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Abstract 

The abnormal expression of long non-coding RNAs (LncRNAs) in platelet-derived microparticles (PMPs) is closely 
related to immune disorders and may lead to antiphospholipid antibody syndrome and recurrent miscarriage. To 
understand the association between the LncRNAs in PMPs and RM/APS, the differences in the expression of LncRNAs 
in RM/APS patients and healthy controls were analyzed. Microarray analysis and RT-qPCR detection proved that RM/
APS patient exhibited high levels of LncNR_040117 expression. The lentiviral silent expression transfection of HTR-8/
SVneo cells indicated that LncNR_040117 downregulation decreased the activity of HTR-8/SVneo cells and inhibited 
the MAPK signaling pathway, further confirming the biomarker proficiency of LncNR_040117 for RM/APS. After that, 
we proposed a β-In2S3@g-C3N4 nanoheterojunction-based photoelectrochemical (PEC) biosensor to achieve the 
ultrasensitive detection of LncNR_040117. The nanoheterojunction aids in the effective separation of photogenerated 
carriers and significantly improve the photocurrent response of the biosensor. The conjugation of LncNR_040117 
onto the PEC biosensing platform increased the steric hindrance between electrolyte and electrode, subsequently 
decreasing the photocurrent signal. The PEC biosensor showed a wide detection range of 0.1–106 fM and a low limit 
of detection of 0.025 fM. For clinical sample testing, the results of the PEC and RT-qPCR were highly consistent. Overall, 
LncNR_040117 in PMPs was identified as an effective biomarker for RM/APS and could be accurately detected by the 
proposed PEC biosensor, which is expected to provide a reliable diagnostic platform for RM/APS.
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Introduction
Recurrent miscarriage (RM) is an obstetric disease with 
a prevalence of 3% in women of childbearing age. The 
condition is associated with parental chromosomal 
anomalies, uterine abnormalities, endocrine factors, 
thrombophilia, cervical insufficiency and immunological 
disorders [1–6]. Of the various RM-related immunologi-
cal disorders, antiphospholipid antibody syndrome (APS) 
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is the most common [7, 8]. Previous studies have revealed 
that platelet-derived microparticles (PMPs), small vesi-
cles that arise from platelets, play a crucial role in mediat-
ing immune disorders [9, 10]. The abnormal expression of 
long non-coding RNAs (LncRNAs) in PMPs is commonly 
linked to RM/APS, marking their potential as biomark-
ers for the condition [11, 12]. LncRNAs are a recently 
identified category of non-coding regulatory RNAs that 
participate in nearly all cellular activities investigated so 
far [13–15]. In literature, the dysfunction of LncRNAs 
is related to the occurrence and development of various 
diseases including RM/APS [16, 17]. Therefore, the iden-
tification and detection of RM/APS associated LncRNAs 
and understanding of their pathology requires attention.

In recent years, the application of a minimally to non-
invasive form of detection technology, liquid biopsy, has 
flourished. This technique replaces the samples from 
tissue to blood or body fluids and requires only a trace 
amount of biological sample [18–20]. For isolated liq-
uid containing dissolved nucleic acids, mature medical 
detection methods such as RT-qPCR, Northern blotting 
and microarray analysis have been clinically applied [21–
23]. Nevertheless, they are limited by low sensitivity, high 
cost, poor portability and long waiting periods before 
detection. Therefore, it is in need of developing new 
detection methods. Recently, with the rapid development 
of new functional materials, especially nanomaterials, 
biosensing systems that utilize the special optical, elec-
trical, magnetic, and interface properties of the materi-
als have been explored extensively [24–27]. Nucleic acids 
biosensors based on fluorescence, colorimetry, SERS, 
SPR and electrochemical principles have shown satis-
factory sensitivity and stability [28–32]. The photoelec-
trochemical (PEC) biosensor is a portable ultrasensitive 
detection device which is assembled based on the photo-
electric conversion function of photosensitive materials 
[33, 34]. The presence of biomarkers (such as RNA) trig-
gers changes in electrochemical signals that can be quan-
titatively analyzed, showing great potential in LncRNAs 
detection [35].

g-C3N4 is a two-dimensional semiconductor material 
with a graphite-like layered structure. Its stable phys-
icochemical properties, simple synthesis and environ-
mentally friendly characteristics promotes g-C3N4 as an 
excellent candidate in the field of photoelectric conver-
sion [36, 37]. Despite its advantages, the wide band gap of 
2.7 eV and rapid carrier recombination result in low light 
utilization efficiency of g-C3N4, limiting its application in 
photocatalysis and light-based sensing [38, 39]. Hence, 
modification of the material is necessary to overcome its 
shortcomings [40, 41]. For example, Chen et al. prepared 
sulfur-doped g-C3N4 by chemical modification for the 
electrochemical detection of methylated mercury [42]. 

