
promotes cross-linking with B cell receptors [111]. 
VLPs are effectively taken up by APCs, especially by 
DCs, and thus can be regarded as an exogenous anti-
gen to be presented by MHC class II molecules, which 
can also combine with MHC class I molecules by cross-
presentation to activate humoral and cellular immunity 
[112]. At present, VLP-based vaccines are a promis-
ing strategy for cancer treatment, which has been dis-
cussed in melanoma, breast cancer, pancreatic cancer, 
cervical cancer, hepatocellular carcinoma, and other 
tumors [113] (Fig. 7).

The unique properties of plant viruses, including their 
ability to self-assemble and their biosafety for mam-
mals and humans, make them an attractive and versatile 
tool in biotechnology [114]. Recombinant plant viruses 

with simple compositions, such as cowpea mosaic virus 
(CPMV), potato virus X (PVX), papaya mosaic virus 
(PapMV), and tobacco mosaic virus (TMV), can induce 
humoral and cellular immunity and are possible vac-
cine candidates [115]. Distinct from VLPs, recombinant 
plant viruses contain ssRNA that activates TLR7/TL8 
and induce NF-κB, IRF, and other signaling pathways 
to stimulate immune responses [116]. The complement 
system is also believed to be involved in the recognition 
and phagocytosis of PapMV and regulate the produc-
tion of IFN-α after TLR7 activation [117]. Nanovaccines 
for cancer therapy based on CPMV, PVX, PapMV, and 
TMV have shown impressive effects in animal experi-
ments [118–123]. Furthermore, Shukla et  al. prepared 
CPMV and eCPMV in situ vaccines and found that intra-
peritoneally administered CPMV gave rise to an anti-
body response. Moreover, this study demonstrated that 
prior exposure to CPMV enhanced the efficacy of CPMV 
in  situ vaccine for ovarian cancer, and the same holds 
true for eCPMV. This idea of using recombinant plant 
viruses to activate the inherent ability of innate immunity 
to improve the anti-tumor effects holds promise, but spe-
cific molecular mechanism and reasonable applications 
remain to be further explored.

Biomimicking the structure of archaea
Archaeosomes are liposomes formulated with ether 
glycerolipids extracted from various archaea. They have 
strong adjuvant properties and mimic the structure 
of microorganisms to provide danger signals of infec-
tion and accordingly activate both humoral and cel-
lular immunity [124]. The strong adjuvant properties 
of archaeosomes are also believed to be related to the 
enhancement of cross-presentation of antigens and the 
improvement of the immunomodulatory ability of APCs 
[125, 126]. Developed by Krishnan, OVA-archaeosome 
vaccination protected mice from the development of 
EG.7 solid tumor cells, and this immune effect is medi-
ated by CD8+ T cells [127].

Nanovaccines with other mechanisms
Some nanovaccines for cancer therapy possess self-adju-
vanting properties, but their mechanisms remain not 
fully clear and warrant further investigation.

Q11 peptide
Q11 (Ac-QQKFQFQFEQQ-Am) is a designed short 
peptide that can self-assemble in an aqueous environ-
ment to form β-sheet rich nanofibers and displays func-
tional amino acid sequences or chemical groups on 
the surface of its self-assembled fibers [128]. In addi-
tion, Q11 can be used as a carrier or an adjuvant, and 
its adjuvant properties depend on its covalent binding 
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to the epitope. Cancer vaccines containing a variable 
number of full-length tandem repeat domains of MUC1 
and Q11 can trigger a significant immune response, 
including complement-dependent cytotoxicity against 
MCF-7 cells [129]. Nanofibers prepared by chemically 
linking the HPV16 E7 peptide and the N-terminus of 
the self-assembling peptide Q11 also prevent the for-
mation of transplanted TC-1 tumors and suppress 
the growth of established TC-1 tumors [130]. Simi-
larly, peptide Coil29 (QARILEADAEILRAYARILEA-
HAEILRAD), a peptide composed of almost complete 
α-helical structures, also induces strong humoral and 
cellular immune responses without adjuvant [131]. Fur-
thermore, Wu et  al. compared the immune responses 
raised by Q11 and Coil29, and found that Coil29 
evoked antibody responses with a higher titer and qual-
ity because of better germinal center B cell formation, 
better acquisition and activation of DCs, and better 
Tfh cell responses [131]. This nanofibers-forming self-
assembled peptide system can be used as a promising 
vaccine platform, but its mechanism for immunomodu-
lation remains unclear.

