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Abstract

Ovarian aging is characterized by a progressive decline in ovarian function. With the increase in life expectancy world-
wide, ovarian aging has gradually become a key health problem among women. Over the years, various strategies
have been developed to preserve fertility in women, while there are currently no clinical treatments to delay ovarian
aging. Recently, advances in biomaterials and technologies, such as three-dimensional (3D) printing and microflu-
idics for the encapsulation of follicles and nanoparticles as delivery systems for drugs, have shown potential to be
translational strategies for ovarian aging. This review introduces the research progress on the mechanisms underlying
ovarian aging, and summarizes the current state of biomaterials in the evaluation and treatment of ovarian aging,
including safety, potential applications, future directions and difficulties in translation.
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Introduction

Ovarian aging is characterized by a progressive decline
of ovarian function, manifested by a decrease in the
quantity and quality of oocytes with advancing age. The
ovary is one of the first organ systems to show hallmarks
of aging, in comparison to other organs. Most countries
show an increasing number of women’s first pregnan-
cies at what is considered an advanced reproductive age
(> 35 years). With advancing age, difficulty in conceiving
and infertility increased. Similarly, oocytes derived from
women of advanced age have higher chance of result-
ing in miscarriage, and/or aneuploid offspring [1]. The
end point of ovarian aging is menopause, most women
experience menopause around the age of 50 years [2].
The average life expectancy of women has increased to
more than 78 years that means nearly a third of a wom-
an’s life will be spent after menopause, accompanied by
hot flashes, night sweats, irritability, depression, and
other menopausal syndrome. Importantly, ovarian aging
drives the aging of multiple organs, which is considered
as the pacemaker of female body aging [3]. Ovarian aging
can lead to obesity, diabetes, Alzheimer’s disease, uro-
genital atrophy, osteoporosis and fracture, cardiovascu-
lar disease, and an increased all-cause mortality, which
seriously decrease the life quality of aged female [4, 5].
Therefore, the treatment strategies that can delay ovarian
aging would improve fertility and health in females.

Over the last two decades, some therapeutic strategies
to improve, reverse or slow ovarian aging have emerged.
Hormone replacement therapy (HRT) is a universal treat-
ment for ovarian aging, which could allow women to
free themselves from the malediction of menopause and
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conserve their fertility [6]. However the use of HRT has
been vigorously debated [7], previous studies revealed
that HRT was associated with an increased risk of venous
thromboembolism [8], cancer risk [9], and ischemic
stroke [10]. In recent years, interest has rapidly grown in
studies exploring the therapeutic potential of stem cells
in ovarian aging. Different types of stem cells, including
embryonic stem cells (ESCs), mesenchymal stem cells
(MSC:s), stem cells from extraembryonic tissues, induced
pluripotent stem cells (iPSCs) and ovarian stem cells
[11], have therapeutic effects on ovarian damage. How-
ever, transplantation rejection, tumorigenicity, genetic
instability and ethical issues with stem cells limited their
use [12—14]. Furthermore, some other methods, such as
mitochondrial therapy, antioxidants, epigenetic regu-
lators, telomerase activators and traditional Chinese
medicine, have been used to prevent ovarian aging, while
clinical trials have not yet been conducted on most of
these therapies. Therefore, advanced therapeutic strat-
egies to delay, or partially reverse symptoms of ovarian
aging are urgently needed.

Biomaterials have the advantages of promoting cell
interactions, good passive and active targeting, good
stability and biodegradability, high drug loading con-
tent and controlled drug release [15-20]. For decades, a
large number of studies have focused on evaluating the
potential of biomaterials for various applications includ-
ing regenerative medicine and anti-aging. For exam-
ple, in age-related macular degeneration (AMD), Suri
et al. for the first time delivered chitosan modified poly
(lactic-co-glycolic acid) (PLGA) nanoparticles contain-
ing sirolimus to the posterior segment of the eye via
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the subconjunctival route for the treatment of AMD in
rat models, achieving slow degradation and the neces-
sary long-term sustained drug release while minimizing
systemic exposure [21]. In addition, in age-related brain
diseases, Chang et al. constructed electrically magnet-
ized gold nanoparticles (AuNPs) to improve cognitive
function and memory consolidation by promoting adult
hippocampal neurogenesis [22]. Based on the advan-
tages and significant effects of biomaterials in the field
of antiaging, the application potential and value of bio-
materials for the management of ovarian aging have been
gradually recognized by researchers.

In this review, we focus on the research progress on
the potential mechanisms of ovarian aging and sum-
marize the current state of biomaterials in the diag-
nosis and treatment of ovarian aging, including safety,
potential applications, future directions and the difficul-
ties in translation, which could help to provide support
and guidance for future scientific research and clinical
applications.
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Ovarian aging

Factors of ovarian aging

Ovarian aging is a complex process of multifactor and
multilink interactions, and the etiology of ovarian aging
has not yet been fully elucidated. The main factors of
ovarian aging include age, genetics, the hypothalamus
and pituitary glands, environment, medical treatments,
behaviors, infection, immunity, the endocrine system,
and social psychology (Fig. 1).

Age

The number of follicles decreases with the increasing age.
After 38 years of age, the number of follicles is rapidly
consumed, and they number fewer than 1000 in the ovary
at the time of menopause [23]. The same is observed for
the quality of follicles. From the age of 38, the follicle
quality declines rapidly, leading to greatly reduced preg-
nancy and live birth rates. Therefore, the number and
quality of follicles are closely related to age, and age is one
of the most important factors in ovarian aging.
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Genetics

Genetic causes account for approximately 20% to 25%
of patients with premature ovarian failure (POF). POF
shows a high degree of heterogeneity in genetic varia-
tion, including abnormalities in chromosome number
and structure, chromosome fragment abnormalities,
and single-gene perturbations [24]. The mutated genes
associated with ovarian aging are mainly related to the
processes of oocyte meiosis, follicle development, hor-
mone synthesis and secretion, DNA damage and repair,
and mitochondrial function [25, 26]. However, the
related genes known currently can only explain 15% of
the genetic causes of ovarian aging [27]. Therefore, the
application of clinical orientations for genetic testing is
needed for the evaluation of ovarian aging.

Environment

A large number of epidemiological investigations have
shown that environmental factors can adversely affect
primordial follicle establishment, oocyte meiosis, follicle
formation, steroid hormone synthesis and fertility, which
are associated with decreased ovarian reserve [28]. For
example, high concentrations of PM2.5 in the air, poly-
cyclic aromatic hydrocarbons (PAHs) in cigarette smoke
and automobile exhaust, heavy metals (lead, mercury,
cadmium) in polluted water sources, pesticides remain-
ing in fruits and vegetables, plastic components in pack-
aging bags and other possible environmental factors
can affect the reproductive health of female mammals,
suggesting that such exposures can lead to premature
ovarian aging (POA) in women [29]. However, more
experimental investigations in humans are needed to
identify their direct and indirect effects on the ovary
function, and to characterize their mechanisms of action.

Medical treatment

In the process of clinical treatment, many medically
related factors such as chemotherapy drugs, radiotherapy
and surgical injury, can damage ovarian function. The
adverse effects of chemotherapy, radiotherapy and sur-
gery on ovarian function have long been recognized, and
there have been increasingly detailed data documenting
the effects on short-term markers of ovarian function,
longer-term fertility and risk of early menopause [30-32].
The last decade has seen the development of a number
of potential methods for protecting the ovaries against
damage from chemotherapy or radiotherapy. However,
most of that work has been performed using animal
models, and it is worth exploring how to minimize the
risk of ovarian damage with inevitable medical injury.
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Behaviors

Poor living habits and behaviors also have adverse effects
on ovarian function. A meta-analysis suggested that
smoking is associated with a decreased age of meno-
pause of 0.90 years (95% CI 1.58-0.21) [33]. Evidence on
the impact of alcohol consumption on female fertility has
been quite inconsistent, although the majority of studies
have suggested that drinking alcohol damages to ovarian
function [34]; nevertheless, moderate alcohol consump-
tion might be unrelated to female fertility [35]. Moreo-
ver, both smoking and alcohol consumption might lead
to epigenetic changes and DNA damage in germ cells,
potentially resulting in inherited imprinting and genetic
defects [36].

Endocrine factors

The endocrine system maintains and regulates various
complicated vital life activities by secreting hormones.
The ovary, together with two major neuroendocrine
organs, the hypothalamus and the pituitary gland, con-
stitutes the hypothalamic pituitary ovarian (HPO) axis,
which is considered to be a classical circuit regulating
the female reproductive endocrine system. Abnormal
function and endocrine organ diseases, such as thyroid
disease and diabetes, affect ovarian function via direct
and indirect interactions with the HPO axis. Pool-
ing the results of several studies that have investigated
the prevalence of autoimmune thyroid disease (AITD)
in women with infertility demonstrated a significantly
increased incidence of AITD compared to controls,
with an overall estimated relative risk of 2.1 (P <0.0001)
[37]. Hypothyroidism can impair pulsatile secretion of
gonadotropin-releasing hormone (GnRH), resulting in
ovulatory dysfunction and insufficient corpus luteum
development [38]. In patients with diabetes mellitus, a
hyperglycemic environment promotes neuronal apop-
tosis, leading to disordered HPO axis secretion [39].
Additionally, diabetes can also directly cause follicle dys-
function [40]. Although there have been many studies of
the correlation between the endocrine system and ovar-
ian aging, the underlying mechanism has yet to be fully
elucidated.

Immune factors

It is well known that immune factors play a crucial role
in ovarian aging. Studies have shown that autoimmune
abnormalities account for 10% to 30% of premature ovar-
ian insufficiency (POI), including anti-ovarian autoanti-
bodies, immune oophoritis, thyroiditis and rheumatoid
arthritis [41]. The most abundantly present types of
innate immune cells in the ovaries are macrophages.
Zhang et al. revealed a significantly M2 polarized and
increasingly monocyte-derived macrophage population
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in the old ovary compared to that in the young ovary
[42]. Intriguingly, M2 macrophages are known to deposit
collagens in the extracellular matrix (ECM), in turn con-
tributing to the development of fibrosis in the ovary
during aging [43]. Furthermore, cytokines are the key
substances that mediate immune biological processes.
Mechanistically, there is evidence that cytokines can
influence oocyte quality, ovarian reserve, ovarian steroid
production, and the follicular microenvironment, thereby
further contributing to ovarian aging [44—47]. For exam-
ple, elevated levels of the proinflammatory cytokines
interleukin-1 alpha (IL-la), interferon gamma (IFN-
Y), and tumor necrosis factor alpha (TNF-a) have been
found in the serum of patients with POI [48]. Therefore,
anti-immune inflammation aging therapies will become
an important strategy in the prevention and treatment of
ovarian aging.

Other factors

Infection is also one of the influencing factors of ovarian
aging. Studies have demonstrated that bacterial or viral
infection can lead to abnormal menstruation, decreased
reproductive function, and even amenorrhea or POA
[34].

The molecular mechanisms of ovarian aging

Ovarian aging is essentially a process of gradual depletion
of the primordial follicle pool, influenced by the complex
regulatory network inside and outside the body, such as
DNA damage, epigenetic changes, free radical balance
disorders, and abnormal mitochondrial function and so
on (Fig. 1).