The adjustment of g-C3N4 band gap improves its charge 
transfer efficiency and surface area resulting in to high 
sensitivity. β-In2S3 is another semiconductor holds a band 
gap of 2–2.3 eV, this feature in conjunction with its high 
carrier mobility has helped the material gain traction in 
pollutant degradation, water splitting and solar battery 
applications [43–46]. Nevertheless, pure β-In2S3 exhibits 
poor light utilization efficiency and photochemical stabil-
ity attributed to the rapid recombination of carriers and 
photocorrosion that is inherent to metal sulfide semicon-
ductors [47]. To improve the photoelectric performance 
of β-In2S3, breakthroughs have been made by adjusting 
its morphology, doping or constructing β-In2S3-based 
heterostructures [48, 49]. Taking the above-mentioned 
points into account, a β-In2S3@g-C3N4 nanoheterojunc-
tion-based PEC biosensor with improved light utilization 
efficiency and photochemical stability was generated.

In this work, we identified LncNR_040117 in PMPs 
as the biomarker of RM/APS and successfully detected 
their presence through our proposed PEC biosensor. 
Scheme 1 illustrates the process for the identification of 
the function of LncNR_040117 and the fabrication of the 
β-In2S3@g-C3N4 nanoheterojunction-based PEC biosen-
sor for ultrasensitive detection of LncNR_040117. PMPs 
of RM/APS patients and healthy controls were sorted 
by flow cytometry, and the expression of LncRNAs in 
PMPs was determined by microarray analysis and RT-
qPCR. LncNR_040117 was proved to be highly expressed 
in RM/APS patients. The effect of downregulation of 
LncNR_040117 on the proliferation, migration, invasion, 
and apoptosis of trophoblast cells was studied to explore 
the correlation between LncNR_040117 and RM/APS. 
The regulatory effect of LncNR_040117 on the MAPK 
signaling pathway was also investigated to further con-
firm its relevance to RM/APS. The PEC biosensor based 
on β-In2S3@g-C3N4 nanoheterojunction exhibited excel-
lent photoelectric conversion performance. A wide detec-
tion range of 0.1–106 fM and a low calculated limit of 
detection of 0.025 fM for LncNR_040117 were obtained. 
The PEC biosensor distinguished LncNR_040117 from 
mismatch sequences and displayed excellent radiation 
stability. Furthermore, the PEC biosensor can exactly 
reflect LncNR_040117 concentrations in clinical samples, 
validating its feasibility for clinical application.

Results and discussion
Characterizations of PMPs and LncRNA expression profiles 
of PMPs
The TEM image of PMPs is shown in Fig. 1a. The PMPs 
were irregular fusiform to spherical in shape, and ranged 
from tens to hundreds of nanometers in size. The western 
blotting results (Fig.  1b) demonstrated that the concen-
tration of CD41 protein, obtained from both RM/APS 
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patients and healthy controls (HC) was high, indicative of 
the successful isolation of PMPs.

The LncRNA expression profile in PMPs, derived from 
RM/APS patients, was measured and visualized by the 
volcano plot and heatmap are presented in Fig.  1c and 
d, respectively. From LncRNA profiling, 1330 LncRNAs 
were shown to have significant differential expression 
levels in RM/APS patients compared to healthy con-
trols during the 7–10 weeks gestational period, in which 
499 LncRNAs were upregulated and 831 were down-
regulated, according to the cutoff criteria (P < 0.01 and 
|log2FC|> 2.0).

LncNR_040117 as the biomarker of RM/APS
The abnormal expressions levels of LncNR_040117, 
LncNR_131223 and LncNR_120665 in PMPs from 
RM/APS patients were measured by the RT-qPCR 

method. As shown in Fig.  2a, the overexpression of 
LncNR_040117, LncNR_131223 and underexpression 
of LncNR_120665 were in consistent with the LncRNA 
profiling with their sequences listed in Additional file 1: 
Table S1. The difference in expression of LncNR_040117 
between RM/APS patients and healthy controls was 
more significant compared to LncNR_131223 and 
LncNR_120665. Thus, LncNR_040117 and its potential 
as a RM/APS biomarker was selected for this study.

