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Abstract 

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) led to COVID-19 and has become a pandemic world‑
wide with mortality of millions. Nanotechnology can be used to deliver antiviral medicines or other types of viral 
reproduction-inhibiting medications. At various steps of viral infection, nanotechnology could suggest practical 
solutions for usage in the fight against viral infection. Nanotechnology-based approaches can help in the fight against 
SARS-CoV-2 infection. Nanoparticles can play an essential role in progressing SARS-CoV-2 treatment and vaccine 
production in efficacy and safety. Nanocarriers have increased the speed of vaccine development and the efficiency 
of vaccines. As a result, the increased investigation into nanoparticles as nano-delivery systems and nanotherapeutics 
in viral infection, and the development of new and effective methods are essential for inhibiting SARS-CoV-2 infection. 
In this article, we compare the attributes of several nanoparticles and evaluate their capability to create novel vaccines 
and treatment methods against different types of viral diseases, especially the SARS-CoV-2 disease.
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Introduction
Severe acute respiratory syndrome coronavirus 2 
(SARS-CoV-2) is the virus that causes coronavirus 
disease 2019 (COVID-19), a worldwide pandemic of 
COVID-19 resulting in over 5.8 million deaths and 
over 414 million infected people recovering [1, 2]. 
Major COVID-19 infected patients have reportedly 
had mild to acute respiratory infections with symp-
toms such as fever, cough, and dyspnea, which might 
emerge 2–14 days afterward exposure to the infection 
[3, 4]. Public-health and non-pharmaceutical inter-
ventions have been important in reducing the speed 
of the prevalence of the COVID-19 infection. These 
interventions have been important in reducing the 
prevalence of the COVID-19, but given their consid-
erable societal, economic and political expenses, sub-
stitute long-time solutions are required []. A vaccine 
remains the more encouraging one [5, 6]. Nanotech-
nology, with the advancement and usage of nanopar-
ticles (NPs)/nanocarriers, has been broadly used in a 
diversity of fields [7–9]. The very small dimensions 
of NPs allow effective entry into living organizations. 
Additionally, nano biomedical knowledge has been the 
purpose of a considerable rate of consideration, such 

as efficient and targeted delivery of medicines, genes, 
and therapeutic molecules to particular organs or 
cells, imaging, and accurate diagnosis of viruses at ini-
tial steps [10, 11]. The NPs of silver, gold, silver sulfide, 
titanium oxide, zirconium, grapheme, and polymeric 
compositions can be utilized as a delivery system for 
vaccines, which have an extraordinary ability as com-
pared to common antigen-based vaccines [12]. Fur-
thermore, NPs have an essential function in antiviral 
treatment via increasing the transfer of hydrophobic 
medications and increasing medicine utilization effec-
tiveness[13]. NP-based medicines can prevent viral 
diseases by inhibiting virus binding and entry into the 
cell, suppressing viral replication, and directly deac-
tivating viruses. Different metal NPs, polylactic acid, 
etc., are broadly utilized for the therapy of COVID-19 
[14].

In this paper, we discussed nanostructure, which is 
useful in the delivery and treatment of viral infection. 
In addition, this study focuses on several main features 
of SARS-CoV-2, including epidemiology, molecular 
structure, viral life cycle and immune characteristic of 
SARS-CoV-2, vaccine/treatment method, the role of 
NPs in improving prevention, and therapeutic strate-
gies of COVID-19.

Graphical Abstract
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A brief overview of the important features 
of SARS‑CoV‑2 (epidemiology, molecular structure, 
and viral life cycle)
Coronaviruses (CoVs) are more divided phylogenetically 
into 4-sort, Alpha-, Beta-, Gamma-, and Delta-CoV, and 
also human CoVs can be mostly separated into types, α 
and β-CoV [15–17]. SARS-CoV-2 belongs to β-CoVs [18, 
19] and leads to the COVID-19 pandemic, which contains 
asymptomatic upper and lower respiratory tract diseases 
[20, 21]. In addition, there is powerful proof that COVID-
19 in brain can lead to multiple neurological disorders and 
changes ranging from nonspecific to moderate to acute 
situations [22]. CoVs are positive-sense, single-stranded 
RNA (+ SS-RNA) [23]. The genome of this virus encodes 
several smaller open reading frames (ORFs). Structural 
proteins, including the spike (S) glycoprotein, envelope 
(E), membrane (M), nucleocapsid (N) proteins, and non-
structural proteins (NSP) are encoded by ORF [24]. The 
replicase gene of SARS-CoV-2 encodes two overlapping 
polyproteins that are necessary for viral reproduction and 
transcription [25]. In the 5′-UTR part, approximately more 
than two-thirds of the RNA comprises ORF1a/b [26, 27]. 
The RdRp actions in a holo-RdRp produce the whole viral 
genome [23]. In addition, CoVs are the main protease due 
to their necessary function in processing polyproteins [28]. 
Triggering of S needs cleavage of S1/S2 through furin-like 
protease and undergoes a structural alteration from prefu-
sion to postfusion. As soon as triggered, S pursues a clas-
sic pathway between class I fusion proteins: it undergoes 
considerable conformational rearrangements. including 
shedding its S1 subunit and incorporating the fusion pep-
tide (FP) in the host cell membrane [29]. The S2 subunit is 
membrane-anchored and harbors the fusion system [30]. 
SARS-CoV-2 S protein bind to the Angiotensin-converting 
enzyme 2 (ACE2) host cell [31]. As soon as prosperous 
entrance, the genomic RNA (sgRNA) SARS-CoV-2 acts as 
a transcript and lets the cap-affiliate translation of ORF1a 
generating polyprotein pp1a [32]. Then, the structural pro-
teins are incorporated into membranes of the endoplasmic 
reticulum and transported to the endoplasmic reticulum–
Golgi intermediate compartment (ERGIC). The encapsi-
dated genome buds in the ERGIC create virions, which are 
afterward transported to the plasma membrane and dis-
charged [33] (Fig. 1).

To neutralize SARS-CoV-2 infection and future preva-
lence, robust, repeatable, affordable, high time-efficient 
vaccines, and novel medicine formulations, also preventive 
techniques, must be produced and approved. With these 
issues in mind, NPs methods have been widely reported 
and encouraged globally as an approach to fight and inhibit 
COVID-19. Therefore, the SARS-CoV-2 infection needs 
a serious evaluation of available nanotechnologies. Also, 

nanomedicine methods are being utilized to produce vac-
cine carriers and therapy of SARS-CoV-2 [34].

Nanoparticles‑based strategies to fight 
against viral infections
NPs based on organic and inorganic compositions 
have been broadly investigated as novel vaccine meth-
ods because of their capability to induce the immune 
response and prepare sustained antigen discharge 
afterward vaccine injection. NPs can also prepare a 
regulated and low-speed discharge of antigens, generat-
ing a depot at the injection location supplying possible 
preservation versus antigen destruction [35, 36]. NP-
based vaccine transfer methods designed to meet these 
standards have multiple benefits over conventional 
vaccines; (1) entrapment of antigens in NPs inhibits 
antigen destruction and enhance their constancy; (2) 
co-entrapment of antigen and immunostimulatory fac-
tor in NPs improves immunogenicity and capability of 
vaccines; (3) antigen-presenting cells (APCs) can easily 
phagocytose and procedure particles; and (4) surface 
decorations of NPs with functional moieties and target-
ing ligands allow organ- and cell-particular binding to 
lymphoid organs and APCs [37] (Fig. 2).

Newly, nanomedicine was developed to entrap antivi-
ral factors to (1) enhance pharmacokinetic parameters, 
and bioavailability, (2) increase medicine consistency, 
(3) regulate/sustain medicine discharge, (4) elective 
transport of medicine to a specific organ, and (5) pass 
the blood–brain barrier [38, 39]. The functional NPs 
can be utilized as a wide range of antiviral factors to 
inhibit the primary stage of viral disease, including 
viral binding to host cell receptors. The second method 
to inhibit viruses is obstructing their permeation and 
entrance to target cells via altering the external mem-
brane of the cell and protein constructions. About virus 
entrance into the cell, destroying their reproduction is 
the third efficient method to prevent the virus, which 
is usually attained via inhibiting the expression of some 
enzymes that originally assist to complete the replica-
tion of the virus genome. The last approach prevents 
the virus budding and excreting it from host cells [40]. 
In addition, NPs are recently utilized as a new strat-
egy to directly kill the viruses by directly damaging the 
structure of the virus [41].

Application of different nanoparticles against viral 
infections
NPs can be classified into two classes based on the ingre-
dients of the structure: organic and inorganic [42, 43]. 
NPs as drug delivery systems, including antivirals, can 
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suppress viral reproduction in host cells via discharged 
antivirals from NPs obstructing target cell receptors, 
and released antivirals from absorbed NPs in a target cell 
inhibit main viral replication stages containing transcrip-
tion, replication of phage DNA and synthesis of protein, 
and assembly [44]. Potential mechanisms include neu-
tralization of the virus per se or indirectly, inhibition 

of binding of viruses to target cells, and inhibiting viral 
reproduction; however, they relate to the shape and kind 
of NPs utilized [45] (Fig. 3).