Fluorescent carbon dots (CDs)
CDs are zero-dimensional nanocarriers with a diameter 
of less than 10 nm. They have the advantages of dispers-
ibility, low toxicity, biocompatibility, biodegradability, 
wide raw material sources, and low cost. Hence, CDs 
are used in biological imaging, biological detection, and 
cancer treatment [132]. On account of the non-toxicity 
of PEG-modified CDs, Luo et al. designed a nanovaccine 
composed of CDs with PEG surface passivation and the 
model tumor antigen OVA, which positively contributes 
to antigen uptake, efficiently accelerates the matura-
tion of DCs, stimulates splenocyte proliferation, induces 
the production of IFN-γ, and eventually inhibits the 
growth of established B16 melanoma tumors expressing 
OVA [133]. Due to spectral effects, fluorescent CDs are 
expected to be an effective immune adjuvant to enhance 
cancer immunotherapy, but the specific mechanism 
requires further study.

To summarize, we have classified self-adjuvanting 
cancer nanovaccines according to their underlying 
immune mechanism. Enhancing cross-presentation acti-
vates cell-mediated immunity and can induce a robust 

Fig. 7  self-adjuvanting effect of VLPs in cancer vaccines. A Key characteristics of VLPs. B T cell responses induced by VLP-based vaccines. C B cell 
responses induced by VLP-based vaccines. D Vaccines in the context of checkpoint inhibitors. Reproduced with permission [113]. Copyright 2020 
The Author(s)
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antigen-specific CTL response, both key components of 
antitumor immunity. However, in some cases, it is not 
sufficient to enhance cross presentation alone to activate 
systemic anti-tumor immunity and tumor-associated 
DCs could be impaired by the inhibitory factors in tumor 
microenvironment [134]. On the other hand, targeting 
signaling pathways in the immune response promotes 
DC maturation, triggers cascade release of proinflamma-
tory cytokine, and boosts innate and adaptive immunity. 
Nevertheless, there is a possibility of systemic toxicity 
if overactivated [135]. Moreover, biomimicking of the 
natural invasion process of pathogens activates both 
humoral immunity and cellular immunity, and the variety 
of VLPs and archaea makes them structurally attractive 
and functionally diverse. In terms of cancer treatment 
and prevention, more evidence is needed regarding the 
potential efficacy, side effects and benefits of VLPs and 
archaea based vaccines [136]. In addition, a variety of fac-
tors can influence the immune activation mechanism of 
nanoparticles, such as particle size, charge, and surface 
modification. For example, cationic nanoparticles facili-
tated better endosomal escape and higher cross-presen-
tation [42], and amorphous silica with sizes ranging from 
70 to 100  nm facilitated endosomal escape [137]. Dif-
ferent microorganism exposure during phylogeny may 
also affect the selection of recognition receptors [136]. 
This could account for differences in recognition recep-
tors between species. It is worth noting that nanoparti-
cles frequently could activate immunity through more 
than one mechanism. An identification of the mechanism 
can be performed by determining whether the nanopar-
ticles have bionic structure, detecting the expression of 
costimulatory molecules and cytokine secretion by DCs 
after incubation with nanoparticles in vitro, and observ-
ing the changes of tumor immune microenvironment 
and systemic immunity after nanovaccines administra-
tion in vivo.

Self‑adjuvanting nanovaccines for cancer therapy 
in clinical research
At present, some clinical studies have provided con-
vincing evidence that self-adjuvanting nanovaccines are 
a promising strategy for cancer therapy. VSSP-based 
self-adjuvanting nanovaccines are under investigation 
in clinical trials in patients with breast cancer, prostate 
cancer, high-grade cervical intraepithelial neoplasia and 
other solid tumors [138–142]. Caballero et al. developed 
a cancer vaccine based on the extracellular domain of 
HER1 (HER1-ECD) using VSSP and Montanide ISA 51 
as adjuvants [139]. In their phase I study trial in 24 pros-
tate castration-resistant carcinoma patients, the HER1 
vaccine was shown to be safe and immunogenic [139]. 
A 10-year follow-up of patients vaccinated with another 

prostate cancer vaccine based on VSSP also reported a 
positive impact of vaccination on overall patient survival 
compared with those receiving the standard treatment 
[142]. Similarly, CIGB-247, a therapeutic cancer vaccine 
composed of recombinant modified human vascular 
endothelial growth factor (VEGF) and VSSP, is consid-
ered safe, tolerable, and immunogenic, as has been sup-
ported by their phase I clinical trial [140]. Furthermore, 
early clinical studies of VLPs as immunopotentiators in 
cancer vaccines have been carried out in different solid 
tumors, and the trails in melanoma and cervical intraepi-
thelial neoplasia have provided promising results [113]. 
However, clinical studies on self-adjuvanting nanovac-
cines for cancer therapy are still in their infancy and need 
larger and deeper research in the future. More kinds of 
nanovaccines with self-adjuvanting properties should be 
included in the clinical research.