Oxidative stress

Free radicals play an indispensable role in the physiologi-
cal changes in the ovaries, such as angiogenesis, sex hor-
mone synthesis, ovulation, and formation and dissolution
of the luteum [49]. Oxidative stress, caused by the imbal-
ance between the production and destruction of reactive
oxygen species (ROS), directly damages the intraovar-
ian environment and many other cells. Excessive ROS
induce apoptosis of granulosa cells (GC) and/or oocytes,
leading to follicular atresia, directly or indirectly activat-
ing primordial follicles, and accelerating the decline of
ovarian reserve function [50]. Some studies have shown
an increase in ROS and a decrease in antioxidant levels
in the oocytes, cumulus cells and follicular fluid of older
women [51, 52]. Oxidative damage to the ovaries is gen-
erally caused by the propagation of lipid peroxidation
cascades, which seriously influencing folliculogenesis,
meiosis, and ovulation and eventually leading to ovarian

aging.
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DNA damage

Recent evidence has suggested that the DNA damage
accumulates with age, possibly due to reduced DNA
repair capacity with age in the oocytes of humans and
mice [53]. Katherine et al. revealed that the genes related
to the DNA damage response (DDR) process regulate
ovarian reserve and its depletion rate and determine the
age of natural menopause [54]. With the development
of sequencing technology, an increasing number of can-
didate genes related to DNA damage and repair in ovar-
ian aging have been found, including MCM8, MCMJ9,
MEIOB, MND1, PSMC3IP, HEM1, and MSH5, which
affect oogenesis mainly by regulating the process of
homologous recombination in meiosis [55-57].

Mitochondria

As an important energy-supplying organelle, the mito-
chondria play a key role in the regulation of calcium
homeostasis, oxidative phosphorylation, the cell cycle,
senescence and apoptosis. As age-related alterations have
been documented in mitochondrial function, the mito-
chondrial DNA mutation load and mitochondrial DNA
copy numbers in mammalian oocytes have been inves-
tigated as potential biomarkers of oocyte quality [58].
Women undergoing in vitro fertilization (IVF) who are
carriers of mitochondrial DNA mutations demonstrate
decreased ovarian reserve based on lower anti-Miillerian
hormone (AMH), lower antral follicle count (AFC), and a
smaller number of oocytes retrieved than healthy volun-
teers [59]. Similarly, the mitochondrial DNA copy num-
ber is also lower in the unfertilized oocytes from women
with infertility problems [60]. Therefore, mitochondria
play a key role in ovarian aging.

Telomeres and telomerase

Telomeres and telomerase are closely related to aging
and apoptosis. In recent years, studies have revealed
that changes in telomere length and telomerase activity
might be among the important mechanisms of ovarian
aging [61]. It has been shown that oocytes in women with
advanced age have shorter telomeres than young women,
and this difference leads to a higher percentage of mis-
carriages or aneuploid embryos [62]. Similarly, women
with a low pregnancy rate or POI showed shorter telom-
eres than healthy controls [62, 63]. Uysal et al. suggested
that decreased telomerase reverse transcriptase (TERT)
and telomere-binding protein expression might underlie
the telomere shortening of ovaries with age, which could
be associated with female fertility loss [64]. These data
together argue that the telomere pathway is critical in
ovarian aging.
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Epigenetics

Epigenetics is considered to be an important cause of
ovarian aging. It has been reported that common epi-
genetic modifications such as DNA methylation, ribo-
nucleic acid (RNA) methylation, histone acetylation,
phosphorylation and ubiquitin, could be involved in the
occurrence and development of ovarian aging [65]. Kris-
tina et al. reported differential methylation variability
between diminished ovarian reserve (DOR) and normal
ovarian function, indicating that the unstable methyl-
ome in granulosa cells can cause epigenetic dysfunction,
resulting in poor ovarian reserve [66]. A study of histone
modification showed that phosphorylation of histone H3
regulates the initiation of granulosa cell differentiation
[67]. Currently, there are still few studies of epigenetic
modification in ovarian aging, and some of the conclu-
sions have been controversial. Therefore, future in-depth
studies of epigenetics could have profound implications
for ovarian aging.

Other mechanisms

The ovarian microenvironment is involved in follicular
formation, development, maturation and ovulation [68],
imbalances in which will lead to abnormal ovarian func-
tion. The accumulation of extracellular matrix, abnor-
malities in the vascular system, and the accumulation of
senescent cells will lead to ovarian microenvironment
disorder [69]. In addition, recent studies have demon-
strated that there are oogonial stem cells in the ovaries
[70], and the loss of stem cell function or instability of
stem cell nests leads to ovarian imbalance, resulting in
ovarian aging.

The characteristics of biomaterials

Biomaterials can be classified into three basic categories:
natural biomaterials (including extracellular vesicle, col-
lagen, hyaluronic acid, fibrin, etc.), synthetic biomaterials
(including polylactic acid (PLA), polyglycolic acid (PGA),
polycaprolactone (PCL), polyethylene glycol (PEG), etc.)
and composite biomaterials (including protein-polysac-
charide composite biomaterials, nanocomposite bioma-
terials, sponges, etc.) (Fig. 2). They have been designed
as theranostics showing unparalleled advantages, such as
promoting favorable cellular interaction, relatively high
drug loading content, controllable drug release, excellent
passive and active targeting, good stability, biodegrada-
bility, biocompatibility and low toxicity [15, 16, 71, 72].
Some biomaterials have been utilized for reproductive
tissue engineering and regenerative medicine [73, 74].
The characteristics of biomaterials are discussed below,
with a focus on those that have been investigated for the
tissue engineering.
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Natural biomaterials

Natural biomaterials are well positioned to play a sig-
nificant role in the development of the next generation
of biomaterials for recovery of ovarian function. They
are derived from naturally occurring substances and are
easily available, have excellent biocompatibility and bio-
degradability and are well tolerated in vivo. Furthermore,
natural polymers contain biomolecules that are natu-
ral to the cells, which can support and guide the cells to
proliferate and differentiate at particular time interval
and consequently can enhance the biological interaction
with them [75]. Natural biomaterials can be divided into
protein biomaterials (including fibrin, collagen), polysac-
charide biomaterials (including hydrogel, alginate, and
hyaluronic acid), and natural nanomaterials (extracellular
vesicles, EVs). Protein-based biomaterials are flexible in
structure and have good biocompatibility [76]. In addi-
tion, they have natural cell adhesion sites, making them
ideal materials for biomaterials engineering [77]. Polysac-
charide biomaterials that can be readily available from
plants, animals, bacteria, etc. [78], are therefore inexpen-
sive and non-toxic [79]. In addition, chitosan, sodium
alginate and starch are natural sources of many non-con-
jugated luminescent polymers (NLP), which show great
potential for future application in the design and devel-
opment of luminescent drug carriers [80]. As a natural
nanomaterial, EVs are a heterogeneous group of cell-
derived membranous structures comprising exosomes
and macrovesicles, which originate from the endosomal
system or which are shed from the plasma membrane,
respectively [81]. EVs perform an important role in cell-
to-cell communication and are involved in multiple phys-
iological and pathological processes, so they have good
biocompatibility with immune system and low toxicity.

Synthetic biomaterials

With the further development of science and technology
and economy, the application range of synthetic polymer
materials is gradually expanding. Synthetic polyesters,
including PLA, PGA, PCL and PEG approved by Food
and Drug Administration (FDA) are the most widely
studied biodegradable polymers in the reproductive tis-
sue engineering and regenerative medicine field. The
synthetic materials have the special properties of being
able to cross biological barriers or passively target tissues
[82] and avoid some drug delivery problems that could
not be effectively solved in the past, including overcom-
ing multidrug resistance and penetrating cell barriers
that restrict drugs from reaching their intended targets
[83]. Compared with natural biomaterials, the physical,
chemical, mechanical and biological properties synthetic
biomaterials can be modified to suit the needs of mate-
rial design [84, 85]. In addition, their materials are more
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plentiful and therefore cheaper, making them cheaper
to manufacture. For example, Obireddy et al. have used
inexpensive 2-hydroxyethyl starch synthetic biomateri-
als to produce co-released particles for use in a variety of
drugs [86]. However, although the biocompatibility and
biodegradability of synthetic biomaterials are well estab-
lished in almost all cases, have reached similar safety lev-
els to natural compounds, they carry the risk of toxicity
and immunogenicity to the host due to their significant
difference to native tissue [84].

Composite biomaterials

The composite biomaterials definition is basically used to
refer to new types of materials that are created by using
two or more natural or synthetic polymers together.
Nanocomposite materials can be categorized due to its
polymer including such as polymer based and non-pol-
ymer based (inorganic) [87]. A variety of bioactive com-
posites have been investigated over the last three decades
as substitute materials for diseased or damaged tissues in

the human body [88]. Proteins (including fibrin, collagen,
and elastin) and polysaccharides (including chitosan, cel-
lulose, and alginate) are widely used in composite bioma-
terials [89]. Proteins can provide better biocompatibility,
and polysaccharide can provide further thermal stability
and antibacterial properties. The combination of the two
can be used as better biomaterials in the field of regen-
erative medicine [90].

Biomaterials for the evaluation of ovarian aging

Timely diagnosis of ovarian aging has become an urgent
need to improve the quality of life of contemporary
women. Bioinformatics involves the research, develop-
ment, or application of computational tools and meth-
ods to obtain, store, visualize, and interpret medical or
biological data [91, 92]. In addition, machine learning
has become an indispensable tool influencing the fields
of bioinformatics and medicine. Machine learning auto-
matically learns complex patterns or rules from big data,
mainly for data representation and prediction problems
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[93]. For example, He et al. developed a Python tool,
MRMD2.0, to achieve dimensionality reduction dur-
ing machine learning [94]. Using bioinformatics to con-
struct biomaterials to detect ovarian function markers
for dynamic monitoring of ovarian aging is a noninvasive,
effective and convenient technology with high sensitiv-
ity and specificity. Next, we summarize innovative strat-
egies for the evaluation of ovarian aging with different
biomaterials.

Biomaterials for anti-Miillerian hormone detection

AMH is a dimer glycoprotein that is a member of the
transforming growth factor B (TGF-f) family of growth
and differentiation factors [95]. AMH is synthesized by
granulosa cells of follicles and released into follicular
fluid. It enters the blood circulation through the perifol-
licular vascular network, so it can be measured in periph-
eral blood [96]. AMH has been implicated as the most
valuable marker of ovarian reserve function because it
is consistent throughout the menstrual cycle, with no
significant variability between menstrual cycle and not
affected by short term use of oral contraceptives [97].