Organic nanoparticles
Purely organic NPs have several benefits over other avail-
able NPs methods, such as self-assembly of antigens and 

Fig. 1  3D illustration of the structural and nonstructural protein of SARS-CoV-2 and target cell receptor (ACE2). In addition, this graphic 
demonstrates the entrance and replication (life cycle) of SARS-CoV-2 in target cells
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adjuvants in physiologically mild conditions, and chemi-
cal variety for adaptable a diversity of manners, combina-
tions, dimensions, forms, and surface functionalization. 
This part will investigate novel advances in organic NPs 
vaccine transfer methods, such as polymeric NPs, 
liposomes, micelles, dendrimers, solid lipid NPs, and 
virus-like particles (VLPs) (Table 1).

Polymeric nanoparticles
Polymeric NPs contain greatly biocompatible polymers, 
such as poly (lactic-co-glycolic acid) (T-lymphocyte 
epitopes), polyglycolic acid (PGA), and polylactic acid 
(PLA). Via altering the combination of the copolymer in 
the polymeric NPs production procedure, these NPs can 
act as a depot in physiological situations for sustained 

Fig. 2  Summary of the pathways via which nanovaccines can create an immune reaction. a NPs can be utilized as a vaccine program for 
different infected illnesses because they can transport antigens and numerous immunostimulatory molecules (TLR ligands and adjuvants). The 
immunostimulatory action of nanovaccines is associated with different pathways, including the depot effect, gradual discharge of vaccine antigens, 
and absorption of antigen-offering cells. b Antigen transport via NPs (dimensions-related permeation and tissue or organ targeting). c Depot 
effect supplies a long-term and continuous discharge of constant antigen. d Cross presentation of the antigen transported via the NPs (cytosolic 
transport) triggers antigen particular cytotoxic T lymphocytes. Antigen-presenting cell (APC); endoplasmic reticulum (ER); T cell receptor (TCR) [38, 
164]
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discharge and presentation of antigen to APCs, which 
is necessary for mucosal injection [46, 47]. Ivermectin 
(IVM) medicine was entrapped in PLGA-b-PEG poly-
mers NPs to inhibit of transmission of the Zika virus 
(ZIKV). The core–shell construction of these NPs lets 
them encapsulate and transport weakly water-soluble 
medicines, including IVM, leading to prolonged circu-
lation half-life for the medication, discharge medicines 
at a sustained amount, and functionalization by tar-
geting ligands to regulate the delivery system to target 
particular zones. This nanomedicine is administered 
through the oral route [48]. NPs can also directly inter-
fere with and suppress viral replication via the multiva-
lent presentation of small molecules that prevent viral 
assembly processes while selectively eliminating latently 
HIV-infected resting memory CD4 + T cells. [49]. Sub-
sequently, T-lymphocytes-membrane-covered NPs 
(TNPs) inherit T lymphocytes surface antigens impor-
tant for HIV targeting [50]. In other investigations, that 

incorporated the plasma membranes of uninfected 
CD4 + the resulting TNP mimicked the parent CD4 + T 
lymphocytes onto PLGA cores and T cells. This method 
induced autophagy in HIV-infected cells and decreased 
cell-related HIV-1 [49]. Multivalent peptide–polymer 
NPs, which is a dendritic polyglycerol scaffolds and excel-
lent suited for a multivalent exposure, connecting with 
influenza A virus (IAV) via virus surface hemagglutinin 
to suppress attachment of the IAV to the target cell. In 
other investigations, investigators developed new poly-
meric NPs, densely combined with different ligands to 
selectively attach to ACE2, as advanced nanovectors for 
targeted medicine transfer such as remdesivir, in SARS-
CoV-2 infection. Remdesivir-encapsulated in targeted 
NP (TNP) exhibited increased antiviral efficacy versus 
COVID-19. In addition, empty TNP showed an essen-
tial antiviral function, possibly owing to a direct com-
petitive mechanism with viral particles for the ACE2 
connection location [51]. Fluoxetine hydrochloride (FH), 

Fig. 3  Several NPs function in treating the viral infection as antiviral factors and delivery factors. a Several types of inorganic and organic NPs. b The 
mechanism of the NPs as a delivery system. c The mechanism of the NPs as an antiviral
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an antidepressant medication, can inhibit SARS-CoV-2 
infection. FH was encapsulated in lipid polymer hybrid 
NPs (LPH) to increase its effectiveness in the treatment 
of the SARS-CoV-2 infection [52].

Liposomes
Liposomes are spherical nanocarriers containing one 
or multiple lipid bilayers prepared via hydrophilic and 
hydrophobic interplays with the aqueous phase. Two 
significant benefits of liposomes, in medicine transfer 
of living organisms, are biocompatibility and biodegra-
dability, which are owing to lipid features [53, 54]. For 
example, Lipid NPs (LNP) have been used in the deliv-
ery of siVP35-3 for rhesus monkeys infected with the 
Ebola virus (EBOV), and these NPs increased the tar-
geted therapy and stability of siRNA in this consider-
ably fatal human infection [55]. Wang, et  al. produced 

pulmonary surfactant (PS)-biomimetic liposomes entrap-
ping 2′,3′-cyclic guanosine monophosphate-adenosine 
monophosphate (cGAMP), an agonist of the IFN gene 
stimulus STING. The adjuvant (PS-GAMP) strongly 
completed influenza vaccine-elicited humoral and 
cytotoxic T lymphocyte immune reaction in mice via 
mimicking the primary stage of viral diseases lacking 
simultaneous surplus inflammation. Two days afterward, 
inhalation injection by PS-GAMP-adjuvanted H1N1 
vaccine, powerful cross-preservation was induced ver-
sus H1N1 viruses for at minimum 6  months, whereas 
protecting lung-inhabitant memory and cytotoxic T 
lymphocytes [56]. In other investigations, developed 
RBD-encoding mRNA (RBD-mRNA) encapsulated in 
liposomes (LPX/RBD-mRNA). This method can express 
RBD in vivo and effectively elicit SARS-CoV-2 RBD par-
ticular antibodies in the injected mouse model, which 

Table 1  The function of several organic and inorganic nanoparticles in different viral infections

Type of 
the viral 
infection

Type of the nanoparticle Description Refs.

HSV-1 SLNs These NPs used as a delivery systems for encapsulation of acyclovir. One dose acyclovir 
SLNs have demonstrated comparative effectiveness to the several-dose regimen of ordinary 
acyclovir

[69]

HIV-1 Vaults Human vaults are barrel-formed NPs by external crusts organized of 78 copies of the MVP, 
which line up non-covalently C- to N-terminus to supply the general vault formation

[71]

EBOV LNP- siVP35-3 LNP-delivered siRNA as a counteraction versus this greatly deathlike human infection [55]

Influenza TMC NPs The isolated HA2 and NP recombinant proteins were encapsulated in TMC NPs to effectively 
inhibit this infection

[72]

HSV Micelles Soluplus micelles remarkably increased acyclovir solvability and tolerated dilution consist‑
ency assessments. These NPs significantly reduced the penetration delay time via the cornea

[60]

IVA THCPSi THCPSi leads to an increase in the SaliPhe solubility, a decrease the cytotoxicity, and a con‑
siderable decrease in viral infection

[92]

H1N1 PS-GAMP PS-GAMP powerfully increased H1N1 vaccine-triggered humoral and cytotoxic T lympho‑
cyte immune reactions in mice via mimicking the primary stage of disease without simulta‑
neous extra inflammation

[56]

HCV AuNPs This delivery system with long-acting created a more successful and sensitive therapy 
method for viral infection

[80]

IAV Multivalent peptide–polymer NPs These NPs developed to suppressing the connection of the virus to the host cell glycocalyx [165]

H1N1 PEGylated ZnO-NPs Exposure of these NPs with virus and bare ZnO-NPs at the greatest non-toxic densities could 
be caused a decrease in virus titer

[166]

H3N2 AgNPs The inhalation route used to inject AgNPs increases survival in H3N2-infected mice [87]

H1N1 SeNPs SeNPs inhibit lung damage in H1N1 infected mice and repress interactivity among virus and 
target cell

[94]

H1N1 IO-NPs These NPs prevent the virus from connecting to target cells in vitro [95]

KSHV/EBV AgNPs These NPs triggered greater cytotoxicity in KSHV/EBV-latently diseased cells via reactivating 
viral lytic reproduction, which is dependent on the generation of reactive ROS production 
and autophagy

[88]

HBV Ferritin NP–preS1 This NP based preS1 vaccine shows an effective antibody reaction that is both inhibitory and 
remedial in HBV-infected mice

[167]

HSV-2 ZOTEN This NPs capability to entrap the virus and improve the host immune reaction against infec‑
tion, and subsequently inhibit reinfection

[93]

HSV GAunps This NPs inhibit virus binding and infusion in the Vero cells [81]
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effectively inhibits COVID-19 [57]. Researchers are 
developing the COVID-19 vaccine with three differ-
ent lipophilic adjuvants encapsulated in liposomes. The 
results showed that MPLA-adjuvanted liposome NPs 
vaccines whole elicited a strong particular antibody reac-
tion against SARS-CoV-2 infection [58].