Advantages of self‑adjuvanting nanovaccines 
for cancer therapy
Some self-adjuvanting nanovaccines have entered early 
clinical research and showed satisfactory safety and 
effect, as mentioned above. Indeed, the self-adjuvanting 
properties of nanovaccines for cancer therapy have some 
unique advantages, which are discussed below.

Simplification of vaccine composition
As vaccine development is directed toward “minimal” 
compositions, to focus the immune response on the tar-
get antigens [143], there is an urgent need to develop 
vaccines with both maximum efficacy and simplicity. 
Nanoparticles can be used simultaneously as vaccine 
delivery systems and immune enhancers, which simpli-
fies the vaccine composition and avoids unnecessary side 
effects. As an example described above, the minimalist 
nanovaccine composed of antigen and synthetic polymer 
nanoparticles PC7A produces a strong cytotoxic T cell 
response combined with low systemic cytokine expres-
sion [97]. BiVax based of PEI-4BImi also outperforms 
both traditional ternary nanovaccines and commercially 
available aluminum-based vaccine [48]. DOTAP/E7 
complex is another therapeutic cancer vaccine, consist-
ing of only antigens and cationic liposomes, which can 
be absorbed by DCs to induce antigen-specific CTLs, 
and exhibit anti-TC-1 tumor effects [60]. Due to its sim-
ple composition, the cost of vaccine production may be 
reduced and the controllability for vaccine preparation 
may be increased [144]. As mentioned above, self-adju-
vanting nanofibrous peptide hydrogel can be prepared 
by supramolecular peptide co-assembly [77]. Com-
pared with traditional free peptide vaccine and Alum-
adjuvanted vaccine, this self-adjuvanting nanovaccine 
induced strongest T cell response, and can be extended 
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to vaccines targeting neo-epitope. Furthermore, Aiga 
et  al. demonstrated that surface chemical modification 
was not necessary due to the inherent immune activity of 
the self-adjuvanting nanovaccine, which further simpli-
fies the vaccine synthesis [145].

Enhancement of the effects of other adjuvants
If a nanomaterial platform delivers adjuvants, it can also 
enhance the effects of other adjuvants. The combination 
of stellated fibrous mesoporous silica nanospheres and 
poly(I:C) (a synthetic double-stranded ribonucleic acid 
(dsRNA) analogue and immune enhancer) significantly 
reduced the dosage of poly(I:C) required in cancer vac-
cines for stimulating anti-tumor immunity [146]. In 
addition, co-delivery of CpG and OVA by the nanomate-
rial MgAl-(LDH) also induced higher levels of IgG1 and 
IgG2a antibodies, and the delivery by LDH induced a 
shift in the immune response from Th2 to Th1 [147]. Fur-
thermore, Xu et  al. designed a pathogen-like polymeric 
system comprising mannan-decorated nanoparticles as 
a TLR4 agonist that could synergize with CpG for maxi-
mally activating DCs [148].

Improvement of the safety of vaccines
Over decades, many adjuvants have been proposed for 
vaccine development, but few have been widely applied 
due to their toxicity [149]. Self-adjuvanting nanovac-
cines alleviate this concern. Safety and stability have 
been improved in self-adjuvanting nanovaccines made 
by biocompatible nanoparticles, offering a simple, safe 
and robust strategy for boosting anti-tumor immunity 
for cancer therapy [60]. Furthermore, using adjuvants 
in VLPs vaccine formulations may increase the immu-
nogenicity of the vaccine and stimulate specific type 
of immune responses [136]. Compared with vaccines 
admixed with traditional adjuvants, self-adjuvanting vac-
cines provide some advantages: (1) While achieving the 
same immune function these can greatly reduce the dos-
age of adjuvant, or even do without it. (2) These can pro-
vide more physical space for the loading of antigens. (3) 
By loading adjuvants at the same time, self-adjuvanting 
vaccines can also trigger the systemic immune responses 
from different mechanisms, which is expected to form an 
efficient and synergistic activation mode. The mannan-
decorated pathogen-like polymeric nanoparticle system 
mentioned above could be an example.

Challenges of self‑adjuvanting nanovaccines 
for cancer therapy
Only a few self-adjuvanting nanovaccines for cancer 
therapy have started clinical research, as some challenges 
have to be overcome in the development of vaccines. (1) 
The mechanisms of the intrinsic immunopotentiation 