Early detection of AMH is an immune cell chemical
detection and immunoradiometric analysis technol-
ogy, focusing on AMH positioning and functional stud-
ies in animal tissues, which have been unable to meet
the needs of clinical detection diagnosis [98-100]. The
first generation of AMH enzyme-linked immunosorbent
assay (ELISA) detection technology uses a pair of paired
monoclonal antibodies to AMH, and it has begun to
meet the needs of clinical detection, but there is no uni-
fied detection standard [101], and its results are suscep-
tible to sample storage and repeated freeze—thaw cycles
[102]. In addition, there was a large difference in test
results between commercial kits [103]. Beckman Coulter
established the second-generation AMH ELISA detec-
tion technology and unified the detection standard for
AMH [104], but the problem of unstable AMH detection
results persisted [102]. In addition, the above detection
methods indirectly evaluate ovarian function through
AMH in the blood, showing limitations in assessing the
real ovarian reserve.

Molecular probes are constructed by modifying anti-
bodies or ligands of disease-specific molecules on the
surface of biomaterials, and they constitute a nonin-
vasive, effective and convenient detection technology
that can achieve early detection and real-time monitor-
ing of diseases at the molecular level [105]. Zhang et al.
developed AMH-targeted nanobubbles (NBAMH) by
integrating AMH antibodies into the surface of nano-
bubbles (NBs) [105]. NBAMH showed high affinity for
ovarian granulosa cells in vitro, and the ultrasound sig-
nal of transplanted ovaries was significantly enhanced
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compared to that of untargeted NBs. By designing
NBAMH as an ovarian tissue-specific molecular probe,
Zhang et al. provided a promising noninvasive tool for
the study of dynamic monitoring of early ovarian func-
tion after ovarian transplantation. Moreover, Mu’s study
also devised a nanoscale AMH targeted contrast agent,
which could improve the targeted development ability of
rat transplanted ovaries and effectively solve the existing
problems of micron grade contrast agents, such as their
only being for blood pool imaging and their lack of tissue
specificity; in contrast, they could facilitate noninvasive
evaluation of transplantation of ovarian function to real-
ize the in vivo transplantation of ovarian development
and functional evaluation. Furthermore, Liu et al. intro-
duced time-resolved immunochromatographic tech-
nology into the detection of AMH using nanoenhanced
time-resolved fluorescence microspheres and prepared
a quantitative AMH detection strip combined with a
time-resolved fluorescence immunoassay, which effec-
tively improved the sensitivity of the platform and the
detection effect of the low-value fluorescence signal. The
invention realized the simple, rapid and low-cost detec-
tion of AMH, with high sensitivity and small differences
between batches, and it provided a method for the reali-
zation of bedside detection.

Biomaterials in estrogen detection

Estrogen can be divided into estrone (E1), estradiol (E2)
and estriol (E3), among which E2, produced by granu-
losa cells of the ovarian follicles, is crucial to maintaining
female secondary sexual characteristics and reproductive
function [106]. E2 levels are commonly assessed during
the early follicular phase of the menstrual cycle, it is a
simple, inexpensive, and effective screening tool [107].
Basal levels of E2 have been shown to related with ovar-
ian aging, it falls with age throughout a woman’s life
[108].

At present, radioimmunoassay is the main method
to detect estradiol [109]. Although radioimmunoassay
has high sensitivity and specificity, it has the disadvan-
tages of short shelf life and radioactive hazard [109].
In recent years, methods for quantitative detection of
serum estrogen have emerged. The main products were
enzyme-linked immunosorbent assay [110], fluorescence
immunoassay [111], chemiluminescence immunoassay
[112] and electrochemiluminescence immunoassay [113].
Conventional immunoassay techniques have been under
scrutiny for some time with their selectivity, accuracy and
precision coming into question [114]. Chromatographic
analysis [115] and ultraviolet (UV) detection [116] have
also been used for estrogen detection. However, these
methods are expensive, complicated, time-consuming
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and have different levels of assay sensitivity (0.014—
0.04 ng/mL) [110].

Recently, the increasing availability of nanoparticles
has attracted widespread attention in the determination
of estrogen analysis, because of their high surface areas,
high activity, and high selectivity. Li et al. developed a
method in which gold nanoparticles enhanced chemilu-
minescence methods for the measurement of estrogens
[117]. Based on the advantages of electrochemical tech-
niques, Jin et al. developed choline derivative-modified
electrodes for the assay of estrogens [118]. Subsequently,
the same team prepared a Pt nanoclusters/multiwalled
carbon nanotube electrochemical biosensor, which had
high sensitivity and good reproducibility and stability
and could be used as a current-type biosensor for rou-
tine analysis of total estrogen in serum [119]. In addition,
Huang et al. used AuNP-coupled adaptors to enhance the
quantitative detection of 17(3-estradiol (17B-E2) specific-
ity by ELISA [120]. Additionally, for the purpose of low-
cost and sensitive electrochemical detection of 173-E2,
another study used a multiwall carbon nanotube-Nafion
modified electrode [121]. Ovarian 17B-E2 is normally
converted into E3, which acts preventively against the
occurrence of diseases in women, such as cardiovascu-
lar complications and osteoporosis [122, 123]. One study
by Gomes et al. created a voltametric sensor based on a
cobalt-poly(methionine)-modified glassy carbon elec-
trode that did not require sophisticated instruments or
any separation steps, allowing for E3 quantification with-
out laborious and time-consuming procedures [124].

Biomaterials for follicle stimulating hormone detection
Follicle stimulating hormone (FSH) is a heterodimer
expressed by the anterior pituitary gonadotropin, com-
posed of two different subunits, o and B [125], mainly
plays a role in the regulation of ovarian follicular gener-
ation and steroid generation [125], and is an important
indicator of clinical detection of ovarian function [126].
Therefore, timely detection of FSH dynamic changes
in women is conducive to the evaluation of ovarian
function.

In 1953, Steelman and Pohley first proposed an
in vivo specific quantitative determination of FSH,
namely the rat ovarian weight gain method [127]. How-
ever, this method is cumbersome and not suitable for
routine clinical studies, and its sensitivity is too low to
detect serum FSH level [128]. With the development
of technology, immunoassay methods such as ELISA
[129], electrochemiluminescence [130] and chemi-
luminescence [131] have been widely used in clinical
detection of FSH. However, these methods have the
disadvantages of requiring many samples, long test
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time, high cost, low sensitivity and large measurement
uncertainty [132]. Therefore, it is urgent to develop
a fast, economical and simplified FSH detection and
analysis method.

The development of nanotechnology provides new
conditions for the development of biomolecular electri-
cal detection systems, but it also provides a new direc-
tion for FSH detection [133, 134]. Luo et al. developed
a label-free electrochemical immunosensor for the
rapid detection of FSH using graphene nanocompos-
ite materials [132]. The method had high sensitivity,
fast response and substantial clinical application value.
In addition, Lee et al. used a metal-oxide semiconduc-
tor silicon nanowire field effect transistor (SINW-FET)
device to achieve accurate and rapid detection of FSH
[135]. This sensitive, inexpensive, and miniaturized
SINW-EET device could serve as an effective sensing
method for rapid screening of FSH and menopausal
diagnosis. Moreover, Palanisamy et al. synthesized an
iron-containing metal-organic framework (H2N —Fe-
MIL-101 MOFs) on a porous nickel foam (NicF) sub-
strate by in situ hydrothermal methods, as depicted in
Fig. 3. The H2N-Fe-MIL-101/NicF electrode labeled
with FSH antibody (Ab-FSH) was applied for specific
recognition of an FSH glycoprotein [136]. The material
showed fast and excellent sensitivity to FSH. Further-
more, Pareek et al. constructed a novel nanomaterial
(NiC0204/rGO)-modified indium tin oxide (ITO) elec-
trode for the detection of FSH [137]. The biosensor
could help to overcome the disadvantages of current
FSH detection methods, such as high cost, long time
consumption and low sensitivity, while also providing
a dynamic detection range (0.1 pM-1 uM) and a low
detection limit (0.1 pM).

Biomaterials in ovary ultrasound molecular imaging
Ultrasonic molecular imaging is a molecular imaging
technique based on traditional ultrasound imaging to
monitor the level of disease-specific molecular expres-
sion [138-140]. With the characteristics of realizing
early, noninvasive detection and real-time monitoring
of disease at the molecular level [138—140], ultrasonic
molecular imaging has great application potential in
evaluating follicle survival after early ovarian trans-
plantation. As shown in Fig. 4, Zhang et al. successfully
prepared AMH-targeted nanobubbles, which exhibited
a high affinity for ovarian granulosa cells in vitro and
enhanced ultrasound signals in the ovaries [105]. This
new method could be used for early follicle survival
detection after ovarian transplantation.
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Fig. 3 lllustration of the synthesis of iron containing 3D H2N-Fe-MIL-101 nanosheets MOFs on porous NicF substrate by in situ hydrothermal
methods derived from FeCl3-6H20 salt and H2Bdc-NH2 ligand precursors and NicF solid support producing uniformly decorated H2N-Fe-MIL-101/
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copyright permission)
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Fig. 4 Schematic of AMH-targeted nanobubbles (NBAMH) and their targeting ability to rat ovarian granulosa cells expressing AMH. (the figure is
reproduced from Zhang et al. [105] with required copyright permission)
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Biomaterials for ovarian aging therapy

Over the last decade, biomaterial technologies have
shown great promise as potential treatments for ovar-
ian aging. The ideal biomaterials for ovarian aging ther-
apy should be nontoxic, biocompatible, biodegradable,
and bioresorbable. Furthermore, biomaterials should be
able to support the regeneration of new cells and tissue
without producing an inflammatory reaction [141]. Bio-
materials techniques used to treat ovarian aging include
the construction of artificial ovaries, systems for the
development of follicles, biomaterial encapsulation of
cells or drugs, and delivery of natural extracellular vesi-
cles (Fig. 5). Although not yet in the clinical stage, there
have been significant developments in this area, includ-
ing assessments of the effects, safety and feasibility of
anti-ovarian aging using biomaterials in animals. The use
of these biomaterials and their success in treating ovarian
aging (Table 1) and diseases related to ovarian aging are
discussed in detail in the following sections.
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Application of biomaterials in the treatment of ovarian
aging

Extracellular vesicles

EVs, known as nano-sized, are a heterogeneous group
of cell-derived membranous structures comprising
exosomes (~50-150 nm) and microvesicles (~100—
1000 nm), which carry bioactive material such as
mRNAs, microRNAs (miRNAs), and protein in different
body fluids and deliver their contents to recipient cells
[142]. In recent years, EVs has developed into an effective
nanocarrier for advanced drug delivery due to its multi-
ple advantages [143]. EVs, as a natural vector produced
by endogenous cells, have good biocompatibility with the
immune system and low toxicity. In addition, EVs avoid
phagocytosis by macrophages and penetrates blood ves-
sels into the extracellular matrix. Furthermore, EVs can
cross biological barriers to treat refractory diseases,
such as the blood-brain barrier [144]. With the explora-
tion of EVs, stem cell-derived EVs have attracted much
scientific attention due to its broad prospects for treat-
ment of various diseases. Regarding the function of EVs
depends on their parent cells, accumulating studies have
shown that stem cell-derived EVs can treat ovarian aging

Biomaterials
Extracellular
Young ovary vesicles
\.‘.\,‘:‘.« ()
@ oK) Collagen
%% @ k!
e
Anti-ovarian ageing
Hyaluronic acid
Nee Zn
LN o
Ptk |
™
® & [
o Sythetic blcmaterlals
Aged ovary
Fibrin
Alginate
Fig. 5 Application of biomaterials in treatment of ovarian aging

Application

3D culture systems

* Improving follicular development and survival
« Producing mature oocytes
» Allowing ovarian cortex grow and survive

Tissue engineering

+ Artificial ovary construction
* Enabling the survival and proliferation of isolated ovarian cells
+ Promoting follicular development and vascularization

Stem cell delivery

* Increasing long-term retention of stem cells
« Contributing to the restoration of ovarian function
« Enhancing the paracrine function of stem cells

Ovarian transplantation

* Promoting ovarian graft survival
» Inducing angiogenesis and preventing ischemic injury
« Avoiding the occurrence of immune rejection

Preantral follicles transplantation

* Providing supportive environment for implanted cells
» Allowing follicles survive and grow to the antral follicle stage
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by transferring functional miRNAs and proteins. The
following sections will mainly elucidate the therapeutic
effects of stem cell-derived EVs in the treatment of ovar-
ian aging (Fig. 6).