Micelles
Micelles are spherical NPs delivery systems combined 
with a surfactant monolayer, and their dimensions are the 
limited area between 10 and 1000 nm. Polymeric micelles 
(PMs) are colloidal delivery methods prepared via the 
molecular gathering of block copolymers with amphi-
philic properties in a watery medium. PMs are known for 
their excellent medicine-loading capability and exclusive 
disposition features in the body. The determined chem-
istry of the block copolymers leads to the chemical com-
bination of several medicines with polymeric chains [59]. 
For example, soluplus or solutol polymeric micelles have 
been used to enhance acyclovir solubility, corneal pen-
etrance, and sclera permeation of drugs for cornea and 
sclera tackling with herpes simplex virus (HSV). Solutol 
micelles enhanced their size when combined with drugs. 
In this method, quantities of medication penetrated via 
the sclera were approximately 10 times higher than free 
drug, which opens the probability of medicine transfer 
to the posterior eye section [60]. The receptor connec-
tion and proteolysis of the S protein of COVID-19 dis-
charge its S2 subunit to rearrange and catalyze viral-cell 
fusion. SARS-CoV-2 S proteins fusion peptide alters from 
inherent rearrange in solution into a wedge-formed con-
formation incorporated in bilayered micelles, based on 
chemical changes [61]. S protein comprises a single-span 
transmembrane (TM) domain and is important for viral 
infection. This TM domain was reconstructed in deter-
gent micelles. Though this type of micelles may not be a 
perfect method for constructional and functional investi-
gations of membrane proteins, used as a beneficial mem-
brane method to comprehend the second construction of 
a membrane protein [62].

Dendrimers
Dendrimers are highly branched structures containing 
dendron monomers. These symmetrical macromolecules 
have a limited dimension of 10 to 100  nm. Dendrimers 
have diverse functional groups on their surfaces, and 
they inhibit virus penetration to cells by their interaction 
with viral particles and cell protection via their different 
functional groups [63, 64]. Three kinds of polycationic 
dendrimers comprising primary amine were utilized 
to evaluate their antiviral function with the MERS‐CoV 
(Middle East respiratory syndrome coronavirus) plaque 

suppression test. The hydroxyl polyanionic group dem-
onstrated a 17.36% to 29.75% reduction in MERS‐
CoV plaque forming. The most effective suppression 
of MERS‐CoV plaque-forming was observed via G 
(1.5)‐16COONa (40.5% repression), followed via G(5)‐
128SA (39.77% repression). Polyanionic dendrimers can 
be added to antiviral provisions to increase the transport 
of antivirals, and also the inherent antiviral action [64]. 
DanielSepúlveda-Crespo, et  al. developed a cell-based 
method to screen a battery of polyanionic carbosilane 
dendrimers (PCDs) to recognize complexes with anti-
viral activity versus HCV and display that they prevent 
efficient virus infusion of main HCV genotypes. Remark-
ably, one of the PCDs permanently destroyed infectious 
virions [65]. In other investigations, produced a treat-
ment method for SARS-CoV-2 infection by using an 
improved anti‐COVID-19 siRNAs encapsulated in a new 
safe peptide dendrimer KK‐46 as a delivery system. The 
result showed that topical therapy via intranasal injection 
of the improved siRNA‐peptide dendrimer formulation 
can decrease viral reproduction and improve COVID-
19‐induced lung inflammation [66]. Orpheris company 
is evaluating a remedial including N-acetyl-cysteine 
connected to the inactive dendrimer OP-101 in acute 
SARS-CoV-2 infected patients. In a stage II clinical trial 
(NCT04458298), this treatment method was shown to 
decrease SARS-CoV-2-dependent inflammatory cytokine 
storms [67].

Solid lipid nanoparticles
Solid lipid NPs (SLNs), are solid core lipid nanocarriers, 
which can encapsulate both hydrophilic and hydrophobic 
medicines. The unique property of SLNs is that they can 
deliver a diversity of treatment agents such as small med-
icine molecules, big biomacromolecules, genetic substan-
tial, and vaccine antigens [68]. SLNs have been used in 
acyclovir delivery to treat HSV. As a result, this investi-
gation displayed that the developed one dosage acyclovir 
SLNs have shown comparative efficiency to the multiple-
dosage regimen of conservative acyclovir. And also, these 
NPs have the capability carriers for oral treatment in the 
therapy of HSV-1 infection [69]. Researchers produced a 
novel aerosolized SLNs-formulation of favipiravir (FPV) 
as an antiviral factor versus SARS-CoV-2. The results 
showed that FPV-SLNs were suitable for intranasal injec-
tion [70].

Other organic nanoparticles
“Vaults” are everywhere expressed endogenous ribonu-
cleoprotein NPs by possible usefulness to selective medi-
cine delivery. Human vaults are barrel-formed NPs with 
outside layers organized of 78 versions of the major vault 
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protein (MVP), which equal non-covalently C- to N-end 
to prepare the general vault construction. Fulcher et  al. 
used recombinant human vault NPs to target the deliv-
ery of antiviral medicines, including zidovudine, tenofo-
vir, and elvitegravir, which are without an intermediary 
connection to vaults, in HIV-1. This drug delivery system 
is useful for effectively targeting the human peripheral 
blood mononuclear cells (PBMC), mainly DCs, mono-
cytes/macrophages, and triggered T lymphocytes [71]. 
Rungrojcharoenkit et  al. produced influenza NP struc-
tures utilizing trimethyl chitosan NPs (TMC NPs) as 
the delivery system of recombinant influenza hemagglu-
tinin subunit 2 (HA2) and nucleoprotein. The isolated 
HA2 and recombinant nucleoproteins were entrapped in 
TMC NPs to create HA2-TMC NPS and nucleoprotein-
TMC NPs, in order. TMC NPs encapsulated with influ-
enza subunit antigens or all deactivated influenza virus 
enhanced immune reactions and the efficacy of inha-
lation route injected vaccines in the mice. HA2-TMC 
NPs, nucleoprotein-TMC NPs, and HA2-nucleoprotein-
TMC NPs (influenza NPs structures) displayed no toxic-
ity in human intranasal epithelium cells (HNEpCs) [72]. 
Researchers are designing phage capsid NPs as hard 
scaffolds which are functionalized via a conformation-
ally determined offering of the sialic acid (Sia) ligands to 
couple the connection location of the trimeric hyaluronic 
acid (HA). These capsid NPs coat the whole IAV enve-
lope, inhibiting its targeting of the target cell as imag-
ined via cryo-electron tomography [73]. Nanocellulose/
polyvinyl alcohol/curcumin (CNC/PVA/curcumin) NPs 
were produced as a nanotechnology treatment method 
with increased medicine loading for intranasal injection 
of antiviral agents SARS-CoV-2 infection. The results 
showed that the increased loading of curcumin in nano-
cellulose will supply an encouraging NPs-based solution 
for the therapy of SARS-CoV-2 infection [74]. In other 
studies, nano entrapped polyphenolic compounds were 
developed as a therapeutic agent against COVID-19. 
These compounds were entrapped in moieties of bovine 
serum albumin (BSA) and next were covered via chi-
tosan as a mucoadhesion polymer. NPs created with BSA 
have features such as non-toxicity, well consistency, great 
medicine capacity, and potential to entrap hydrophobic 
and hydrophilic medicines [75].

Inorganic nanoparticles
The majority of inorganic NPs have a smaller dimension, 
enhanced constancy, regulated adjustable, increased pen-
etrance, excellent medicine loadings, and an activated 
discharge profile, perfect for antigen transport as a vac-
cine. These novel productions are usually produced with 
an inorganic core and an organic outside covering to pro-
vide hybrid inorganic NPs [76] (Table 1).

Gold nanoparticles
Gold NPs (AuNPs) can have a main function in the 
vaccine field as adjuvants, decreasing toxicity, increas-
ing immunogenic action, and developing consistency 
of vaccine in storing, and have a high ability as delivery 
systems for the creation of a high variety of completely 
synthetic vaccines [77, 78]. When preparing AuNPs, 
methods, dimensions, and form have an essential effect 
on antigen exposure, cellular absorption, blood clear-
ance, bio-distribution, and immunological reaction [79]. 
IFN-alpha delivery, along with AuNPs and HA, has been 
used in the therapy of HCV. HA-AuNP/IFN-α compound 
considerably increased the expression of 20, 50-oligoad-
enylate synthetase 1 (OAS1) for innate immune reac-
tions against viral disease in the liver tissue [80]. Halder 
et  al. developed quasi-spherical AuNPs by utilizing 
ultrasound-induced fast decrease in gallic acid (GA), 
resulting in greatly monodispersed AuNPs (GAuNPs) for 
inhibited HSV infections in Vero cells. GAuNPs inhib-
ited viral binding and fusions in the Vero cells. Nontoxic 
and biocompatible AuNPs were offered as a harmless 
alternative in viral chemotherapy [81]. In other investi-
gations, researchers developed a particular S protein of 
the SARS-CoV-2 epitopes conjugated with AuNPs. The 
results showed that subcutaneous injection of this nano-
vaccine increased the humoral response [82]. Chen, et al. 
suggested a vaccine that binds the immunomodulation 
of AuNPs, capped with polysaccharide that has antiviral 
attributes, encapsulated with S or N proteins from SARS-
CoV-2 [83].