of different nanoparticles in cancer vaccines have not 
been fully elucidated and require more fundamental 
investigation. (2) Nanoparticles with immunostimula-
tory effect can also indirectly induce many immunotoxic 
effects. For example, nanoparticles entering the circula-
tion may cause activation of complement cascade and 
antibody response, leading to undesirable side effects, 
including inflammation and allergic reactions [150]. (3) 
The immunostimulatory effect of nanoparticles with 
self-adjuvanting properties is complex and involves mul-
tiple signaling pathways, and the recognition and inter-
action between nanovaccines and immune cells has not 
been well identified. With the development of single-cell 
sequencing technology, the interaction between nano-
particles and specific APCs may be elucidated. Further-
more, more accurate delivery of nanovaccines to specific 
subtypes of APCs becomes possible, which will contrib-
ute to precisely manipulate the subsequent immuno-
logical responses. Additionally, in the current research 
of self-adjuvanting nanovaccines, more attention is paid 
to T cell immunity. Research have shown that VLPs can 
directly activate antigen-specific B cell and enhance 
humoral immunity through B cell-intrinsic MyD88 
signaling [151]. However, there is still a lot of confusion 
about whether B cells, NK cells and other immune cells 
are affected, and how immunostimulatory nanoparticles 
affect them. (4) The ‘rules of immunogenicity’, or how 
the immune system responds to a given adjuvant or vac-
cine, depend greatly on the environment. As we know, 
nanovaccines injected intradermally or subcutaneously 
passively drain to LN through afferent lymphatic ves-
sels, and then enter the subcapsular sinus to be taken 
up and processed by resident APCs [152]. During tumor 
development, the lymphatic microenvironment has been 
affected to some extent. For example, tumor-draining 
LNs undergo massive remodeling, including accumula-
tion of immunosuppressive cells, reprogramming of stro-
mal cells and vascular remodeling [153–155]. Leary et al. 
found that extracellular vesicles derived from melanoma 
cells selectively interact with LN resident macrophages 
and lymphatic endothelial cells, induce LN remodeling 
and eventually impair anti-tumor immunity [156]. There-
fore, how to adapt to the changing lymphatic microenvi-
ronment should be considered in vaccine development. 
Besides, the distribution of nanovaccines in the subareas 
of LN also influences the strength of induced immune 
response [157]. It was reported that subcapsular sinus 
(SSC) macrophages prevented nanovaccines from access-
ing LN follicle. Depleting SCS macrophages increased 
the neutralized antibody production, showing the effec-
tive activation of humoral immunity [158]. What’s 
more, the vaccine response is directed by precise spatio-
temporal cues [159], so how to reasonably design the 
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self-adjuvanting nanovaccines to control the interaction 
between vaccine components and immune cells spatially 
and temporally also requires attention. (5) Scaling up 
nanovaccines is difficult, and clinical translation is a time-
consuming process. As previously stated, only a handful 
of self-adjuvanting nanovaccines for cancer therapy have 
entered early clinical trials in patients with several types 
of solid tumors with preliminarily validation of safety. To 
better explore the efficacy and safety of emerging cancer 
nanovaccines, preclinical models related to human tumor 
development and its complex tumor microenvironment 
are urgently needed. Personalized medicine is also still 
a field in its infancy, and continued research along these 
lines will undoubtedly lead to better treatment options 
for patients in the clinic. These limitations mentioned 
above have resulted in a lack of significant investment in 
the development of the self-adjuvanting nanovaccines. 
However, these demerits may be subjugated with appro-
priate ideas and further advances in biotechniques and 
material science.

Summary
In this review, we discussed the emerging class of nano-
vaccines; self-adjuvanting nanovaccines, and summarized 
the mechanisms of their self-adjuvanting properties, 
including the enhancement of cross-presentation, target-
ing of signaling pathways in the immune response, and 
biomimicking of the natural invasion process of patho-
gens. The mechanisms of certain nanoparticles with 
intrinsic immunomodulatory effect remain unclear and 
need to be further studied. To achieve robust antitumor 
T cell responses in cancer nanovaccines, it is imperative 
to orchestrate antigen cross-presentation with innate 
stimulation of APCs spatiotemporally. The release of anti-
gens to the cytosol is a necessary step for antigen cross-
presentation to CD8+ T cells, whereas innate stimulation 
mostly takes place in the endosomes since the PRRs for 
the commonly used adjuvants are mostly endosome 
receptors. Nanoparticles with multiple self-adjuvanting 
properties may be rendered the ability to maximally over-
come the obstacle for intracellular coordination of APC 
activation and antigen cross-presentation to CD8+ cyto-
toxic T lymphocytes. Some self-adjuvanting nanovac-
cines for cancer therapy are in the early stage of clinical 
research and require larger and more in-depth studies. 
Moreover, we discussed the advantages and challenges 
of self-adjuvanting nanovaccines in cancer therapy. From 
what has been discussed above, we may reasonably arrive 
at the conclusion that it will provide a research direc-
tion to ameliorate the design of cancer vaccines if the 
self-adjuvanting property of nanovaccines is employed 
properly. A great deal of research remains to be done on 
the mechanism of self-adjuvanting nanovaccines, their 

intricate interactions, and practical application in cancer 
therapy. In addition to DCs and SSC mentioned in the 
article, the interaction between nanoparticles and other 
immune cells also deserves attention.
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