Bone marrow mesenchymal stem cell (BMSC)-derived
exosomes Bone marrow mesenchymal stem cells
(BMSCs) are a cell subpopulation with multiple differen-
tiation potential, and they constitute a popular research
topic in the field of stem cell therapy [145]. Studies have
shown that exosomes derived from BMSC (BMSC-exos)
can also participate in tissue repair, and they are expected
to replace stem cells as a new therapeutic tool for tissue
repair [146]. It has been reported that miR-644-5p carried
by BMSC-derived exosomes improved follicle injury and
ovarian function by inhibiting the apoptosis of ovarian
granulosa cells induced by cisplatin through targeting of
the p53 pathway [145]. Their results suggested that inhi-
bition of the apoptosis pathway in granulosa cells might
occur via horizontal transfer of mRNAs by BMSC-exos.
In another chemotherapy-induced POF rat model, the
prominent role of the contents of BMSC-exos was stud-
ied. BMSC-exos exerted anti-apoptotic effects on tubu-
lar granulosa cells via the delivery of miR-144-5p, which
regulated proliferative/anti-apoptotic pathways, leading
to restoration of ovarian function [147].

Human umbilical cord mesenchymal stem  cell
(hUCMSC)-derived exosomes The human umbilical
cord is a promising source of MSCs, and hUCMSCs have
a painless collection procedure and faster self-renewal
properties. hUCMSC-derived exosomes (hUCMSC-exos)
help to maintain tissue homeostasis and enable the recov-
ery of critical cellular functions by initiating the process of
repair and regeneration. hUCMSC-exos have also proven
to be effective in recovering ovarian function and improv-
ing fertility in ovarian aging. Li et al. investigated the effect
of hUCMSC-exos on POF induced by cyclophosphamide
(CTX) in a mouse model [148]. The results showed that
hUCMSC-exos could reduce cell apoptosis and enhance
proliferation through the Hippo signaling pathway, lead-
ing to ovarian cells recovery and overall improvement
of ovarian function. In a recent animal study, Liu et al.
studied the effect of hUCMSC-exos on POI induced by
chemotherapy in mice [149]. They demonstrated that
hUCMSC-exos improved the fertility of POI mice by
inhibiting the apoptosis of ovarian cells mediated by
mRNAs and miRNAs transferred by the hUCMSC-exos.
In another study, Yang et al. explored the proangiogenesis
effect of hUCMSC-exos in a mouse model of POI [150].
They demonstrated that hUCMSC-exos transplantation
could restore ovarian function by promoting angiogen-
esis through activation of the PI3K-AKT signaling path-
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way. hUCMSC-exos also exerted ovary protection via
their anti-inflammatory effects. In a CTX-induced POI
mouse model, injection of hUCMSC-exos reduced ROS
levels by suppressing SIRT7 expression in the damaged
ovary [151]. Furthermore, an in vitro study by Zhang et al.
showed that hUCMSC-exos increased the proportion of
Bcl-2/Bax and decreased the expression of the proapop-
totic gene Caspase-3, therefore playing important roles
in promoting resistance to cisplatin-induced granulosa
cell apoptosis and restoring the synthesis and secretion
of steroid hormones in granulosa cells [152]. In a similar
study, hUCMSC-exos treatment ameliorated cisplatin-
induced granulosa cell stress and apoptosis in vitro [153].

Human adipose mesenchymalstem cell (hADMSC)-derived
exosomes hADMSCs are derived from human adipose
tissue and are superior biomaterials that can be suit-
able for allotransplantation and regenerative medicine
[154]. Hung et al. established a mouse POI model by
CTX administration to study the therapeutic effect of
hADMSC-derived exosomes (hADMSC-exos) in chemo-
therapy-induced ovarian aging. The results showed that
hADMSC-exos inhibited the expression of apoptosis-
related genes in granulosa cells and improved ovarian
function via regulation of the SMAD signaling pathway
[155].

Human amniotic mesenchymal stem cell (hAMSC)-derived
exosomes hAMSCs are derived from the human amni-
otic membrane, are easy to obtain, are less invasive and are
ethical, and they can be used in allotransplantation and
regenerative medicine [156]. hAMSCs have been shown
to be effective in recovering ovarian function in a mouse
model of POF [156]. However, little is still known about
the underlying molecular mechanism of hAMSC treat-
ment in ovarian damage, and much remains to be further
clarified. In another study, Ding et al. first reported that
hAMSC derived exosomes (hAMSC-exos) reversed apop-
tosis in a chemotherapy-induced POF mouse model. This
study indicated that miR-320 in hAMSC-exos reduced
ROS levels via SIRT4 signaling to exert protective effects
on ovarian function [157].

Human  amniotic  epithelial cell (hAEC)-derived
exosomes hAEC-based therapy mediates tissue regener-
ation in a variety of diseases, and increasing evidence has
suggested that the therapeutic efficacy of hAECs mainly
depends on paracrine action [158-160]. The effects of
hAEC-derived exosomes (hAEC-exos) were investigated
in POF induced by busulfan and cyclophosphamide in
mice. hAEC-exos significantly improved ovarian func-
tion by ameliorating the granulosa cell apoptosis and
preventing the ovarian vasculature damage. An in vitro
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Fig. 6 The therapeutic effects of stem cell-derived EVs in the treatment of ovarian aging

study showed that hAEC-exos increased the expression of
anti-apoptotic genes, such as Bad, Bcl2, and PTEN, and
decreased the expression of pro-apoptosis genes, such as
Caspase-3 and Bax, by transferring functional miRNAs,
such as miR-1246 [14]. In addition, the results showed
that hAEC-exos prevented primordial follicle activation
in chemotherapy-treated mice through the PI3K/AKT/
mTOR pathway.

Amniotic  fluid-derived — mesenchymal  stem  cell
(AFMSC)-derived  exosomes AFMSCs are adult,
fibroblast-like, self-regenerating pluripotent stem cells
[161]. Accordingly, AFMSCs serve as a rich source of
MSCs in terms of the number of potential donors and
the simplicity of the harvesting procedure [162]. Based
on their enormous differentiation capacity and immu-
nomodulatory characteristics, the therapeutic poten-
tial of AFMSCs has been extensively explored in animal
models of degenerative diseases. In a mouse model of
POF induced by CTX, Xiao et al. showed that injection
of AFMSC-derived exosomes (AFMSC-exos) protected

mice from ovarian damage by reducing apoptosis of gran-
ulosa cells [163]. They revealed that AFMSC-exos con-
tained two miRNAs, miR-146a and miR-10a, which inhib-
ited apoptosis in damaged granulosa cells and prevented
the atresia of ovarian follicles induced by CTX [163]. Tha-
bet et al. showed that AFMSC-exos were able to repair
CTX-induced POF in rats [164]. They found that AFMSC-
exos containing miRNA-21 could inhibit the expression
of target genes, such as PTEN and Caspase-3 in ovarian
cells. These target genes are involved in the apoptosis and
physiology of follicles [164].

Menstrual blood-derived stromal cell (MenSC)-derived
exosomes Mesenchymal stromal cells isolated from
menstrual blood (MenSCs), exhibiting a potent proangio-
genic and immunomodulatory capacity, have become an
important source of stromal cells for cell therapy [165].
Their therapeutic effect is mediated by paracrine media-
tors released by their secretomes. Previous studies have
shown that MenSCs play a paracrine role in ovarian ther-
apy, such as promoting the number of follicles and ovarian
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angiogenesis and reducing the apoptosis of granulosa cells
[142, 145]. Recently, Zhang et al. found that menstrual
blood-derived stromal cell-derived exosomes (MenSC-
exos) transplantation could effectively promote follicular
development, restore fertility and improve live birth rates
in a chemotherapy-induced POI rat model [166]. These
protective effects might mainly be due to improvement of
the ovarian extracellular matrix and the proliferation of
granulosa cells.

Follicular fluid-derived exosomes Follicular fluid has
been recognized as a source of biochemical factors that
can be predictive of oocyte quality, and it contains a
variety of important secretory factors, such as proteins,
amino acids, nucleotides, hormones and so on [167]. The
microenvironment provided by follicular fluid plays
an important role in follicular growth and maturation
[168]. Follicular fluid exosomes are new molecules in fol-
licular fluid, and they have been successfully isolated from
human, bovine, and pig ovaries [169—171]. Juliano et al.
proved that microvesicles isolated from follicular fluid
could be taken up by surrounding granulosa cells [168].
Recently, Yuan et al. found that follicular fluid exosomes
increased the proliferation and progesterone synthesis
of porcine ovarian granulosa cells, in which the MAPK/
ERK and WNT/B-CATENIN pathways were involved
[172]. Another study investigated the role of the antioxi-
dative properties of follicular fluid exosomes in bovine
granulosa cells [173]. The results showed that follicular
fluid exosomes had protective effects against heat stress
by reducing the amount of ROS accumulation. In a simi-
lar study, to improve cumulus cell expansion and oocyte
competence for fertilization, treatment with follicular
fluid exosomes increased the resistance of oocytes to heat
shock and improved the cleavage and blastocyst rates
[174].

Together, EVs, especially exosomes, have attracted
significant interest with regard to their use in the treat-
ment of ovarian aging. EVs can be readily isolated from
stem cells of various origins and carry biologically active
molecules that can be transferred to target cells to exert
their therapeutic effects. EVs prevent ovarian aging by
promoting angiogenesis, modulating the immune sys-
tem, suppressing cell apoptosis, and exerting many other
beneficial effects. However, the functional mechanisms of
EVs must be determined to take full advantage of EVs in
ovarian aging therapy.

Extracellular matrix

Tissues and organs contain a mixture of cellular and
noncellular components that form well-organized net-
works called ECM. The ECM not only provides a physical
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scaffold for cell embedding, but also regulates many cel-
lular processes such as cell growth, migration, differen-
tiation, survival, homeostasis and morphogenesis [175,
176]. The major constituents of ECMs are fibrous form-
ing proteins, such as collagens, elastin, fibronectin (FN),
laminins, glycoproteins, proteoglycans (PGs) and gly-
cosaminoglycans (GAGs), which are highly acidic and
hydrated molecules [177] and synthetic ECM is a prom-
ising material for tissue engineering [178]. The ovarian
tissue engineering concept presents a 3D system for fol-
liculogenesis resumption, supporting follicle survival and
growth, providing a new strategy for the treatment of
ovarian aging [73].