Silver nanoparticles
Silver NPs (AgNPs) are the most efficient in conflict with 
pathogenic among all metallic NPs [84]. Several investi-
gations have shown that AgNPs could simply enter liv-
ing cells. The dimensions and form of AgNPs play a very 
significant role in antiviral action. Numerous researches 
have displayed that those sizes smaller than 10 nm gen-
erate much more reactive surfaces. The shape can also 
differ—for instance, triangular, bar, or spiral—which 
strongly influences the mechanism of the viral act; those 
of the sphere-shaped and cylinder-shaped kinds are more 
phagocytosed [85]. These NPs bind to the viral genome 
and as a result inhibiting the action and interaction of 
several viral and cellular agents responsible for replica-
tion leading to the suppression of viral replication and 
virus release [86]. In other studies, Madin-Darby canine 
kidney cells infected by AgNP-remedied H3N2 influenza 
virus displayed higher survival and no apparent cyto-
pathic effects contrasted with an influenza virus healthy 
group and a group remedied by the solvent utilized for 
the provision of the AgNPs. These NPs remarkably 
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suppressed the H3N2 replications and decreased cell 
apoptosis created by the H3N2 influenza virus [87]. In 
other research, spherical AgNPs with a size of 25 nm can 
inhibit Kaposi’s sarcoma-associated herpesvirus (KSHV) 
early infection via per se annihilating virion subunits; it 
as well successfully prevents colony development and 
relatively suppresses the growth of KSHV-related pri-
mary effusion lymphoma (PEL) tumors in xenograft 
mouse [88]. In other investigations, AgNPs were evalu-
ated in  vitro and demonstrated to have a prevent-
ing efficacy on COVID-19 in cultured cells. Therefore, 
researchers evaluate the effectiveness of mouthwash and 
nose rinse with ARGOVIT® AgNPs, in the inhibition of 
COVID-19 in health personnel. The results showed that 
the mouth and nasal rinse by AgNPs assist in the inhi-
bition of COVID-19 in health workers who are exposed 
to patients detected with SARS-CoV-2 infection [89]. In 
other investigations, researchers developed green synthe-
sized AgNPs by utilizing strawberry and ginger metha-
nolic extracts to suppress COVID-19. The methanolic 
strawberry extract and the green synthesized AgNPs of 
ginger demonstrated the most excellent antiviral acting 
versus COVID-19 [90].

Other inorganic nanoparticles
Mesoporous silica NPs (MSNs) are nanoporous silica 
globes 100–200  nm in diameter with holes filled with 
natural prodrugs, functionalized by amino groups, 
and filled by natural compounds of shikimic acid (SH), 
quercetin (QR) (The MSNs-NH2-SH and MSNs-NH2-
SH-QR2) or together, which showed a powerful antiviral 
reaction against H5N1 infection. These NPs repressed 
cytokines and nitric oxide generation through about 
50% for MSNs-NH2-SH-QR2 (comprising both SH and 
QR) [91]. Thermally hydrocarbonized porous silicon 
(THCPSi) has been used in saliphenylhalamide (SaliPhe) 
delivery to inhibit IVA in  vitro. NPs drugs delivery sys-
tem based on porous silicon indicated enhanced disso-
lution of the researched IAV inhibitor medicine SaliPhe 
and demonstrated great in vitro resistance, less cytotox-
icity, and a significant decrease of viral load in the lack 
of organic solvents [92]. Agelidis et al. demonstrated that 
exclusively produced zinc oxide (ZnO) tetrapod NPs 
(ZOTEN) display a powerful microbivac effect versus 
HSV-2 in a murine sample of genital infection. These NPs 
are capable of attacking the virus subunits and influenc-
ing the host immune system, showing their new and mul-
tifunctional antiviral attributes with hopeful preventive 
and therapeutic efficacy [93]. Surface altered selenium 
NPs (SeNPs) via arbidol (Se@ARB) by better viral inhibi-
tion features than medicine resistance produced in a trial. 
Se@ARB affected the interplay between the H1N1 influ-
enza virus and the target cells by repressing the acting 

of HA and neuraminidase (NA). In addition, this treat-
ment method could inhibit H1N1 from transmitting the 
infection to MDCK cells and repress DNA destruction 
and chromatin condensation [94]. Iron oxide NPs (IO-
NPs) are used to inhibit the pandemic influenza strain 
A/H1N1/Eastern India/66/PR8-H1N1. The viral inhibi-
tion function of the IO-NPs was shown to the reduced 
proportion of viral suspensions afterward therapy by the 
IO-NPs. The antiviral activity of IO-NPs displayed more 
excellent suppression at a lesser dose can be owing to 
small dimensions that simply react to the virus [95].

AuNPs, AgNPs, CuNPs, ZnNPs, and Fe2O3 NPs are 
efficient versus COVID-19. A potential mechanism of 
function of these NPs versus CoVs is a disorder of the 
outer surface of CoVs. The Ayurvedic Bhasma forma-
tions are innovative metal NPs. These metal NPs are 
nontoxic, constant in the solid phase, and have a great 
biological function. Ayurvedic metal NPs, could be used 
as new antiviral factors versus COVID-19 for their anti-
inflammatory, immunomodulatory, antiviral, and adju-
vant functions [96]. Other investigations, showed that 
different graphene-NPs (GNPs), including intact gra-
phene (IG), defective graphene (DG), and graphene oxide 
(GO), suppressed SARS-CoV-2M proteins. DG and GO 
interfered with M protein more powerfully, leading to 
disabling M proteins and suppressing their expression 
efficiently via annihilating the active pocket of M protein 
[97].

SARS‑CoV‑2 immunopathology (innate 
and adaptive immune response)
Innate immunity commenced by detecting pathogen-
associated molecular patterns (PAMPs) through host 
pattern recognition receptors (PRRs). The IFN-I path-
way is an essential section of the innate immune reac-
tion. PRRs diagnose many viruses, and this detection 
activates a downstream antiviral cascade such as micro-
RNAs antiviral action [94, 98, 99]. The CoVs ds-RNA 
could be recognized via the retinoic acid-inducible gene 
I-like receptors (RLRs), comprising the RIG-I and, or 
melanoma differentiation gene 5 (MDA5) into the cyto-
plasm, or via TLRs within the endosome. The 2 caspase 
recruitment domains (CARD) of RIG-I and MDA5 could 
react to the adapter mitochondrial antiviral signaling 
protein (MAVS), which consequently induces the 2 IKK-
associated kinases, TANK-binding kinase 1 (TBK1), and 
inducible IκB kinase (IKKi), together of which phos-
phorylate IFN regulatory factor 3/7 (IRF3/7). Afterward 
phosphorylation and dimerization, IRF3/7 replaces in the 
nucleus to trigger the expression of IFN-α/β. Simultane-
ously, MAVS induces TANK1 via TRAF6 and triggers 
the NF-κB signaling mechanism, which could increase 
cytokines generation. On the other hand, PAMPs could 
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be recognized via TLRs, and the downstream adapter 
proteins TRIF or MyD88 could signal to activate 
cytokines and chemokines generation [100]. Signaling 
at these cell receptors stimulates cytosolic translocation 
of several nuclear transcription agents, including NF-kB 
and the activating protein-1 (AP-1) to the cell nucleus, 
the transcription of genes, and expression of critical 
inflammatory reaction proteins, including CRP, proin-
flammatory cytokines, and chemokines, also discharge of 
soluble agents related on the IFN protein stimulator gene 
(ISGs) that encodes IFNs function in virus regulator, 
activation anti-virus mode [101]. Afterward viral induc-
tion, IFNs are induced via the detection of PAMPs with 
PRRs, endosomal (TLR3 and TLR7), and cytosolic (RIG-
I) receptors, such as triggering and phosphorylation of 
the JAK/STAT pathway and the creation of the hetero-
trimer compound STAT1-STAT2-IRF9 (ISGF3) that is 
involved in the stimulation of the genes accountable for 
the reactions to IFNs in the promoter section of the ISG. 

STAT1/2 generate a compound with IRF9, and together 
they transfer to the nucleus to begin the transcription of 
ISGs under the regulation of IFN-stimulated response 
element (ISRE) comprising promoters (Fig. 4) [101].

In COVID-19 infected patients, the reports have shown 
that primary plasma measures of IL-1β, IL-1RA, IL-7, 
IL-8, IL-10, IFN-ɣ, monocyte chemoattractant peptide 
(MCP)-1, macrophage inflammatory protein (MIP)-1A, 
MIP-1B, granulocyte-colony-stimulating factor (G-CSF), 
and TNF-α are enhanced in COVID-19 patients. More-
over, the rate of helper T lymphocytes and cytotoxic T 
lymphocytes inhibitor (CD3+, CD8+), and regulatory 
T cells (Tregs) are lower than normal rates; however, T 
helper and Tregs in acute patients are significantly lesser 
than in mild cases [102, 103]. The SARS-CoV-2 binding 
to the target cell by the ACE-2 and is recognized (essen-
tially) via TLR7. TLR7 activity results in the generation of 
IFN-α, and the release of IL-12 and IL-6. This leads to the 
creation of CD8 + -particular cytotoxic T lymphocytes 

Fig. 4  This illustration demonstrates the possible immunopathogenesis in COVID-19 infection (innate immunity, adaptive immunity, and humoral 
immunity)
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and, via the CD4 + lymphocytes, results in the generation 
of antigen-particular B lymphocytes and antibody gener-
ation (IgM, IgG, and IgA (pan-immunoglobulin (pan-Ig)). 
In TLR7 signaling-associated cytokine discharge, IL-6 
can play a significant function. It is essential in the for-
mation of follicular CD4 + lymphocytes, TH17 subgroup 
deflection, and the creation of prolonged lived plasma 
cells [104].