HTR-8/SVneo cells were transfected with shRNA-
NR_040117 to downregulate the expression of 
LncNR_040117. The transfection rate exceeded 80% 
as indicated by the light and fluorescence microscopy 
images (Fig.  2b). The RT-qPCR results demonstrated 
that viability of the plasmids for LncNR_040117 knock-
down. RT-qPCR analysis revealed that transfection 
with shRNA-LncNR_040117 reduced LncNR_040117 
expression in HTR-8/SVneo cells than negative con-
trols (Fig. 2c).

Scheme 1  Schematic diagram of LncRNA identification and subsequent PEC detection of LncNR_040117
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Effect of LncNR_040117 downregulation on trophoblast 
cell functions and MAPK signaling pathway
The effect of LncNR_040117 downregulation on tropho-
blast cell functions was tested and the results are shown 
in Fig.  3. The EdU assay revealed that LncNR_040117 
downregulation could increase the proliferative activ-
ity of HTR-8/SVneo cells than control cells (Fig. 3a). The 
migration and invasion of LncNR_040117 downregula-
tion on HTR-8/SVneo cells were assessed through an 
in vitro migration assay and invasion assay, respectively. 
Downregulated LncNR_040117 could evidently facilitate 
migration, indicated by the higher wound closure rate 

compared to control cells (Fig.  3b). Invasion of tropho-
blasts was expressed by HTR-8/SVneo interactions with 
HUVEC. HTR-8/SVneo cells (green) were co-incubated 
with the established HUVEC tube network (red) for 6 h. 
Images were acquired with a 10 × objective and the per-
centage of HTR-8/SVneo cells in the tube is illustrated in 
Fig.  3c. The invasiveness of LncNR_040117 low-expres-
sion HTR-8/SVneo cells was significantly increased. 
Apoptosis rate of the two groups were assessed by FACS, 
as shown in Fig.  3d, where apoptosis rate was relatively 
lower in LncNR_040117 downregulation group. In sum-
mary, LncNR_040117 downregulation promoted the 

Fig. 1  a TEM and b western blotting images of PMPs. c Volcano plot and d heatmap of LncRNAs expression
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proliferation, migration, invasion and inhibited the apop-
tosis of trophoblast cells.

Pervious study has revealed that LncRNAs act as acti-
vators by regulating the MAPK signaling pathway [50]. 
Based on this, the influence of LncNR_040117 down-
regulation on the expression of inflammatory factors 
(secreted TNF-α (sTNF-α), secreted ICAM-1(sICAM-1) 

and secreted VCAM-1 (sVCAM-1)) in addition to key 
molecules (P-p38/p38, P-ERK/ERK and P-JNK/JNK) of 
the MAPK signaling pathway were investigated. The data 
showed that LncNR_040117 was able to increase sTNF-α, 
sICAM-1 and sVCAM-1 protein expression (Fig.  4a), 
and the comparatively levels of P-p38/p38, P-ERK/ERK 
and P-JNK/JNK (Fig. 4b) suggested that LncNR_040117 

Fig. 2  a Expression of LncNR_040117, LncNR_131223 and LncNR_120665 in PMPs, derived from RM/APS patients and compared to expression 
in healthy controls (n = 3, mean ± s.d.). b Light and fluorescence microscopy images of HTR-8/SVneo cells being or not being transfected by 
shRNA-NR_040117. (c) LncNR_040117 expression in HTR-8/SVneo cells being or not being transfected by shRNA-NR_040117 (n = 3, mean ± s.d.)
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Fig. 3  Effect of LncNR_040117 downregulation on trophoblast cell functions (n = 3, mean ± s.d.). a EdU assay, b scratch wound assay and c 
invasion assay of HTR8/SVneo cells before and after LncNR_040117 silencing. d Apoptosis of HTR8/SVneo cells measured by flow cytometry before 
and after LncNR_040117 silencing
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activated MAPK signaling pathway. Hence, we may safely 
come to the conclusion that LncNR_040117 can act as an 
appropriate biomarker for RM/APS.