Detergents for the decellularization of whole organs
or tissues are key factors in the preparation of acellular
scaffolds with ECM structural integrity [179]. Origi-
nally, human and bovine ovaries were decellularized
using sodium dodecyl sulfate (SDS) as an ionic detergent
[180]. However, the long-term application of SDS can
significantly change the ECM and has a strong, destruc-
tive effect on the ultrastructure of natural tissues, includ-
ing the reduction of polysaccharides and cytokines,
cytotoxicity, poor adhesion, and induced inflammation
and thrombosis after transplantation [181-183]. Since
then, the ovarian decellularization protocol has been
improved. Studies have shown that the harmful effects
of SDS are related to its concentration and exposure
time [184, 185]. Pors et al. treated human ovarian tissue
with 0.1% SDS as a cell detergent for 18—-24 h, and they
added DNA enzymes to decellularized human ovarian
tissue and maintained ECM integrity [186]. Similarly, Liu
et al. improved porcine ovarian decellularization strate-
gies by adding Triton X-100 solution and shortening the
SDS culture time, and further shortening the chemical
treatment time by adding DNA enzyme digestion and
freezing and thawing steps, and they developed a novel
xenogenic ovarian regeneration decellularization pro-
tocol [187] as depicted in Fig. 7. Sistani et al. felt that
the simplified procedure might better preserve the bio-
chemical properties of the scaffold, so they applied three
freezing/thawing cycles using a combined regimen of 1%
Triton X-100 for 15 h and 0.5%SDS for 72 h without any
enzyme treatment. The regiment could effectively decel-
lularize human ovarian tissue and highly preserve ECM
content and noncytotoxic properties [188]. Eivazkha-
nia et al. demonstrated that sodium hydroxide (NaOH)
could be used as a satisfactory decellularization agent for
ovarian decellularization and regeneration of follicle-like
structures [184]. Hassanpour et al. investigated a novel
decellularization protocol based on sodium dodecyl sul-
fate (SLES) treatment, which avoided the disadvantages
of SDS treatment, preserved the structure and composi-
tion of ovarian ECM, and promoted in vitro and in vivo
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biocompatibility and neovascularization of biological
ovarian scaffolds [179].

Acellular tissue can improve follicular activity and
growth by providing natural ECM components, growth
factors and porous structures [189], making it an ideal
scaffold for in vitro follicular culture. Nikniaz et al. cul-
tured isolated mouse preantral follicles into an acellular
ovarian scaffold and tested the survival rate of follicles

for the first time, demonstrating that sodium alginate-
containing acellular ovarian scaffolds could maintain fol-
licular viability in vitro for 6 days [190]. Similarly, Alaee
et al. cultured preantral follicles from mice in a decellu-
larized rat ovarian scaffold for 12 days [191]. In the acel-
lular ovarian scaffold, the preantral follicles transformed
into antral follicles, and the mature follicles secreted E2
and progesterone (P4), and they could grow and develop
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normally and produce mature meiosis oocytes. Liu et al.
implanted rat ovarian tissue into a porcine acellular scaf-
fold, as depicted in Fig. 7. The acellular ovaries supported
the adhesion, migration, and proliferation of immature
female rat granulosa cells and showed estradiol secre-
tion in vitro [187]. Pors et al. cultured human preantral
follicles in vitro from acellular human ovarian tissue and
demonstrated that the scaffold could support the survival
of human follicles, while further research is needed to
improve the recovery and survival of retransplanted folli-
cles [186]. Kim et al. for the first time used ECM-derived
hydrogels to perform 3D follicular culture in vitro and
showed that this culture system could effectively improve
the results of in vitro follicular culture, support follicular
morphology and growth, and promote oocyte maturation
[192].

Reconstruction of bioengineered ovaries could pave
the way for possible in vitro reconstruction of ovarian
tissue, which could in turn lead to overall improvements
in reproductive technology and possibly future applica-
tions in organ transplantation to restore hormonal and
reproductive function. Hassanpour et al. created artificial
ovaries by implanting rat primary ovarian cells into an
acellular scaffold of human ovarian tissue and implanted
them into ovariectomized mice. Increased vaginal open-
ing and estrogen levels after implantation confirmed
the recovery of puberty [179]. Similarly, Laronda et al.
showed that acellular bovine ovarian scaffolds supported
the growth of isolated mouse follicles, produced estrogen
and reconstructed menstrual cycles in ovariectomized
mice [180]. Recently, Pennarossa et al. created a complete
porcine ovarian 3D biological scaffold and refilled the
ECM scaffold with female germline stem cells (FGSCs) to
form a bioengineered ovary [193]. Notably, pregnancies
have been reported following minimally invasive trans-
plantation of previously cryopreserved ovarian tissue
using human extracellular tissue matrix scaffolds assisted
by robotic surgery [194].

Collagen

Collagen, which belongs to the fibrin family, is the most
abundant extracellular matrix protein in the animal king-
dom. It transmits loads in tissues and provides a highly
biocompatible environment for cells [195]. This good
biocompatibility, biodegradability, low inflammatory
response, and low antigenicity make collagen a perfect
biomaterial for regenerative medicine and tissue engi-
neering [196].

There are 28 different members of the collagen fam-
ily. Collagen type I, III and IV are the most abundant
of the various collagen types in ovaries of vertebrates.
The presence of normal collagen retains primordial fol-
licle dormancy, follicles development, ovulation and
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steroidogenesis [197]. Therefore, collagen is a promising
hydrogel for encapsulation of ovarian follicles. Joo et al.
created collagen-rich, biomimetic 3D shells to culture
rodent ovarian follicles [198]. They found that differ-
ences in cell survival, follicular growth and development,
sex hormone production, and oocyte maturation were
associated with changes in the density and elasticity of
collagen hydrogel, suggesting that collagen hydrogel
properties were important for follicular phenotype and
function maintenance in 3D culture systems. In addi-
tion, follicles from several species have been successfully
implanted into 3D collagen gel for culture. Torrance et al.
developed a technique for isolating and growing intact
mouse preantral follicles in a collagen gel matrix, and it
allowed mouse follicles to separate and grow in vitro for
at least 2 weeks [199]. Sharma et al. developed for the
first time a 3D collagen gel culture system for the in vitro
growth and survival of buffalo preantral follicles [200]. In
addition, human [201, 202], pig [203] and bovine [204]
follicles could be cultured in collagen gel, and it has been
proven that the collagen gel culture system could provide
maximal support for the growth of follicles, and main-
taining their three-dimensional structure. Furthermore,
a 3D matrix culture system consisting of type I collagen
was constructed, which, together with leukemia inhibi-
tors, allowed granulosa cell subpopulations isolated from
mature follicles to survive and grow and supported their
proliferation into steroid-producing spherical structures
[205]. To study how the cell layer of the follicular mem-
brane is formed, Itami et al. constructed a three-dimen-
sional follicular culture system. Using this culture system,
the follicles could maintain their three-dimensional
shape by embedding in collagen gel, increasing their size
in response to FSH stimulation, and replicating the for-
mation of the cell layer of the follicle membrane when
cultured with mesenchymal cells [206].

In vitro maturation (IVM) of human oocytes has the
potential to provide some patients with the opportunity
to receive fertility therapy; however, the conditions of
human oocyte IVM remain to be improved [207]. Abir
et al. embedded monolayer follicles from human ovarian
tissue in collagen gel and cultured them for 24 h in vitro,
establishing the first step of successful IVM of human
small follicular oocytes. They reported for the first time
an increase in the granulosa cell layer and oocyte diam-
eter of human follicles isolated and cultured in collagen
gel [201]. It is now clear that bidirectional communica-
tion between oocytes and their surrounding cumulus
cells plays an important role in obtaining oocyte devel-
opment capacity and subsequent embryogenesis [208—
210]. Combelles et al. embedded cumulus cells into a
3D collagen gel matrix, adding a single oocyte to each
gel, and they established an effective in vitro fertilization
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combined culture system of human denuded oocytes and
cumulus cells [202]. In addition, it was found that the
developmental potential of oocytes could be increased by
temporarily inhibiting spontaneous meiosis maturation
[211, 212]. Vanhoutte et al. precultured germinal foamed
(GV) oocytes from the controlled ovarian overstimu-
lation (COH) cycle in a collagen (type I) gel containing
free cumulus cells and a specific phosphodiesterase 3
inhibitor (PDE3-], inhibiting meiosis) for 24 h [213]. The
results showed that the fertilization rate of 3D precul-
tured oocytes was significantly higher than that of con-
ventional IVM oocytes.

Indeed, the use of collagen as a scaffold for stem cell-
based ovarian aging therapy is well documented. Yang
et al. transplanted a collagen scaffold loaded with hUCM-
SCs into the ovaries of POF mice for the first time [214].
They demonstrated that the collagen scaffold increased
the levels of E2 and AMH, the ovarian volume and the
number of antral follicles. However, the mechanism of
interaction between collagen scaffolds and stem cells
remains unclear and requires further study. The collagen
scaffold with hUCMSCs transplantation could represent
an ideal and promising treatment for POE. In another
study, Su et al. explored the transplantation of collagen
scaffolds with adipose-derived stem cells (ADSCs) in a
rat model of POF [154]. They observed that collagen scaf-
folds increased the long-term retention of ADSCs in the
ovary and contributed to the restoration of ovarian func-
tion, including a regular estrus cycle, elevated E2 levels
and improved fertility. These protective effects might be
due to the growth factors secreted from ADSCs in the
collagen scaffold, contributing to granulosa cell prolifera-
tion and angiogenesis within follicles. Although collagen
scaffolds promoted the long-term retention of adipose
stem cells in the ovary, the retention of these cells did
not exceed 1 month and must be further optimized. Ding
et al. showed that umbilical cord mesenchymal stem cells
on collagen scaffolds (collagen/UC-MSCs) could acti-
vate primordial follicles in vitro by phosphorylation of
FOXO3a and FOXO1 and activate follicles to grow to the
preovulation stage in vivo [215]. In addition, they trans-
planted collagen/UC-MSCs into the ovaries of patients
with POF, preserving overall ovarian function and a suc-
cessful clinical pregnancy.

Hyaluronic acid

Hyaluronic acid (HA) is a biopolymer composed of
disaccharide repeat units, including D-glucuronic acid
molecules and N-acetylglucosamine molecules linked
by B-(1-4) and B-(1-3) glycosides. It is present in all
vertebrates and is an important component of the ECM
in most mature tissues [216]. Hyaluronic acid has been
widely used for its excellent physicochemical properties
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such as biodegradability, biocompatibility, non-toxicity,
non-immunogenicity and as an excellent tool in biomedi-
cal applications such as osteoarthritis surgery, eye sur-
gery, plastic surgery, tissue engineering and drug delivery
[217].