Therapeutic and prevention procedures 
of the SARS‑CoV‑2 infection
Mutations in the SARS-CoV-2 genome make it chal-
lenging to produce treatment methods. On the other 
hand, the high prevalence of this virus has led to the 
rapid development of an effective treatment method 
[105]. Therefore, different medical, social, and engineer-
ing techniques have been proposed to face the SARS-
CoV-2 prevalence that contains treatment, prevention, 
diagnosis, and prediction methods. In addition, essential 
therapies were presented, including antiviral medicines 
(e.g., dexamethasone [106], Favipiravir [107], and Rem-
desivir [108]), antibiotics, oxygen therapy, and antibody 
therapy [109, 110]. In addition, utilized convalescent 
plasma technique for the therapy of COVID-19, which is 
an immunotherapy method by viral-particular antibodies 
[111]. Mainly, SARS-CoV-2 infection leads to remark-
able injury to the lungs; therefore, pulmonary medica-
tion transfer must be included as a curative method for 
important action. In this context, aerosol-based intrana-
sal injection route designs might be an improved method 
which is not only patient compliant but can as well show 
the quick relief over a specified period. In its pure form, 
bilirubin has difficulties with its solubility; therefore, its 
injection in NP form provides improved solubility and 
enhanced effectiveness. Bilirubin nanomedicine (BNM) 
as aerosol-based medication delivery method can carry 
payload directly to the lungs and decrease the complica-
tions of SARS-CoV-2 leading to enhanced patient condi-
tion [112].

Based on reports of the World Health Organization 
(WHO), on Jan. 31, 2022, vaccine candidates were in 
clinical assessment to remedy COVID-19, 114 vaccines 
in clinical assessment, and 48 candidate vaccines have 
attained the final phases of the trial [5, 113]. These vac-
cines include inactivated vaccines, nucleic acid vaccines, 
vector vaccines, and subunit vaccines. Inactivated vac-
cines are broadly utilized to inhibit emerging infectious 
diseases (EID), and the partly great speed of the genera-
tion of this type of vaccine makes it a hopeful method 
for COVID-19 vaccine production [114, 115]. These 
vaccines are complete virus formations that are chemi-
cally inactivated with beta-propiolactone and formal-
dehyde. However, they are no longer replication-ability, 

virus integrity is protected, and acts as an immunogen 
that is S-particular, RBD-particular and N-particular. 
When injected, inactivated vaccines induce preserva-
tive immune reactions against the pathogen. This type of 
vaccine is obtained from viruses grown in culture and 
next chemically inactivated, which can deliver stably 
expressed, structurally native antigenic epitopes (such 
as Sinopharm and Sinovac vaccines) [116]. Nucleic acid 
(RNA and DNA) vaccines are facile to produce, which 
allows their fast progress as vaccines. The genome encod-
ing for a specific protein can be simply formed as DNA or 
RNA and introduced in human cells to generate several 
copies of the immunostimulatory viral antigenic proteins. 
These antigens, firstly encoded via the nucleic acid, can 
induce both humoral and cell-mediated immune reac-
tions upon expression following cellular absorption. This 
type of vaccine has self-adjuvating attributes and hence 
can generate both adaptive (antigen-based) and innate 
immune reactions. In contrast, most other vaccine kinds 
require an adjuvant to attain a similar purpose. Nucleic 
acid-based anti-SARS-CoV-2 vaccines may have benefits 
over conventional vaccines such as (1) The great power 
of mRNA vaccines is able of producing potent antiviral 
neutralizing antibodies via triggering both CD4 + and 
CD8 + T-cells with only one or two low-dose vacci-
nations; (2) Due to its destruction procedure in cells, 
mRNA-based vaccines decrease the danger of infection 
and mutations are caused by insertion [117]. Vector vac-
cines can be widely divided into two categories: replica-
tion-incompetent vectors and replication-incompetent 
vectors vaccines. Replication-incompetent vectors show 
a big group of vaccines in expansion. This type of vaccine 
is usually based on another virus that has been designed 
to express the S protein and has been inactivated from 
reproduction in  vivo via the elimination of sections of 
its genome. Replication-competent vectors are usually 
derived from weakened or vaccine strains of viruses that 
have been prepared to express a transgene, in this case, 
the S protein. Since viral vector vaccines lead to endoge-
nous antigen generation, they are more likely to stimulate 
both humoral and cellular immune reactions. These vac-
cines can be advanced and generated rapidly on a wide-
ranging and do not need extremely low temperatures for 
transport and storing. However, pre-existing immune 
reactions to the vector can restrict the capability of the 
vector to carry genetic material to target cells and thus 
decrease the efficiency of the vaccine [118–120]. Subunit 
vaccines are vaccines produced based on synthetic pep-
tides or recombinant proteins. Dissimilar to inactivated 
or live-attenuated viruses and certain viral vectored vac-
cines, this vaccine kind mainly comprises particular 
viral antigenic parts; however, without containing each 
ingredient of infectious viruses, removing the worries 
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of imperfect inactivation, improve pathogenicity, or 
pre-existing immune reaction. Like DNA or VLP-based 
vaccines, subunit vaccines are usually harmless with-
out causing possible adverse immune reactions, making 
them hopeful vaccine candidates. Furthermore, subunit 
vaccines may target particular, well-defined neutralizing 
epitopes with enhanced immunogenicity and, or effec-
tiveness. For example, Novavax has advanced and gener-
ated immunogenic virus-like NPs based on recombinant 
expression of the S-protein, while Clover Biopharmaceu-
ticals is producing a subunit vaccine containing a trim-
erized SARS-CoV-2 S-protein utilizing their patented 
Trimer-Tag® method, though some full-length S-proteins 
for SARS as well cause enhanced infection and eosino-
philic penetration [5, 121] (Table 2).

Nanoparticle vaccines against SARS‑CoV‑2
Nanovaccinology has been used in preventive and reme-
dial methods and can be utilized for each enhancement 
antigen processing or offering and, or as an immunostim-
ulatory adjuvant [122]. Main NPs platforms contain 
lipid base NPs (LNPs) and VLPs. LNPs comprising ion-
izable lipids have been used widely to transport genetic 
compositions owing to their excellent loading valence, 
and excellent transfection performance VLPs are non-
infected virus-mimicking particles created via the self-
assembly of protein monomers combined with viral 
capsid proteins [123]. Furthermore, the general impres-
sion of “nanoimmunity via design” can assist us to cre-
ate substances for immune regulation, either inducing or 
inhibiting the immune reaction, which would find usages 
in the vaccine production for COVID-19 or in neutral-
izing the cytokine storm, in order [124]. Animal trials 
helped the technological comprehension of how these 
novel kinds of nanovaccines work. Furthermore, some 
of these nanovaccines candidates have entered clinical 
studies next to the initial assessment in animal models, 
of which NPs based vaccines are hopeful vaccine candi-
dates. The Moderna and Pfizer SARS-CoV-2 infection 
vaccines, more than 90% efficient against COVID-19 in 
humans, apply the mRNA to generate the viral S protein 
found on the surface of SARS-CoV-2 [125, 126].

Lipid‑based nanoparticles vaccines
Conventionally, mRNA has not been utilized as a reme-
dial factor since it is greatly unconstant and triggers 
the innate immune responses when administered. In 
addition, to enter the host cells, mRNA needs a deliv-
ery system to pass the cell membrane [127]. Moreo-
ver, the average half-life of mRNA vaccines reduces 
with enhancing temperature, which is a problem for 
their long time storing. However, chemical alteration 