Characterization of photosensitive materials
The TEM image and electron diffraction pattern 
of g-C3N4 are shown in Fig.  5a. g-C3N4 presented a 
two-dimensional layered morphology, correspond-
ing to a large surface and a considerable number of 
reaction sites. The synthesis of g-C3N4 was proved 

by the electron diffraction pattern with diffraction 
rings attributed to (201) and (220) crystal planes. 
The TEM images of β-In2S3 NPs are shown in Fig. 5b. 
β-In2S3 exhibited an irregular spherical shape with a 
diameter of 9.4–23.7  nm. The lattice fringes, attrib-
uted to the (311) crystal plane of β-In2S3 NPs in the 
HRTEM image, confirmed successful synthesis of 
the NPs. The dense distribution of β-In2S3 NPs on 
g-C3N4 is displayed in Fig.  5c. The electron diffrac-
tion pattern confirmed the successfully preparation of 

Fig. 4  a The effect of LncNR_040117 on th protein expression of sTNF-α, sICAM-1 and sVCAM-1 (n = 3, mean ± s.d.). b The effect of LncNR_040117 
on the levels of P-p38/p38, P-ERK/ERK and P-JNK/JNK (n = 3, mean ± s.d.)
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Fig. 5  a TEM image and electron diffraction pattern of g-C3N4. b TEM images of β-In2S3 NPs. c TEM image and electron diffraction pattern of 
β-In2S3@g-C3N4 nanoheterojunction. d HRTEM image of β-In2S3@g-C3N4 nanoheterojunction. e XRD patterns and f FTIR spectra of g-C3N4, β-In2S3 
NPs and β-In2S3@g-C3N4 nanoheterojunction
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the β-In2S3@g-C3N4 nanoheterojunction. Additional 
evidence includes the existence of the lattice fringes 
of (100) and (311) planes which were attributed to 
g-C3N4 and β-In2S3 respectively in the HRTEM image 
of β-In2S3@g-C3N4 nanoheterojunction (Fig. 5d).

The formation of β-In2S3@g-C3N4 nanoheterojunc-
tion was also proved by the XRD analysis, as displayed 
in Fig.  5e. XRD patterns of g-C3N4 and β-In2S3 NPs 
both showed broad diffraction peaks, indicative of 
their incomplete crystallization. The XRD pattern of 
the β-In2S3@g-C3N4 nanoheterojunction presented 
diffraction peaks attributed to the (001) and (002) 
crystal planes of g-C3N4 and (211), (400) and (440) 
crystal planes of β-In2S3, confirmation of the success-
ful preparation of nanoheterojunction. FTIR analy-
sis revealed the chemical composition and elemental 
bonding state of the β-In2S3@g-C3N4 nanoheterojunc-
tion. As shown in Fig.  5f, the bands attributed to the 
s-triazine ring and C−N stretching vibration of g-C3N4 
at 810, 1073, and 1417 cm−1 appeared in the spectrum 
of β-In2S3@g-C3N4 nanoheterojunction, validating the 
existence of g-C3N4 [51]. Successful loading of β-In2S3 
onto g-C3N4 was confirmed by the bands attributed to 
N−H, C−H and In − S stretching vibration of β-In2S3 
at 3740, 3568, 2958, 2923, 2853 and 998  cm−1 in the 
spectrum of β-In2S3@g-C3N4 nanoheterojunction. 
β-In2S3@g-C3N4 nanoheterojunction exhibited the 
characteristic peaks attributed to g-C3N4 and β-In2S3, 
verifying the hybridization of g-C3N4 with β-In2S3. In 
addition, the peaks at 3340 and 1641  cm−1 attributed 
to the hydroxyl stretching and the vibration of g-C3N4 
became weaker after the hybridization due to anhy-
drous reaction conditions.

The chemical state and elemental composition of 
β-In2S3@g-C3N4 nanoheterojunction was analyzed 
by XPS (Additional file  1: Fig. S1). The nanohet-
erojunction was composed of C, N, In, S and O ele-
ments (Additional file  1: Fig. S1a). The peak of O 1  s 
at 531.1  eV could be associated to that of surface-
attached − OH [52]. The C 1  s spectrum was decon-
voluted into three peaks (283.3, 284.8 and 286.7  eV), 
corresponding to C−H, C−C and N−C=N, respec-
tively (Additional file  1: Fig. S1b). In the N 1  s spec-
trum (Additional file  1: Fig. S1c), three peaks at 397, 
398 and 399.6  eV corresponding to the characteristic 
N − H, C = N − C and C − N − C in g-C3N4, respec-
tively. For In 3d (Additional file  1: Fig. S1d) and S 2p 
(Additional file  1: Fig. S1e) spectra, the presence of 
In − S was clearly revealed. The β-In2S3@g-C3N4 nano-
heterojunction exhibited the characteristic binding 
energy of both g-C3N4 and β-In2S3, further confirming 
the successful combination of g-C3N4 with β-In2S3.