In the ovary, HA is found not only in the cumulus
matrix but also in the theca cells and follicular fluid, and
they play a significant role in establishing a microenvi-
ronment conducive to the development of follicles [218].
Desai et al. described for the first time a novel tyramine-
based HA hydrogel that supported the in vitro culture
of mouse preantral follicles [219]. It was proven that
oocytes from HA-encapsulated follicles could resume
meiosis and produce mature MII oocytes. Brito et al. also
used a novel HA hydrogel based on a tyramine-substi-
tuted sodium hyaluronate dihydroxyphenyl bond for the
in vitro culture of caprine preantral follicles [220]. How-
ever, it was found that the follicles enclosed in HA failed
to survive, possibly due to differences in experimental
conditions (number of cultured follicles, culture medium
and species). Compared with alginate (ALG), HA hydro-
gel lost the ability to increase follicular survival and the
antral formation rate [220]. This outcome might be due
to poor mechanical properties or a lack of pores in the
HA microstructure, which are necessary for follicular
nutrition and growth [221]. Jamalzaei et al. created a
composite hydrogel (HAA) composed of HA and ALG
to optimize the poor mechanical properties of HA and to
form porous microstructures [222]. They found that the
application of HAA hydrogel produced good results in
follicular culture. Vitrification of embryos has been suc-
cessful, while cryopreservation of oocytes has still failed
to achieve the expected results [223]. Paim et al. used a
vitrification solution with 1% hyaluronic acid to freeze
the cumulus oocyte complex (COC) for 7 days and then
heated and matured it in vitro for 30 h [224]. The results
showed that adding 1% hyaluronic acid to vitrified fro-
zen solution could improve the meiotic recovery rate
and nuclear maturation rate of Rattus norvegicus oocytes
in vitro.

Cryopreservation and transplantation of ovarian tis-
sue is an effective method for the treatment of iatrogenic
ovarian aging. Tavana et al. used a hyaluronic acid-based
hydrogel (HABH) as a scaffold to improve ovarian tissue
transplantation [225]. They found that ovarian encapsula-
tion with HABH could prevent or reduce early ischemia-
induced follicular loss and promote follicular survival
and angiogenesis. However, the underlying mechanisms
and clinical translational applications of HABH require
further investigation. The same group used HA hydrogel
as a scaffold to wrap vitrified ovarian tissue in autolo-
gous intramuscular transplantation, and they showed
that it increased angiogenesis and reduced the follicular
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apoptosis rate in transplanted ovaries [226]. The results
showed that the use of HA in combination with growth
factors seemed to improve the outcome of autologous
transplantation. Friedman et al. found that the coincu-
bation of human ovarian grafts with HA-rich biogels in
combination with vascular endothelial growth factor A
(VEGF-A) and vitamin E resulted in improved ovarian
graft survival [227].

Self-linked HA is a good cell scaffold to improve the
transplantation of stem cells in the treatment of ovarian
aging. Jiao et al. explored a combination of hUCMSCs
and HA gel to rescue ovarian reserve and fecundity in a
POI mouse model [228]. The HA gel not only increased
the local retention of stem cells in the ovary, but also
enhanced the paracrine function of hUCMSCs. The
authors demonstrated that transplantation of hUCM-
SCs combined with HA gel could improve follicular sur-
vival by activating the PI3BK-AKT pathway. Shin et al.
transplanted embryonic stem cell-derived mesenchy-
mal progenitor cells (ESC-MPCs) into cisplatin-induced
POI mouse models by using HA gel scaffolds [229]. This
method could effectively restore the ovarian struc-
ture and function of POI mice and improve the quality
of oocytes and embryos, as well as the regularity of the
estrus cycle. Interestingly, Zhao et al. demonstrated that
HA supplementation prevented the occurrence of POI
induced by treatment with the immunosuppressive agent
tripterygium glycosides (TGs) [230]. This study indicated
that HA promoted granulosa cell proliferation by upregu-
lating PGRMC1 expression.

Fibrin

Fibrin (FIB), composed of fibrinogen and thrombin, is
a natural scaffold formed after tissue injury, which can
cause hemostasis and provide a useful initial matrix for
cell adhesion, migration, proliferation and differentiation
[231]. Fibrin has attracted the attention of tissue engi-
neers because of its excellent biocompatibility, controlla-
bility and biodegradability as well as its ability to transfer
cells and biomolecules. Fibrin is widely used in the devel-
opment of cell-induced scaffolders [232], stem cell deliv-
ery [233] and induction of angiogenesis [234].

Fibrin by itself does not support follicular develop-
ment in vitro because the encapsulated follicles secrete
matrix-degrading proteolytic enzymes that cause follicle
extrusion [235]. However, a combined culture system of
fibrin alginate and fibrin thrombin can be successfully
applied for in vitro follicular culture and artificial ovary
construction [236-239]. Sadr et al. encapsulated mouse
follicles in fibrin-alginate scaffolds and cultured them
for 12 days. This culture system could improve follicular
development and survival and produced mature oocytes
[235]. Jin et al. isolated mouse secondary follicles and
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cultured them in a fibrin-alginate (FA) hydrogel matrix
for 12 days [240]. The 3D culture system supported the
growth of secondary follicles to the antral follicle stage
and produced mature oocytes suitable for fertiliza-
tion. Shikanov et al. developed a culture system based
on the fibrin-sodium alginate interpenetration network
(FA-IPN), which was subsequently used to grow mouse
secondary follicles. This combination provided a dynamic
mechanical environment that mimics the natural ovar-
ian environment and contributed to increased meiosis
maturation rates of oocytes [239, 241]. Brito used a cul-
ture system of FA to support the development of caprine
preantral follicles, restore oocyte meiosis and promote
oocyte maturation to produce parthenotes [220]. Nota-
bly, Xu et al. cultured isolated rhesus monkey secondary
follicles in a fibrin alginate matrix for 40 days. The results
showed that this culture system supported the growth of
secondary follicles to the antral follicle stage in nonhu-
man primates and promoted the maturation of oocytes
to the MII stage for the first time [242]. Subsequently,
Xu et al. reported for the first time that fibrin-alginate
3D capsules could promote the development of primary
follicles in primate rhesus monkeys and increase the pro-
duction of follicle E2 and AMH in vitro [243]. In addi-
tion, they demonstrated that primate oocytes derived
from primary follicles cultured in fibrin-alginate 3D cap-
sules had the ability to restart meiosis for fertilization.
Cryo-thawed follicles have a better survival rate due
to faster vascularization compared to the rate of ovarian
tissue transplantation. The fibrin scaffold can control
the release of growth factors and create a continu-
ous path of cell infiltration between the host and graft
[244], making it an ideal scaffold for follicular trans-
plantation. Rajabzadeh et al. transplanted preantral
follicles encapsulated in a fibrin hydrogel scaffold sup-
plemented with platelet lysate [245]. The results showed
that the culture system could significantly improve the
local vascularization, survival rate, and growth of fol-
licles. Luyckx et al. transplanted mouse preantral fol-
licles and ovarian cells by wrapping them in a fibrin
matrix containing low concentrations of fibrinogen
and thrombin [246]. Almost all follicles were alive and
grew to the antral follicular stage. The fibrin matrix also
allowed for the proliferation of transplanted endothelial
cells and capillary formation. Chiti et al. transplanted
mouse primordial-primary and secondary follicles into
severe combined immunodeficiency (SCID) mice by
coating them with fibrinogen and thrombin (F12.5/T1)
substrates. The results showed that isolated secondary
follicles in the fibrin matrix could survive and grow to
the antral follicle stage after short-term transplantation
[247]. Smith et al. coated primordial follicles in fibrin
hydrogel and transplanted them into an infertile mouse
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model [248]. The transplanted follicles could survive in
infertile mice, develop into antral follicles and restore
ovarian endocrine function. The surviving follicles
were surrounded by the host interstitial tissue and pro-
duced luteum after ovulation. Paulini et al. xenografted
human preantral follicles coated with a fibrin matrix
containing fibrinogen and thrombin into the peritoneal
sacs of nude mice [249]. The results showed that iso-
lated human follicles were viable after encapsulation in
fibrin clots.

Revascularization has always been an obstacle to
the development of ovarian transplantation [244]. Shi-
kanov et al. hypothesized that fibrin scaffolds provided
a physical bridge between graft and host tissue and had
the potential to enhance angiogenesis [244]. They trans-
planted vitrified/thawed ovarian tissue from mice coated
with heparin binding peptide (HBP) and heparin-modi-
fied fibrin and loaded with vascular endothelial growth
factor (VEGF) into infertile mouse models. The results
showed that fibrin gel grafts could reduce ischemia and
improve vascular remodeling after transplantation. The
protocol also restored endocrine function and fertility
in transplanted mice and allowed for natural concep-
tion. In addition, Gao et al. coated mouse ovarian tissues
in fibrin hydrogels mixed with different concentrations of
basic fibroblast growth factor (bFGF) and transplanted
them under the skin of adult female mice for 1 week
[250]. They demonstrated that bFGF and fibrin hydro-
gels could increase follicular survival and improve revas-
cularization after ovarian transplantation. In addition,
the high concentration of bFGF promoted the revas-
cularization of transplanted ovarian tissue. Yang et al.
transplanted mouse ovaries by wrapping them in fibrin
hydrogels containing nitric oxide-releasing nanoparticles
(NO-NPs) [251]. The results showed that the NO-NP/
fibrin hydrogel improved the total number and quality of
follicles after transplantation, induced angiogenesis, and
prevented ischemic injury in the early stage of ovarian
transplantation in mice. Shojafar et al. demonstrated that
platelet-rich fibrin bioscaffolds indirectly reduced oxida-
tive stress, promoted revascularization, and protected
follicular cisterns from ischemia—reperfusion injury,
thereby improving endocrine function and follicular for-
mation in transplanted ovaries [252].

Fibrin-based scaffolders are also an alternative for the
construction of artificial ovarian prototypes [253]. Chiti
et al. compared the fiber thickness of four different fibrin
formulations with the human ovarian cortex to optimize
the composition of fibrin matrix and mimic the structure
of human ovarian tissue, creating artificial ovaries that
could grow human follicles [237]. Luyckx et al. reported
that artificial ovaries formed by two optimal combina-
tions of fibrinogen and thrombin (F12.5/T1 and F25/T4)
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enabled the survival and proliferation of isolated human
ovarian stromal cells [238].

Alginate

Alginate is a group of non-branched polysaccharides
composed of 1, 4-bound B-D-mannuronic acid (M) and
A-vr-guluronic acid (G) produced by brown algae and
some bacteria [254]. Since alginate is non-toxic, rich in
resources and easy to obtain, it is used as scaffold mate-
rial for two-dimensional (2D) and 3D culture of mamma-
lian cells [255]. In addition, alginate is able to form a soft
hydrogel under physiological conditions, with pores large
enough to allow nutrients and growth factors to pass
through freely, while cells are trapped in the polymer net-
work [256]. Their beneficial properties also include bio-
compatibility and biodegradability in human [257]. Based
on the above advantages, alginate has become a very
important biological material in pharmaceutical and bio-
medical fields.