by using an external covering of nonionic or an ionic 
surfactant improves the thermal constancy of mRNA. 
These chemical modifications alter the sizes of a NP 
and help in the efficient carrying of mRNA with greater 
thermal constancy [128]. Consequently, researchers are 
developing NPs delivery system that contains LNPs that 
entrap the mRNAs coding for the monoclonal antibody. 
This RNA-treatment method steadies the mRNA and 
can be administered recurrently, causing sustained gen-
eration of antibodies evading the efficacy of the innate 
immunity versus exogenous RNA. Additionally, the 
LNPs increase their mucosal and cellular absorption. 
Moreover, the positively charged LNP results in electro-
static absorbency to the negative charge of the mucosal 
membranes, decreasing their release via the mucosal 
cilia [127]. For example, Moderna’s mRNA vaccine is 
based on an LNP method [129]. This method was newly 
proceeded via Moderna to generate vaccine methods 
versus COVID-19 via utilizing mRNA-1273, encod-
ing viral S protein [130]. BNT162b2 is the first vaccine 
based on the LNP-mRNA method and mRNA encoding 
the S protein locked in its pre-fusion structure [131]. 
In other investigations, mRNA (RNActive®) based vac-
cines (CVnCoV), include sequence optimum mRNA 
coding to a fixed shape of S protein entrapped in LNP. 
No vaccine-associated acute side effects were detected. 
Immune reactions, when evaluated as IgG antibodies 
versus S protein or its RBD via ELISA, and COVID-19 
neutralizing antibodies (NAbs) evaluated via micro-
neutralization, showed dose-affiliate enhancement. Pri-
mary outcomes demonstrated that CVnCoV is as well 
as safe and excellent tolerated in tested individuals, and 
is capable of enhancing the pre-existing immune reac-
tion even at fewer dosage amounts [132]. Other studies, 
developed self-amplifying RNA (saRNA) entrapped in 
LNP as a vaccine. These vaccine immunizations stim-
ulate a Th1 biased reaction in the mouse model, and 
there is no antibody-related increase detected. In addi-
tion, they identified significant cellular responses, as 
determined via IFN-γ generation, upon re-stimulation 
by COVID-19 peptides [133]. Uri Elia et al. developed 
an mRNA vaccine, based on LNPs-entrapped COVID-
19 virus human Fc-combined RBD (RBD-hFc). Intra-
muscular injection of this vaccine induced a strong 
humoral reaction, a significant amount of NAbs, and 
a Th1-biased cellular reaction in the BALB/c mouse 
model [134]. LNP-based vaccines (NVP) co-encapsu-
lated by antigens and monophosphoryl lipid A (MPLA, 
a potent TLR-4 agonist) were easily absorbed via DCs 
and increased DC maturation and antigen offering. 
Multilamellar vesicles were formed via hydrating a 
lipid film combined with DOPC, n-(Succinimidyloxy-
glutaryl)-L-α-phosphatidylethanolamine, dioleoyl 
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(DOPE-NHS) and MPLA (50:50:0.5 molar proportion). 
Mice vaccinated through RBD-NVP triggered strong 
and persistent antibody reactions versus RBD from 
COVID-19 [135]. In another investigation, research-
ers developed quick transformation of recombinant 
RBD into particulate formation by incorporating with 
liposomes comprising cobalt-porphyrin-phospholipid 
(CoPoP) strongly improves the functional antibody 
reaction. Compared to other vaccine preparations, 
immunization utilizing CoPoP liposomes incorpo-
rated with recombinant RBD induces several orders of 
magnitude greater rates of antibody titers in mice that 
inhibit pseudovirus cell entrance, prevent RBD interac-
tion with ACE2, and suppress SARS-CoV-2 replication 
[136] (Table 3, Fig. 5).

Virus‑like particles vaccine
VLPs are multiprotein structures that mimic the organi-
zation and conformation of authentic native viruses 
but lack the viral genome, potentially yielding safer and 
cheaper vaccine candidates Ferritin as a naturally self-
assembling protein nanoparticles is a favorite protein 
particle to develop VLP vaccines. The protein particles 
can be connected with a maximum of 24 viral antigens 
for concurrent delivery and offer to APCs. In recent stud-
ies, a developed subunit vaccine based on self-assembling 
ferritin NP showed one of two multimerized S proteins: 
full-length ectodomain (S-Fer) or a C-terminal 70 amino-
acid deletion (SΔC-Fer). Mice vaccinated by one injec-
tion of S-Fer demonstrated remarkably more excellent 
NAbs titers than those immunized by RBD monomers 
or spike ectodomain trimers, suggesting the significance 
of multivalent exposure. Ferritin NPs conjugated with 
RBDs, instead of full-length S proteins, demonstrated a 
superior preservative immune reaction when contrasted 
with unconjugated RBDs [137]. In other investigations, 
researchers generated a VLP vaccine that exhibits 120 
copies of SARS-CoV-2 RBD on its surface. This method 
mimics virus-based vaccines in immunogen present, 
which increases its effect while maintaining the lack of 
side effects of protein subunit vaccines. This vaccine elic-
ited great-titer NAbs reactions in mice that continued 
for more than two months and powerfully suppressed 
COVID-19, SARS-CoV-1, and their variants [138]. Ma 
et al. created 2 Ferritin-based NP vaccines via conjugate 
RBD and heptad repeat (HR) antigens in S protein using 
the SpyTag/SpyCatcher method, which was obtained 
from Streptococcus pyogenes, to covalently bind the ferri-
tin NPs instead of direct fusion expression, that the level 
of expression is significantly reduced. RBD and RBD-HR 
NPs vaccines induce more powerful NAb reactions and 
T lymphocyte immune reactions than monomers. HR-
based NPs elicit cross-reactive immune reactions versus 

COVID-19 and other CoVs [139]. Medicago and iBio 
are utilizing Nicotiana benthamiana to generate VLPs 
using the S protein, and AdaptVac/ExpreS2ion is apply-
ing the insect cell expression method to create VLPs from 
the S2 protein. In addition, producing protein NPs from 
antigenic subunits, their expression and, or presentation 
on proteinaceous biomaterial scaffolds, including ferri-
tin, encapsulin, and bacteriophage VLPs, has been used 
to attain multivalent antigen presentation for increased 
immunogenicity. The advantage of this method is that 
scalability and modularity; the peptides can be quickly 
modified as novel data concerning COVID-19, and its 
immunogenicity is made accessible; it is as well poten-
tial to adapt the method quickly should new or mutated 
kinds appear [129]. VLPs can be prepared via incubating 
AuNPs as a nucleus by CoV S proteins, which automati-
cally functionalize the surface (S-AuNPs). S-AuNP-vac-
cines can improve lymphatic antigen transfer and 
enhance cellular and humoral reactions contrasted with 
free antigens. This nano vaccine was capable of elicit-
ing a powerful IgG reaction; however, by a less desired 
to inhibit CoVs owing to alterations in the construction 
of S proteins upon connecting to AuNPs, leading to lung 
eosinophilic immunopathology [130].

Other types of nanovaccines
To advance the creation of viral vaccines through 
mRNA and pDNA, a professional medicine company 
created a novel silica-based new technology called, 
Nuvec® designed for the transfer of vaccines and drugs. 
These new silica-NPs carrying nucleic acids have asym-
metrical surfaces functionalized by polyethyleneimines 
(PEIs). This surface encapsulates nuclear acids (includ-
ing mRNA/pDNA), as they cross into cells, and pre-
serves them from nucleus enzymes. The critical benefit 
of Nuvec® is that it does not destroy the cell membrane 
when it attains the cells, contrasted to LNP; and not 
neither does it generate each inflammatory response at 
the administration location with no extreme systemic 
adverse events [140]. Peptide vaccines are known for 
their less immunogenicity, which could be dominated 
via combining immunostimulatory adjuvants and NPs, 
including PLGA or chitosan. The CD4 + and CD8 + T 
cell epitopes can as well be fused with adjuvant proteins 
such as TLR ligands which can be entrapped or pre-
sented on the surface of NPs such as PLGA to induce 
continued T-cell reactions and enhance long-range pres-
ervation. Smaller PLGA NPs (350  nm) allow improved 
internalization via DCs and cause a continued cellular 
immune reaction in mice. PLGA-NP encapsulated pep-
tide antigens are being preserved against enzymatic 
destruction in vivo until they are absorbed via APCs and 
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caused stimulation of strong B- and T-lymphocyte reac-
tions [141]. In other investigations, SARS-CoV-2 vac-
cine developers, including GlaxoSmithKline, which owns 
the ASs and other adjuvant techniques, are employed in 
numerous companies to implant their adjuvant methods 
by COVID-19 virus-protein-based vaccines. The capa-
bility of approved adjuvants, including AS01 and AS03, 
to increase adaptive immune response has been related 
to their capacity to increase STAT1/IRF1 IFN signaling 

[124]. NVX-CoV2373 is a recombinant (rSARS-CoV-2) 
NP vaccine combined with trimeric full-length COVID-
19 S proteins and Matrix-M1 adjuvant. Adjuvant led to 
increased immune reactions, was antigen dosage-sparing, 
and stimulated a Th1 response. The Matrix-M1 adjuvant 
elicited helper T lymphocytes reactions biased toward a 
Th1 phenotype. Matrix-M1, a saponin-based adjuvant, 
was created via Novavax. Both vaccine and adjuvant were 
maintained at 2–8 °C [142].

Table 3  Some significant examples of NP-based vaccine candidates versus SARS-CoV-2

NPs types Developer Study stage Description Refs.