Photoelectric conversion mechanism of the PEC biosensing 
platform
The ultraviolet–visible light (UV–Vis) absorption spectra 
as well as Tauc plots of the g-C3N4 and β-In2S3 NPs are 
shown in Fig. 6a–d. From the absorption spectra, it was 
concluded that the g-C3N4 and β-In2S3 NPs can effec-
tively absorb light with wavelengths shorter than 440 and 
530 nm, respectively. Their band gaps (Eg) were calculated 
according to the Tauc plot method and the corresponding 
Eq. 1 in the Additional file 1. The n value of g-C3N4 and 
β-In2S3 is 2 as they are direct bandgap semiconductors. 
Thus, as displayed in Fig. 6b and d, the Eg of g-C3N4 and 
β-In2S3 NPs were 2.57 and 2.05  eV, respectively, follow-
ing Tauc plot method. The positions of conduction band 
(ECB) and valence band (EVB) were calculated according 
to the Eqs. 2–3 in the Additional file 1. The χ of g-C3N4 
and β-In2S3 NPs were 4.73 and 4.71, respectively. The ECB 
and EVB of g-C3N4 were − 1.06 and 1.51 eV, respectively; 
while the ECB and EVB of β-In2S3 NPs were calculated as 
−  0.82 eV and 1.23 eV, respectively. The band structure 
and working mechanism of PEC biosensing platform is 
shown in Fig. 6e. β-In2S3@g-C3N4 was identified as type-
I based on the band structures of g-C3N4 and β-In2S3. 
The photogenerated carriers of g-C3N4 could be trans-
ferred to β-In2S3, hindering the carrier recombination of 
g-C3N4. Subsequently, the electrons flow into the external 
circuit via GCE and the holes were reduced by ascorbic 
acid (AA) to form a circulating circuit.

Signal response and analytical performance of the PEC 
biosensor
The measurement conditions including the concentra-
tion of In2S3@g-C3N4 nanoheterojunction, the pH of 
electrolyte, the concentration of probe, and the con-
nection time of probe were optimized to ameliorate 
the detection performance of the PEC biosensor. The 
amount of photosensitizer has an opposing effect on 
the yield and transmission distance of photogenerated 
carriers [53]. As shown in Fig. 7a, a nanoheterojunction 
concentration of 2  mg/mL corresponded to the high-
est photocurrent. Hence, the optimal In2S3@g-C3N4 
concentration of the nanoheterojunction was 2  mg/
mL. The 0.01  M AA solution with an initial pH about 
3.5 was regulated by adding MES buffer (0.5 M, pH 8.5). 
As shown in Fig. 7b, the photocurrent was observed to 
decrease with increasing pH. This may be due to the 
ions introduced by the MES buffer, hindering the reac-
tion of photogenerated holes with AA. Hence, 0.01  M 
AA solution with a pH about 3.5 was selected as the 
optimal electrolyte. As shown in Fig. 7c, the poorly con-
ductive probes reduced the photocurrent. Considering 
the target concentration is much lower than the probe 
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Fig. 6  Absorption spectra as well as Tauc plots of a, b g-C3N4 and c, d β-In2S3 NPs. e Schematic diagram of β-In2S3@g-C3N4 nanoheterojunction 
band structure and working mechanism of PEC biosensing platform
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and the photocurrent needs to be kept relatively high 
to observe a significant photocurrent change with the 
addition of the target, 10 nM was selected as the opti-
mal probe concentration. The photocurrent was stable 
when the probe connection time is 16  h, as shown in 
Fig. 7d. This indicated that the probes were stably con-
nected to the Au NPs for this duration. Thus, 16 h was 
the optimal connection time of probes.