Alginate hydrogels have been widely investigated in the
culture of follicles from numerous animal species. The
ultimate goal of an alginate system is to promote follicle
development to obtain healthy oocytes that can be fur-
ther matured and fertilized to produce embryos for fer-
tility restoration [258]. Preantral follicles are the largest
follicle population and represent an important source of
potentially competent oocytes for further use in assisted
reproductive technology [259]. There is evidence that
the preantral follicle requires a hard tissue similar to the
ovarian cortex to initiate in vitro development [260]. Alg-
inate is an ideal scaffold for follicular culture in vitro and
has been successfully applied in preantral follicle culture
in many species. When Correia et al. coated goat primor-
dial follicles in a sodium alginate 3D culture system, they
showed an appropriate survival rate and high follicular
activation rate [259]. Sadeghnia et al. evaluated sheep
primordial/primary follicles in a sodium alginate three-
dimensional culture system and found that the system
supported the structural integrity of the follicles, with 2%
sodium alginate supporting follicle growth better than 1%
sodium alginate and increasing the diameter of the fol-
licle [261]. The sodium alginate hydrogel matrix designed
by Xu et al. promoted the follicular development of
mature oocytes in vitro, and embryos extracted from cul-
tured oocytes fertilized in vitro were transplanted into
pseudopregnant female mice to produce healthy and fer-
tile progeny [262]. In addition, studies have shown that,
when coated with alginate and cultured, rhesus monkey
secondary follicles could grow to the antral follicle stage
and produce healthy oocytes for a long time [263, 264]. It
is noteworthy that sodium alginate hydrogels can also be
used for human ovary or follicle culture [265]. Kedem’s
group tested the feasibility of culturing human ovarian
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cortex slices on macroporous sodium alginate scaffolds
[266]. This study showed that there was an increase in
the developing of follicle culture and a decrease in atretic
follicles on sodium alginate scaffolds. Similarly, Laronda
et al. coated human ovarian cortex-containing primordial
follicles in sodium alginate hydrogel and found that the
ovarian cortex grew, survived, and supported follicular
development for up to 6 weeks in vitro [267]. Amorim
et al. demonstrated that small human preantral follicles
from frozen and thawed ovarian tissue could survive
in vitro culture in alginate matrix for 7 days [268]. In
addition, alginate culture systems can be used for IVM.
Recently, Mastrorocco et al. developed a 3D IVM pro-
tocol for lamb COC encapsulated in the core of alginate
microspheres [269]. This technique could increase the
nuclear maturation rate of preadolescent oocytes and
reduce the incidence of chromosome abnormalities, thus
improving the in vitro performance of preadolescent
lamb oocytes.

Jamalzaei et al. found that both the hardness and con-
centration of alginate ALG hydrogel affected follicle
survival and found that the survival rate of 0.5%ALG cul-
tured follicles was significantly higher than that of 0.75%
and 1% ALG cultured follicles [270]. In addition, Jalili
et al. compared the development of mouse preantral fol-
licles in 3D media containing 0.25%, 0.5% and 1% sodium
alginate [271]. They found that appropriate concentra-
tions of sodium alginate hydrogels promoted follicular
growth, maturation, and steroid hormones, with 0.5%
alginate being the most favorable concentration. West’s
group formed alginate brine gels of different hardnesses
by changing the alginate solid concentration or by radiat-
ing or chemically oxidizing the polymer [258]. Secondary
oocytes were coated with alginate gel with different hard-
nesses and growth, morphology and hormone secretion
were observed. The results showed that reducing algi-
nate matrix hardness could maintain intercellular tension
homeostasis, promote cell processes, create a local parac-
rine environment and improve oocyte quality.

Alginate not only can provide a supportive environ-
ment for implanted cells, allowing for full diffusion
of nutrients and oxygen, but it also can act as a barrier
between host and graft to prevent rejection caused by
infiltration of host immune cells, making it suitable for
ovarian transplantation [272]. For the first time, Vanacker
et al. successfully constructed an artificial ovary with alg-
inate saline gel encapsulated in mouse preantral follicles
and transplanted it into immunodeficient mice [273]. The
results showed that the artificial ovary promoted folli-
cular development and vascularization. Sittadjody et al.
constructed a 3D bioengineered ovary with Sr-cross-
linked alginate and coated it with granulosa and theca
cells by a cell encapsulation technique, as depicted in
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Fig. 8. After implantation in ovariectomized rats, the arti-
ficial ovary achieved stable hormone secretion for 90 days
and improved the adverse effects of hormone deficiency,
including osteoporosis, uterine hypertrophy and obesity
[274]. In addition, Felder et al. constructed alginate scaf-
folds with affinity-bound bone morphogenetic protein-4
(BMP-4) to mimic the ovary microenvironment, and it
supported the culture and growth of primordial follicles.
The study showed the restoration of ovarian function in
ovariectomized SCID mice after transplantation of this
scaffold coated with porcine primordial follicles [275].

Synthetic biomaterials

Synthetic biomaterials can be tailored according to the
physicochemical and mechanical properties of biological
tissues, which have attracted great attention in the field of
tissue engineering and regenerative medicine. At present,
some studies also show that synthetic biomaterials play
an important role in the recovery of ovarian function.

PEG is a commonly used biocompatible polymer that
has been used to increase solubility, reduce accumula-
tion, and prolong the blood half-life of various nanopar-
ticles. Kim et al. engineered artificial ovarian tissue using
a synthetic hydrogel, poly(ethylene glycol) vinyl sulfone
(PEG-VS) as a supportive matrix [276]. The PEG-VS
synthetic hydrogel was found to wrap immature follicles
successfully and functioned as an artificial ovarian tissue
in vivo for 60 days, demonstrating that PEG hydrogels
provided a good microenvironment for follicles. Fur-
thermore, Mendez et al. developed a three-dimensional
PEG-based in vitro follicular culture system that could
improve the survival and maturation rates of small folli-
cles [277].

Supramolecular hydrogels, as a new type of soft bio-
material, have attracted extensive exploration because
of their good biocompatibility and biodegradability. As
shown in Fig. 9, Shi et al. designed a supramolecular
hydrogel = (Nap-Phe-Phe-Asp-Arg-Leu-Tyr-OH,  Y)-
coated receptor tyrosine kinase (RTK) inhibitor, called
Gel Y+Inh (inhibitor of RTK), and developed an RTK
responsive hydrogel to release Inh [278]. The results
showed that the moderate release of Inh effectively
delayed ovarian aging in aged mice by downregulation
mTOR activity.

TheraCyte is an FDA-approved device made of a
polytetrafluoroethylene (PTFE) membrane, which is
impermeable to cells but allows for diffusion of solu-
ble molecules through its 0.4-um pores. David et al.
transplanted a TheraCyte device coated with ovarian
tissue into ovariectomized mice [279]. The TheraCyte
device effectively isolated the graft from immune rec-
ognition and avoided the occurrence of immune rejec-
tion. The ovarian grafts encapsulated in TheraCyte
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[274] with required copyright permission)

Fig. 8 Schematic diagram of a native ovarian follicle (a) compared to the bioengineered ovarian construct (b). 3D-confocal images of
bioengineered ovarian construct (c) demonstrating compartmentalization of different cells within the constructs as determined through the use of
CellTracker green-labeled cells (granulosa) in the inner layer and CellTracker orange-labeled cells (theca) in the outer layer. Images of bioengineered
ovarian construct retrieved 90 days after transplantation into ovariectomized rats including the presence of the vascularized omentum pouch
enclosing the constructs following explantation (d). Explanted constructs showed minimal fibrous encapsulation as indicated by H&E staining (e).
Phase-contrast images of the microcapsules after retrieval show that the constructs remain intact throughout the 90-day period tested in vivo

(f). Live/dead imaging of the retrieved capsules (g), where green indicates live and red indicates dead cells, which shows that most cells in the
constructs remained viable during the 90-day implantation period. Scale bars are 100 um for e—g (the figure is reproduced from Sittadjody et al.

devices could restore follicular development and ovar-
ian endocrine function in ovariectomized mice.

Alhough synthetic biomaterials have been used in
the treatment of ovarian aging, the low degradation
rate, high hydrophobicity and low electrical conduc-
tivity of some synthetic polymer biomaterials remain
major challenges in clinical application [280]. Con-
versely, the use of polymer biomaterials is often chal-
lenged by concerns about the lack of biological activity
and foreign body reactions.

Biomaterials applied to ovarian aging-related diseases

Ovarian aging can lead to endometrial dysfunction,
cardiovascular disease, osteoporosis, central nervous
system-related disease, hyperlipidemia, and stress uri-
nary incontinence, seriously decreasing the quality of
life of aged women. Based on the advantages and sig-
nificant effects of biomaterials in the field of antiag-
ing, different biomaterials have good effects on the
diseases associated with ovarian aging. Next, we sum-
marize the current application of biomaterials for the
treatment of diseases related to ovarian aging (Fig. 10).

Endometrial dysfunction

Steroid hormones are the basis of normal endometrial
function, and the initiation and regulation of endome-
trial shedding and repair are tightly controlled by these
ovarian steroids [281]. When ovarian function is defec-
tive, insufficient secretion of steroid hormones will lead
to endometrial dysfunction, such as a thin endometrium
and infertility [282]. Yoon et al. used a rat ovariectomy
model to harvest autologous ovarian cells to construct
ovarian spherical vascularized hydrogels (VHOS) for
hormone autocrination, and they implanted them into
the hind limbs of ovariectomized rats [283]. Such VHOS
could significantly promote the recovery of endocrine
function and release of hormones, thus achieving com-
plete regeneration of the endometrium.

Cardiovascular disease

Cardiovascular disease is the leading cause of death
among women globally, and cardiovascular risk
increases substantially following menopause. Pre-
mature menopause is associated with cardiovascular
disease, with higher cardiovascular risks observed at
progressively earlier menopausal ages [284]. Studies
have shown that ovarian hormones, mainly estrogen,
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Fig. 9 a Schematic illustration of RTK-instructed disassembly of hydrogel Gel Y + Inh for RTKs/PI3K signaling pathway inhibition. b RTK-instructed
disassembly of Gel Y 4 Inh and the chemical structures of hydrogelator, its corresponding phosphate Yp, and a RTK inhibitor Inh. Photographs: Gel
Y+ Inh (left frame) and Gel Y 4 Inh incubated with SCFR (one type of RTKs) at 37 °C for 3 h (right frame). ¢ lllustration of RTK-insusceptible hydrolgel

Gel F+Inh and the chemical structures of hydrogelator F and Inh. Photographs: Gel F 4 Inh (left frame) and Gel F 4 Inh incubated with SCFR at
37 °Cfor 3 h (right frame) (the figure is reproduced from Shi et al. [278] with required copyright permission)

may play key roles in reducing the risk of heart dis-
ease [285]. Han et al. implanted 17B3-E2 eluting stents
into the abdominal aortae of rabbits fed a high-fat
diet. They observed that the implantation of 17B-E2-
coated stents inhibited ERK activation and reduced
the formation of new intima after angiotensin conver-
sion, thereby preventing restenosis [286]. Similarly,
New et al. assessed the effect of 173-E2-eluting stents
on neovascularization in a pig model and showed that
17B-E2-eluting stents had potential benefits in the pre-
vention and treatment of in-stent restenosis [287].