LNP BioNTech/Fosun Pharma/Pfizer Approved in 141 countries and 70 
clinical trials in 26 countries

The quick and greatly scalable mRNA 
are generating and LNP design pro‑
cedures enable the fast generation of 
several vaccine dosages

[175]

LNP Moderna/NIAID Approved in 85 countries and 56 clini‑
cal trials in 22 countries

Encapsulate mRNA vaccines in LNPs, 
may allow cytoplasmic transfer via 
fusogenic. It is possible that they 
used formulations of ionizable lipid, 
DSPC, cholesterol, and polyethylene 
glycol-lipid

[178, 179]

LNP Fudan University/Shanghai 
Jointing, University/RNAcare, 
Biopharma

Animal experiments LNP‐entrapped mRNA cocktail encod‑
ing VLP

[146]

Lipid-based Park, et al Animal experiments NVP co-encapsulated with antigens 
and monophosphoryl lipid A was 
readily taken up via DCs and increased 
DC maturation and antigen offer

[135]

Ferritin-based VLP Ma et al Animal experiments RBD and RBD-HR NPs vaccines induce 
more powerful NAb reactions and T 
lymphocyte immune reactions than 
monomers

[139]

Mesoporous silica NPs N4 Pharma Plc Cellular studies Nuvec® carrying nucleic acids have 
irregular surfaces functionalized 
with polyethyleneimine, and may be 
beneficial in the race to develop a 
COVID-19 vaccine

[140]

AuNPs Sekimukai, et al Animal experiments AuNPs, which are expected to act as 
an antigen delivery systems and an 
adjuvant in immunization, and TLR 
agonists, which have formerly been 
shown to be an efficient adjuvant in 
an ultraviolet‐inactivated SARS‐CoV-2 
vaccine

[180]

Recombinant NP Novavax Approved in 36 countries and 15 clini‑
cal trials in 12 countries

NVX-CoV2373 is a recombinant NP 
vaccine created from the full-length, 
wild-type COVID-19 virus S protein. 
It is joined with a saponin-based 
Matrix-M adjuvant to increasing the 
immune reaction and generating 
great amounts of NAbs, which are 
fundamental in inhibiting the disease

[142]

1c-SApNP Ufovax Phase I clinical trial Automatic-mount protein NPs vac‑
cine method (1c-SApNP) prototype 
offerings sections of COVID-19 virus 
proteins that protrude from a scaffold 
of protein NPs, targeting to incite the 
immune reaction and incite the crea‑
tion of antibodies to inhibit COVID-19

[149]
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Nanoparticles as a drug delivery system 
in SARS‑CoV‑2 infection
The nanocarrier of repurposed antiviral medicines can 
be improved by combining with cell-penetrating peptides 
(CPPs). CPPs transport the cargo within the cell either 
via macropinocytosis, caveolae-interceded endocyto-
sis, or clathrin-free endocytosis manner. Therefore, the 
remedial use, of these CPPs should be fixed through the 
combination of multifunctional polymeric NPs or LNPs 

to increase selectivity, performance, and capacity of cargo 
delivery to prevent deactivation via proteases. So, nano-
formulation-based CPP-encapsulated in NPs of repur-
posed antiviral medicines to treat SARS-CoV-2 infection. 
This method versus COVID-19 may be progressed and 
increased by conjugating it to the Tat-peptides via using 
nanoformulation-based NPs-delivery methods [143]. At 
present, siRNA treatment methods are inhibiting via the 
facility of siRNA enzymatic degradation, quick clearance, 

Fig. 5  Several delivery methods for mRNA. LNPs are produced by the self-assembly of an ionizable cationic lipid. Various NPs of these cationic 
lipids (include 1,2-dioleoyloxy-3-trimethylammoniumpropane [DOTAP] or dioleoyl phosphatidylethanolamine [DOPE]) are prepared with subtle 
modifications (include cationic lipids + cholesterol NP, cationic lipids + cholesterol + PEG-LNP), where cholesterol and PEG-lipid are added to 
increase consistency. Other NP delivery systems include protamine (cationic peptide) nanoliposomes (sized approximately 100 nm), PEG-lipid 
functionalized dendrimer NPs (approximately 200 nm in size), positively charged oil-in-water (O/W) cationic nanoemulsion (approximately 120 nm 
in size), polyethyleneimine NP (approximately 100 − 300 nm in size), and cationic polymer (chitosan) NPs (approximately 300 − 600 nm in size)
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and lack of ability to pass into the cell membrane. How-
ever, these challenges can be notably addressed by uti-
lizing NPs such as LNPs, polymeric NPs or their hybrid 
NPs, nanohydrogels, superparamagnetic iron-oxide 
NPs (SPIONs), and also functionalized AuNPs. PGA, 
poly(lactic acid) (PLA), polycaprolactone (PCL), and 
their copolymers PLGA have been accepted via FDA and 
more broadly utilized for in  vivo siRNA transfer [144, 
145]. As a result, the aerosol design for inhalation injec-
tion of designed siRNA NPs delivery system via meas-
ured-dosage inhaler is recommended as an effective way 
of an injection to the treatment of SARS-CoV-2 [146]. 
Inorganic polyphosphate (polyP), which was entrapped 
in silica/polyP NPs to inhibit polyP-destroying versus the 
alkaline phosphatase, was used to suppress connecting S 
protein to the ACE2 receptor in SARS-CoV-2. The result 
showed that completion of polyP might chip in improv-
ing the human innate immune responses in compro-
mised, thrombocytopenic SARS-CoV-2 infected patients 
[147]. In other investigations, researchers developed 

recombinant DNase-1-covered PDA-poly(ethylene gly-
col) NPs (called long-acting DNase-1). The result showed 
that exogenously injected long-acting NPs DNase-1can 
efficiently decrease cell-free DNA (cfDNA) rates and 
neutrophil functions and may be utilized as powerful 
remedial intermediation for COVID-19. Researchers 
offered the remedial transport of a long-long-acting NP 
DNase-1 preparation for slowing the progress of sepsis in 
COVID-19 via inhibiting cfDNA [148].

Investigators have produced chitosan NPs for aero-
sol usage, which lets the adhesion and target delivery of 
medicines to the epithelial tissues of the lung and guar-
antees regulated discharge, thus decreasing the toxicity 
of the medications. Particular chitosan NP, named Novo-
chizol, can entrapment of various medicines to deliver 
them to the lungs for the treatment of acute COVID-
19 patients [149]. Other studies, used AgNPs, AuNPs, 
AgAu-NPs, and Pt NPs for delivery of the antiviral medi-
cine, including hydroxychloroquine (HCQ), and chloro-
quine (CQ), to reduce the adverse events and increased 

Table 4  Effects of different NPs as a delivery system and antiviral agent in SARS-COV-2 infection

NPs types NPs performance generally Description Refs.

CQD Antiviral attributes Afterward, effective cell internalization and interaction with S protein, 
the NPs suppressed virus function against COVID-19

[155]

Zinc-based NPs Antiviral attributes These NPs suppress the mucosal binding of the virus and also prevent 
the virus reproduction and improve host immune reaction against 
viral infection

[155]

GO Immune system inducer These NPs stimulated IFN signaling triggering in T lymphocytes and 
monocytes. The generation of Th1-associated reaction has been 
displayed as critical for disease regulation in SARS-CoV-2

[155]

Nanodiamond Antiviral responses Octadecylamine-functionalized and dexamethasone-adsorbed 
nanodiamond decreased macrophage penetration and expression of 
proinflammatory mediator’s iNOS and TNF-α in the mouse

[124]

NO NPs Antiviral attributes and therapeutic agent These NPs can inhibit the beginning of inflammatory activities, 
decrease injuring vascular penetrance, and preserve sufficient blood 
circulation

[149]

IONPs Antiviral attributes These NPs interact with SARS-CoV-2 S1-RBD, which decreases infection [159]

NC Anti-inflammatory, antioxidant, and anti-
fibrotic attributes

These NPs can per se reduce cytokine synthesis or inhibit function via 
inhibiting the receptor interaction of cytokines

[181]

Magnetic NPs Antiviral attributes Simultaneous, magnetic NPs interact with M-protein, leading to frag‑
mentation of S protein

Epithelial-NS, and MΦ-NS Antiviral attributes These nanosponges can inhibit the viral acting, and they will be capa‑
ble of eliminating the severe inflammation dependent on SARS-CoV-2

[161]

Photothermal NPs Virus binding inhibitor These NPs showed effective capture of SARS-CoV-2, excellent photo‑
thermal efficacy, and complete suppression of viral entrance

[162]

TPNT1 Virus binding inhibitor These NPs inhibit viral entrance via suppression of the binding of S 
proteins to ACE2 receptors

[163]

Silica/polyP NPs Drug delivery system The PolyP was entrapped in silica/polyP NPs to suppressing the con‑
necting of S protein with ACE2

[147]

polydopamine-poly Drug delivery system Recombinant DNase-1-encapsulated polydopamine-poly [148]

Novochizol™ Drug delivery system These chitosan NPs can entrapment of various medicines to transport 
them to the lungs for the treatment of acute SARS-CoV-2

[149]

Ag, Au, AgAu, and Pt NPs Drug delivery system and antiviral attributes The noble metal NP as encouraging NPs with antiviral attributes, can 
deliver the HCQ and CQ to the target agent and reduce the adverse 
events

[150]
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the targeted therapy and efficacy of antiviral medica-
tions versus COVID-19 [150]. Moreover, dexamethasone 
encapsulated in NPs, and injecting it through intravenous 
or intranasal administration, can help to make better 
anti-SARS-CoV-2 therapy effect by targeting the strong 
corticosteroid medicine to hyper-triggered immune cells, 
with enhancing anti-edema acting and by eliciting its 
anti-fibrotic efficacy [151] (Table 4).

Nanoparticles as antiviral agents against SARS‑CoV‑2 
Infection
In the absence of carrying additional medicine payloads, 
NPs can use specific mechanisms for direct viral inhibit-
ing. One of these mechanisms is the degradation of viral 
protein structure. Biocompatible NPs can demonstrate 
a wide range of antiviral actions. The action of specific 
NPs, such as AgNPs and AuNPs, can chip in the generally 
antiviral function [152].