The photocurrent responses of different modified 
materials on the electrode surface are displayed in Fig. 8a. 
The coating of g-C3N4 showed a photocurrent of 0.26 μA/
cm2, indicating its poor photoresponse activity. The coat-
ing of β-In2S3 displayed a photocurrent of 3.44 μA/cm2, 
significantly higher than g-C3N4, owing to its narrower 
band gap. The photocurrent of β-In2S3@g-C3N4 nano-
heterojunction coating was 21.05 μA/cm2, significantly 

Fig. 7  Effect of a β-In2S3@g-C3N4 nanoheterojunction concentration, b electrolyte pH, c probe concentration, d probe connection time, e 
hybridization temperature and f hybridization time on photocurrent response (the voltage was 0.08 V; n = 3, mean ± s.d.)
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higher than the value of β-In2S3 and g-C3N4, demon-
strating its efficient synergy and significantly enhanced 
photoelectric performance. The electrodeposition of Au 
NPs slightly increased the photocurrent to 22.34 μA/cm2 
due to its impressive conductivity and surface plasmon 
resonance effect [54]. The connection of the thiol-DNA 
probes decreased the photocurrent to 20.19 μA/cm2. This 
is due to the poor conductivity of nucleic acids, subse-
quently increasing the steric hindrance between the elec-
trolyte and electrode materials [55, 56]. The connection 
of the MCH further reduced the photocurrent to 18.15 
μA/cm2, owing to its poor conductivity. In addition, the 
photocurrent response of GCE is displayed in Additional 
file  1: Fig. S2 and the value was lower than 0.015 μA/
cm2. Meanwhile, the EIS measurement was performed 
to further understand the fabrication procedure of work-
ing electrode. Larger EIS semicircle radius represents 
larger charge transport resistance (RCT) of the electro-
lyte–electrode interface. As shown in Fig. 8b, the RCT of 
curves i–vi were 6763, 4985, 3714, 3621, 3779 and 3962 
Ω, respectively. The opposing photocurrent responses 
and RCT trends of different modified materials verified 
the successful fabrication of the working electrode.

The variation of the photocurrent with changing 
LncNR_040117 concentrations was studied by incubating 
LncNR_040117 on the PEC biosensing platform. Before 
measuring the concentration of LncNR_040117, the 
probe-target hybridization temperature and time of were 
optimized. Figure  7e shows that the hybridization tem-
perature of 37℃ corresponded to the lowest photocur-
rent under the constant hybridization time of 1 h. This is 
probably because lower temperatures led to slow hybridi-
zation rates while higher temperatures led to unstable 
hybrid duplexes [57]. Thus, 37℃ was considered to be the 
most suitable hybridization temperature. The photocur-
rent stabilized at 1.5 h at the hybridization temperature 
of 37℃, thus 1.5 h was determined to be the ideal opti-
mal hybridization time (Fig.  7f ) [58]. The photocurrent 
decreased with the increase of LncNR_040117 concen-
tration due to the increase of steric hindrance (Fig.  8c). 
The fitted curve of photocurrent vs. LncNR_040117 con-
centration is shown in Fig. 8d. A good linear relationship 
in the LncNR_040117 concentration range of 0.1–106 fM 
was showed. And the detection limit was 0.025 fM based 

on 3σ method. Compared with other PEC biosensors 
listed in Table 1, our fabricated PEC biosensor exhibited 
a broad range and a low limit of detection, demonstrating 
its potential for ultrasensitive detection of LncRNAs. The 
ultra-high sensitivity of the PEC biosensor was attributed 
to the excellent photoelectric conversion performance of 
the β-In2S3@g-C3N4 nanoheterojunction and the suitable 
design of the PEC biosensing platform.

The unmatched sequences of SNHG15 
LncNR_152596.1, HOXA-AS2 LncNR_122069.1, RMRP 
LncNR_003051.3 and LUCAT1 LncNR_103548.1 with 
a uniform concentration of 1 fM were used as the con-
trols to examine the detection selectivity. Figure  8e dis-
played the measured photocurrents. The photocurrent 
of LncNR_040117 was significantly smaller than other 
sequences. As shown in Fig.  8f, the calculated concen-
trations of SNHG15 LncNR_152596.1, HOXA-AS2 
LncNR_122069.1, RMRP LncNR_003051.3 and LUCAT1 
LncNR_103548.1 were approximately 0 according to the 
fitted line, demonstrating that this PEC biosensor spe-
cifically detects LncNR_040117. Irradiation stability is 
an important index to evaluate the availability of PEC 
biosensor. The photocurrent response of 15 continuous 
radiation cycles in Fig. 8g showed good repeatability with 
a relative standard deviation of 0.94%, proving the out-
standing irradiation stability of the proposed biosensor.