Osteoporosis (OP)
Osteoporosis is a common disease in postmeno-
pausal women characterized by reduced bone mass,

deterioration of microstructures, and brittle fractures,
affecting nearly one-third of women after the age of
50 [288]. Postmenopausal osteoporosis is largely the
result of quantitative and qualitative bone changes
caused by estrogen deficiency. Guo et al. constructed
a drug delivery system based on PLGA nanoparticles
(NPs), containing 17B-E2 and ferric oxide (Fe304) and
modified it with alendronate sodium to achieve bone
targeting and magnetic remote drug delivery [289]. In
an osteoporosis model in ovariectomized (OVX) rats,
the NPs showed a high encapsulation ability of E2 and
were enriched in bone tissue. The three-month study
showed that the NPs improved OVX-induced bone
loss, increased bone strength and induced new bone
formation with fewer adverse effects on other tissues.
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In another study, Takeuchi et al. explored an alternative
administration route in a rat model of ovariectomized
osteoporosis [290]. They prepared a transdermal deliv-
ery system of E2-loaded PLGA NPs for the treatment
of osteoporosis. The results showed that E2-loaded
PLGA NPs could effectively restore the bone mineral
density of cancellous bone and prolong the interval
between E2 administrations. In addition, Wang et al.
developed a localized E2 delivery system incorporat-
ing p-cyclodextrin (CD-MBGNPs) and silk fibroin to
sustain the constant release of E2 [291], as Fig. 11. The
system could be utilized as a bone void filler for local-
ized E2 delivery and bone regeneration in osteoporotic
patients.

The central nervous system

Decreased estrogen levels before, during and after
menopause can affect memory and cognitive func-
tion [292]. Alzheimer’s disease (AD) is the most com-
mon neurodegenerative disorder, and female sex is a
key risk factor for AD, especially in postmenopausal

women [293]. In addition, there has been considerable
evidence that estrogen has important neuroregulatory
and neuroprotective effects [294]. Therefore, estrogen
could be a potential treatment for ameliorating post-
menopausal degenerative diseases of the central nerv-
ous system [295]. One study by Kreuter showed that
PLGA micro/nanocarriers could enhance the thera-
peutic activity of E2 in the central nervous system
(CNS) [296]. Prakapenka et al. subcutaneously injected
E2-loaded PLGA NPs into rats undergoing meno-
pause induced by OVX surgery and evaluated spatial
learning and memory [297]. They demonstrated that
delivery of E2 from PLGA NPs could enhance the ben-
eficial cognitive effects of E2 relative to free E2 or non-
hormone loaded nanoparticle controls. As shown in
Fig. 12, D’Amato et al. designed a biomaterial scaffold
composed of electrospun fibers and films completely
composed of poly (pro-E2), which released E2 locally
during in vitro for a long period of 1-10 years [298].
These scaffolds demonstrated the ability to promote
and guide neurite extension and protect neurons from
oxidative stress damage.
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Fig. 11 The schematic diagram of the design and preparation of beta-cyclodextrin modified mesoporous bioactive glass nanoparticles/silk fibroin
hybrid nanofibers. (the figure is reproduced from Wang et al. [291]with required copyright permission)
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Hyperlipidemia

Menopause is associated with potentially adverse
changes in serum lipids and lipoproteins, likely partially
explaining the increase in cardiovascular disease (CVD)
risk following menopause [299]. Estrogen deficiency due
to ovarian function loss during menopause is a major
cause of abnormal lipid metabolism. Improving estrogen
levels is a promising approach for treating menopausal

hyperlipidemia. Mittal et al. designed 17B-E2 capsule
NPs to evaluate their efficacy in treating postmenopau-
sal dyslipidemia in a rat model of hyperlipidemia induced
by ovariectomy with a high-fat diet [300]. The results
showed that these NPs improved the bioavailability of
E2 and its effect on hyperlipidemia and alleviated the
adverse effects of traditional hormone replacement
therapy.
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Stress urinary incontinence

Stress urinary incontinence (SUI) refers to the invol-
untary loss of urine in the absence of any prior sensa-
tion or need to empty; it occurs during physical activity
and affects more than 50% of postmenopausal women
[301]. The increased incidence of SUI in postmenopau-
sal women is thought to be associated with decreased
levels of 17B-E2 [301]. ADSCs are considered a prom-
ising method for the treatment of intrinsic sphincter
deficiency due to urethral sphincter weakness and sub-
sequent sphincter reconstruction [302, 303]. 17B-E2 has
been shown to regulate the multidifferentiation ability
of stem cells in bone, muscle, cartilage, and adipose tis-
sue [304—306]. Based on this information, Feng’s group
developed a poly(L-lactide)/poly(e-caprolactone) electro-
spun nanoscaffold to combine ADSCs and E2 [307]. They
found that the biocompatible cell/nanoscaffold with E2
could enhance the proliferation and myogenic differen-
tiation of ADSCs and might be a feasible new option for
SUI treatment.

Practical challenges with biomaterials

for the clinical evaluation and treatment of ovarian
aging

It is evident that a number of preclinical studies have
described the potential clinical value of biomaterials in
treating ovarian aging. However, despite the theoreti-
cal benefits of biomaterials in treating ovarian aging and
improving ovarian function, practical challenges remain
in translating them into clinical practice.

First, safety is a major concern. As an organ to exer-
cise fertility, the ovary not only affects women’s own
health but also plays an important role in the safety of
offspring. Therefore, the materials used in the evalu-
ation and treatment of ovarian aging must ensure their
safety. Compared to natural biomaterials, it is challeng-
ing to obtain regulatory approval for synthetic biomateri-
als, and they might need to demonstrate additional safety
and efficacy. The different physicochemical properties
of NPs can also have adverse effects on humans, animal
cells and invertebrate models, ultimately leading to toxi-
cological consequences [308, 309]. For example, Sirotkin
et al. compared the effects of different morphologies of
copper nanoparticles (CuNPs) (spherical, triangular, and
hexagonal) on the function of porcine ovarian granulosa
cells [310]. The results showed that the cell viability of
granulosa cells decreased after treatment with hexagonal
CuNPs but increased after treatment with other CuNPs.
Stelzer et al. demonstrated by coincubating rat ovar-
ian granulosa cells that AuNPs could enter mammalian
ovarian granulosa cells and affect steroid production. In
addition, the ovaries contain a rich and highly porous
network of blood vessels [311] so that biomaterials can
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easily accumulate in the ovaries through blood circula-
tion [312]. Through in vivo experiments, Schadlich et al.
detected the accumulation of nanoparticles, nanocap-
sules and nanolipid emulsions at specific locations in
mouse ovaries [313]. Moreover, evidence accumulated
from in vivo and in vitro models has suggested that the
accumulation of nanoparticles in the ovary could an
impair ovarian function by affecting sex hormone syn-
thesis [314, 315], follicular development [31, 316] and
oocyte quality [317, 318]. Therefore, the ovarian toxicity
of NPs should be considered when selecting materials for
the diagnosis and treatment of ovarian aging and a bet-
ter examination of the ovarian toxicity of NPs will help to
improve NPs regulation and design safer NPs.

Second, the effectiveness of biomaterials in the evalua-
tion and treatment of ovarian aging must be clarified, and
there is a lack of effective preclinical models to accurately
predict the efficacy outcomes of these biomaterials. The
effect of biomaterials on improving ovarian function is
mostly based on the results of animal experiments. How-
ever, animal models differ from humans under study in
biology, immunology and genetics, leading to the failure
of biomaterials to successfully transition from animal
to human therapy. For example, mouse follicles require
only 350 pm in diameter to mature, while human folli-
cles must be at least 5 mm. The alginate 3D culture sys-
tem allows for follicle growth and maintenance in mice,
but its nondegradability limits follicle growth in humans
[277]. Moreover, the properties of biomaterials them-
selves also affect their effectiveness. Hyaluronic acid
hydrogels cannot provide nutritional support for fol-
licular growth due to their poor mechanical properties
or the lack of pores in their microstructure [221]. Fibrin
itself is easily degraded by proteolytic enzymes secreted
by enveloping follicles and therefore cannot support folli-
cular development in vitro [235]. Furthermore, the long-
term effectiveness of the biomaterials in the treatment of
ovarian aging must be confirmed. Nikniaz et al. cultured
isolated mouse antral follicles in vitro for only 7 days
[190], which was too short to evaluate follicular devel-
opment. Pors et al. reseeded human antral follicles on
decellularized scaffolds and grafted them subcutaneously
into immunodeficient mice for 3 weeks [186]. However,
the three-week transplant period was not sufficient for
prolonged follicular development in humans. In addition,
immune rejection affects the effectiveness of biomateri-
als. Biomaterials are usually classified as materials placed
in the body, not only as materials in contact with the out-
side of the body [319]. As exogenous substances, bioma-
terials could activate the immune system to attack them
and cause immune rejection. Hassanpou et al. established
a human decellularized ovarian scaffold and found that
residual cellular substances and cytotoxic detergents in
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the ECM of the recellularized scaffold might promote
some immune cell infiltration within the graft [179].
Therefore, the efficacy of some materials in the treatment
of ovarian aging must be improved.

Other potential challenges of biomaterials for the clini-
cal evaluation and treatment of ovarian aging cannot be
ignored. For example, moving biomaterials from the lab-
oratory and into clinical use requires demonstrating bio-
compatibility with human tissue, which in turn requires
additional years of preclinical studies. In addition, the
therapeutic mechanisms of many biomaterials in ovarian
aging are unclear, which could limit their clinical transla-
tion. Another challenge to clinical translation is the FDA
approval process, because nanomedicines are the most
heavily regulated consumer products throughout the pre-
market and postmarket phases.

Therefore, the clinical transformation of biological
materials used for the evaluation and treatment of ovar-
ian aging requires a long period of scientific research to
achieve. With the progress of future science and technol-
ogy, it could be possible to innovate and transform safe
and novel biological materials to meet clinical needs.

Conclusion and perspective

Timely diagnosis and treatment of ovarian aging and its
related diseases have become urgent needs to improve
the quality of life of women. This review highlights that
the use of biomaterials could provide new directions for
the diagnosis and treatment of ovarian aging. We have
summarized innovative strategies for the evaluation and
treatment of ovarian aging with different biomaterials.
First, biological materials were constructed to detect
hormone levels and were used for ultrasonic molecu-
lar imaging technology to achieve dynamic monitoring
of ovarian function with high sensitivity and specific-
ity. Furthermore, scientists have utilized the excellent
properties of biomaterials to treat ovarian aging, such
as improving the maturation and fertilization rates of
oocytes, enhancing the treatment efficacy of stem cells,
and developing artificial ovaries. Finally, different bioma-
terials used for the delivery of estrogen have good effects
on the diseases associated with ovarian aging. All of these
different options represent promising, albeit still experi-
mental, strategies for improving ovarian aging. However,
problems such as safety and effectiveness issues, lack of
effective preclinical models, and unclear therapeutic
mechanisms bring challenges to the clinical transforma-
tion of biomaterials. With advances in the regulatory
mechanisms of biomaterials and enhanced safety assess-
ments, biomaterials in the management of ovarian aging
could be part of an exciting new strategy.
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