Quantum dots (QD), a kind of crystalline NPs, have 
great nano-based detecting, and they, can be utilized as 
antiviral remedies. Various metallic combinations (Pb, 
Cu, Ga, Zn, Hg) based on QD displayed target particular 
activities versus viral infection [153]. Moreover, QDs can 
be employed as ideal options versus pathogenic human 
CoVs diseases; For example, the antiviral actions of 7 
diverse carbon QDs (CQDs) for remedying HCoV-229E 
infections were assessed [154, 155]. Moreover, the avail-
able documentation shows that NPs, including graphene, 
nanodiamonds, carbon nanotubes, and polystyrene parti-
cles, possess an inherent capability to trigger the immune 
system, related to their functionalization. For example, 
graphene oxide functionalized with amino groups (GO-
NH2) stimulates the triggering of STAT1/IRF1 IFN sign-
aling in monocytes and T lymphocytes, leading to the 
generation of T cell chemoattractant, and macrophage 
1/Th1 polarization of the immune reaction, with slight 
toxicity. Significantly, hypericin graphene is on the list 
of computationally recognized potential therapy ver-
sus SARS-CoV-2. Besides, graphene is a potent immu-
nomodulator, and GO-AgNPs increase the generation 
of natural antiviral protections (IFN-α and ISGs) [156]. 
Octadecylamine-functionalized and dexamethasone-
incorporated nanodiamonds increase anti-inflammatory 
and pro-regenerative performance in human mac-
rophages in vitro. A less amount of this NP also decreased 
macrophage penetration and expression of proinflam-
matory intermediary’s inducible nitric oxide synthase 
(iNOS) and TNF-alpha in mice. Generally, outcomes 
showed that nanodiamond particles could be beneficial 
as an intrinsically immunomodulatory system [124]. The 
usage of nitric oxide NPs (NONPs) can also be an option 
in the therapy of SARS-CoV-2 disease. An investiga-
tion by SARS-CoV-1 detected that NO suppresses viral 

reproduction via the cytotoxic response from interme-
diate factors, including peroxynitrite. Since COVID-19 
infects endothelial cells, which are an origin of NO, car-
rying NO from NPs may be an alternative for NO sub-
stitution, also a reaction to the viral targeting endothelial 
cells. Furthermore, suppressing viral prevalence, NO can 
inhibit the beginning of inflammatory activities based on 
hypoxia-reoxygenation /ischemia–reperfusion, regula-
tor the cytokine cascade, let the elimination of cell frag-
ments, restrict lipid peroxidation and cell injury, decrease 
damaging vascular penetrability, and preserve sufficient 
blood circulation [149]. Carbon nanotubes (CNT) belong 
to the fullerene family (sized 10–100  nm). Investigators 
developed a new method against COVID-19 by acidizing, 
and RALyase modified CNTs in combination with photo-
dynamic thermal efficacy [157]. In another investigation, 
researchers hypothesized that carbon dots (CDs) derived 
from Allium sativum (AS-CDs) may have the capabil-
ity to downregulate the expression of proinflammatory 
cytokines and return the immunological abnormalities 
to normal in SARS-CoV-2 infection. CDs have now been 
investigated in the nanobiomedicine field as a hopeful 
theranostic candidates for bioimaging and medication/
gene transfer. The antifibrotic and antioxidant proper-
ties of AS are explained with accuracy, as confirmed in 
numerous investigations. It is found that the most active 
constituent of AS, allicin has an extremely strong antioxi-
dant and reactive oxygen species (ROS) scavenging effi-
cacy [158].

ZnNPs have been offered favorable versus the SARS-
CoV-2 by preventing the mucosal connecting of the 
virus, inhibiting the virus reproduction, IFN-γ/α pro-
duction, triggering the enzymes involved in several cel-
lular actions, and reducing the inflammatory reaction, or 
increasing the immune system of the host [155]. Other 
investigations, showed that Iron oxide NPs (IONPs) 
(Fe2O3 and Fe3O4) interact with the S1-RBD COVID-
19. Fe3O4 created a more constant composite with 
S1-RBD. These interplays of IONPs are anticipated to 
be related to viral protein structural alterations, and 
therefore viral inhibition. Consequently, recommend 
FDA-accepted-IONPs proceed with SARS-CoV-2 ther-
apy clinical trials. Combinations that interact with the 
S1-RBD are hypothesized to inhibit virus binding to host 
receptors and prevent viral infection [159]. AuNPs can be 
excellent alternatives for antiviral factors versus SARS-
CoV-2 infection. The capability of AuNPs functional-
ized via diverse groups, including 3-mercaptoe-ethyl 
sulfonate (Mes), undecanesulfonic acid (Mus), octa-
nethiol (Ot), and a novel peptide, to suppress COVID-
19 was studied. The results showed that functionalized 
AuNPs have significant influences on the RBD and pow-
erfully interact with the virus protein. In addition, the 
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AuNP functionalized via a novel peptide creates a more 
constant compound with RBD in contrast with ACE2. 
AuNP-EG2, AuNP-Ot, and AuNP-Pep coat the entire 
connection surface of RBD of the COVID-19 [160].

Zhang, et al. developed 2 kinds of cellular nanosponges, 
which are prepared of the plasma membranes derivative 
from human lung epithelial kind II cells (Epithelial-NS) 
or human macrophages (MΦ-NS) for the therapy of 
SARS-CoV-2. The membranes were then covered onto 
polymeric NPs cores developed from PLGA by a sonica-
tion technique to create Epithelial-NS and MΦ-NS, in 
order. Cell membrane covering lets nanosponges receive 
the viral receptors associated with CoVs entrance in the 
target cells; however, it will be capable of inhibiting the 
chronic inflammation related to SARS-CoV-2 infection 
[161]. Cai, et al. developed photothermal NP that includes 
a semiconducting polymer core, (PCPDTBT), which 
combines NAbs connected on the surface of a photother-
mal NP to catch and deactivate SARS-CoV-2 actively. An 
amphiphilic polymer cover is applied to entrap the PCP-
DTBT core. The NP, a biocompatible polyethylene glycol 
surface, is functionalized by a monoclonal NAb particu-
lar to the S protein, which allows targeted and effective 
catching of virus with great composite affinity (0.07 nM), 
thus inhibiting the entrance of virus into target cells. As 
soon as stimulation via a 650-nm light-emitting diode 
(LED), which has a more favorable harmlessness method 
than traditional laser stimulation, the photothermal NPs 
per se deactivate the caught COVID-19 via heat [162]. 
A metal NP compound TPNT1 (comprising AuNPs, 
AgNPs, ZnONPs, and Clo2) was able to suppress 6 main 
sections of SARS-CoV-2 by efficient concentration within 
the limited area as food additives. TPNT1 was shown to 
inhibit viral entrance via preventing the connection of S 
proteins to the ACE2 receptor and interacting with the 
syncytium form. As TPNT1 is most efficient via previous 
incubation with viruses, one potential mechanism for the 
antiviral action of TPNT1 may be ascribable to bindings 
of virus surface glycoproteins with the metal NPs, and so 
inhibiting the virions from binding to target cells [163] 
(Table 4).

Conclusion
NPs can help to advance present treatments and as 
well be leveraged to generate new modalities which 
can destroy or prevent viruses via exclusive mecha-
nisms of action. Based on their exclusive attributes, NPs 
have numerous specific benefits that can be leveraged 
to enhance the action of antiviral medicines. Payloads 
entrapped in NPs have less exposure to the exterior sur-
roundings, which can help preserve them from systemic 
destruction while decreasing cytotoxicity. Moreover, 

NPs can increase the pharmacokinetic profiles of exist-
ing antiviral medicines via prolonging circulation time, 
binding particular tissue locations, and enhancing bio-
availability. The efficiency of hydrophobic medications 
that are generally problematic to formulate and transport 
in vivo can be significantly improved by NPs. Owing to 
their perfect dimensions features and great surface area, 
NPs can associate with viruses in a multivalent method, 
allowing for extremely more powerful binding interac-
tions. Generally, these developing therapeutics NPs are 
intrinsically resistant to viral mutations and can be used 
extensively versus a diversity of several viruses. NPs 
delivery methods contain antivirals, which can be pro-
duced from either synthetic or natural substances. Each 
one of these delivery methods has its collection of ben-
efits and disadvantages for some uses. It is thus signifi-
cant to choose the most suitable one and then improve 
its design. The SARS-CoV-2 pandemic continues to 
spread worldwide by an immediate requirement for a 
harmless and preservative vaccine to effectuate herd pro-
tection and regulate the spread of COVID-19. The rapid 
ratifications of mRNA1273 and BNT162b2 are significant 
achievements in the medication history. The NPs method 
can play a prime function in fighting SARS-CoV-2 using 
nanovaccines, which possess NPs and action as a delivery 
system of antigen that could trigger preservative immune 
responses. NPs have inherent immunomodulatory attrib-
utes that can affect the remedial act of vaccines. As the 
spread of viruses is faster than the development of effec-
tive vaccines, drug and vaccine studies should be comple-
mentary to what has already been achieved with previous 
CoV-related research.
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