The concentration of LncNR_040117 in clinical samples 
was measured to assess the reliability and practicality of 
PEC biosensor. The concentrations of LncNR_040117 in 
PMPs of two RM/APS patients and two healthy controls 
was measured by both RT-qPCR and the PEC biosen-
sor. For RT-qPCR measurements, the concentration of 
LncNR_040117 was calculated according to the real-time 
fluorescence curves drawn by different concentrations 
of LncNR_040117. As shown in Fig.  8h, the concentra-
tion of LncNR_040117 in PMPs of RM/APS patients was 
found to be significantly higher than healthy controls. 
The values of CPEC/CRT-qPCR of four clinical samples were 
reported 94.39–107.16%, demonstrating the impressive 
detection consistency of the two methods. The results 
demonstrated that this PEC biosensor can reliably detect 
LncNR_040117 concentration in clinical samples, show-
ing the prospect of clinical diagnosis of RM/APS. Fur-
thermore, due to the sequence modification flexibility 

Fig. 8  a Photocurrents and b EIS of the proposed PEC biosensor: (i) g-C3N4/GCE, (ii) β-In2S3/GCE, (iii) β-In2S3@g-C3N4/GCE, (iv) Au NPs/
β-In2S3@g-C3N4/GCE, (v) probe/Au NPs/β-In2S3@g-C3N4/GCE, (vi) MCH/probe/Au NPs/β-In2S3@g-C3N4/GCE (the voltage was 0.08 V; the AC sine 
wave amplitude was 10 mV; the scan frequency range was 8 × 105–10 Hz). c Photocurrent responses under different LncNR_040117 concentrations: 
0, 0.1, 1, 10, 102, 103, 104, 105, 106 fM. d Calibration line of photocurrent against the concentration of LncNR_040117 (n = 3, mean ± s.d.). e 
Photocurrent responses and f calculated concentrations of different sequences. Where i–v represent LncNR_040117, SNHG15 LncNR_152596.1, 
HOXA-AS2 LncNR_122069.1, RMRP LncNR_003051.3, and LUCAT1 LncNR_103548.1, respectively (n = 3, mean ± s.d.). g Photocurrent signal under 
15 continuous radiation cycles at a LncNR_040117 concentration of 1 fM. h Detection results of LncNR_040117 concentrations in clinical serum 
samples by PEC biosensor and RT-qPCR method (n = 3, mean ± s.d.)

(See figure on next page.)
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Fig. 8  (See legend on previous page.)
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of the probes, other LncRNAs can also be detected by 
this biosensor via simply changing the sequence of the 
probes.

Conclusion
In summary, we identified LncNR_040117 in PMPs 
as a biomarker of RM/APS and realized its ultrasensi-
tive detection by the fabricated β-In2S3@g-C3N4 nano-
heterojunction-based PEC biosensor. LncNR_040117 
in PMPs was found to upregulate in RM/APS patients 
through microarray analysis and RT-qPCR detection. 
LncNR_040117 downregulation increased the activ-
ity of HTR-8/SVneo cells and inhibited MAPK signal-
ing pathway, demonstrating the biomarker potential 
of LncNR_040117 for RM/APS. The β-In2S3@g-C3N4 
nanoheterojunction-based PEC biosensor was designed 
to achieve the ultrasensitive detection of LncNR_040117. 
The excellent photoelectric conversion effect of PEC 
biosensor was attributed to the formation of type-I het-
erostructure between β-In2S3 NPs and g-C3N4. The fea-
sibility of ultrasensitive detection was attributed to the 
effective carrier separation, stable photosensitive materi-
als, suitable PEC biosensing platform design, and optimal 
measurement conditions. The sensitivity, selectivity, sta-
bility, and accuracy of PEC biosensors for clinical samples 
detection were all satisfactory. To our knowledge, this is 
the first work for the ultrasensitive detection of LncRNAs 
by constructing a PEC biosensor. This work can serve a 
model for the identification and subsequent ultrasensi-
tive detection of other LncRNA biomarkers, which is of 
great clinical application value.

Materials and methods
The details of materials and methods are showed in the 
Additional file 1.
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