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Abstract

Cancer often develops multidrug resistance (MDR) when cancer cells become resistant to numerous structurally and
functionally different chemotherapeutic agents. MDR is considered one of the principal reasons for the failure of many
forms of clinical chemotherapy. Several factors are involved in the development of MDR including increased expres-
sion of efflux transporters, the tumor microenvironment, changes in molecular targets and the activity of cancer stem
cells. Recently, researchers have designed and developed a number of small molecule inhibitors and derivatives of
natural compounds to overcome various mechanisms of clinical MDR. Unfortunately, most of the chemosensitizing
approaches have failed in clinical trials due to non-specific interactions and adverse side effects at pharmacologically
effective concentrations. Nanomedicine approaches provide an efficient drug delivery platform to overcome the
limitations of conventional chemotherapy and improve therapeutic effectiveness. Multifunctional nanomaterials have
been found to facilitate drug delivery by improving bioavailability and pharmacokinetics, enhancing the therapeutic
efficacy of chemotherapeutic drugs to overcome MDR. In this review article, we discuss the major factors contribut-
ing to MDR and the limitations of existing chemotherapy- and nanocarrier-based drug delivery systems to overcome
clinical MDR mechanisms. We critically review recent nanotechnology-based approaches to combat tumor hetero-
geneity, drug efflux mechanisms, DNA repair and apoptotic machineries to overcome clinical MDR. Recent successful
therapies of this nature include liposomal nanoformulations, cRGDY-PEG-Cy5.5-Carbon dots and Cds/ZnS core—shell
quantum dots that have been employed for the effective treatment of various cancer sub-types including small cell
lung, head and neck and breast cancers.
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Background

Cancer is a deadly disease characterized by the uncon-
trolled proliferation of cells. Mutations followed by
genetic instabilities result in the initiation, progres-
sion and development of tumors [1]. Cancer is one of
the leading causes of death globally, accounting for 10
million deaths in 2020 [2]. The main treatment modali-
ties to eradicate different sub-types of cancers are sur-
gery, radiotherapy, chemotherapy, hormone therapy and
immunotherapy or a combination of these therapies.
Various reports illustrate that chemotherapy often fails in
the clinic and accounts for more than 25% of mortality in
cancer patients [3-5].

Multidrug resistance (MDR) mechanisms limit the
efficacy of chemotherapy in cancer cells [6—8] and have
been considered some of the most challenging obsta-
cles to effective chemotherapy [8, 9]. The reoccurrence
of tumors and associated relapse or deaths of cancer
patients are mainly attributable to either the intrinsic or
acquired phenomenon of MDR. Some cancer cells are
inherently unresponsive to certain anticancer drugs [9].
Others acquire resistance to chemotherapy during the
course of chemotherapy. This acquired MDR phenom-
enon is mainly due to repetitive exposure to chemothera-
peutic drugs [10]. The ATP-binding cassette (ABC) drug
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efflux transporters such as P-glycoprotein (P-gp; ABCBI;
MDRI1), ABCG2 (also called breast cancer resistance
protein, BCRP) and MRP-1 (ABCC1) are often overex-
pressed after the initial treatment regimen [7, 11].

Mechanisms associated with MDR in cancer

The phenomenon of MDR is a complex and multifac-
torial process, illustrated in Fig. 1. MDR arises due to
various mechanisms including overexpression of ABC
transporters that efflux chemotherapeutics [12], muta-
tions in drug targets [8], the developing adaptation of
cancer cells to the microenvironment, and increased
efflux of hydrophobic chemotherapeutic drugs. The alter-
ation of drug targets either due to epigenetic changes or
secondary mutations in the target protein can result in
multidrug-resistant cancer [8]. Principally, cancer cells
develop MDR by overexpressing drug efflux transporters
[13]. ABC drug transporters energetically fueled by ATP
hydrolysis are responsible for the low bioavailability of
chemotherapeutic drugs [14, 15]. Cancer cells dynami-
cally adapt to the changing microenvironment. For
example, increased oxidative stress contributes to tumor
development, and DNA mutations can lead to MDR
[16]. Therefore, dynamic activation of the DNA repair
system in tumor cells also contributes to MDR [17, 18].
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Fig. 1 Mechanisms contributing to the development of MDR in cancer cells. Various mechanisms such as (i) increased drug efflux by ABC drug
transporters, (i) inactivation of drugs via cellular metabolism and detoxification, (iii) dysfunctional apoptotic pathways, (iv) mutations in drug
targets, (v) enhanced DNA repair mechanisms and (vi) mutations in cellular targets play roles in the development of cancer MDR

Enhanced DNA repair pathways and chromatin dynam-
ics are known to be associated with the development of
MDR in tumor cells [9, 17, 19]. One recent clinical study
illustrated the impact of DNA repair on genomic stability
and resistance to the anticancer drug treatment of pedi-
atric high-grade gliomas [20]. Cancer cells also become
accustomed to hypoxic tissue conditions by overexpres-
sion of hypoxia-inducible factor-la (HIF-1 «). Hypoxia
triggers cancer MDR by reducing the efficacy of chemo-
therapeutic drugs. It may also stimulate the expression of
ABC transporter pumps that eventually efflux intracellu-
lar chemotherapeutic drugs [21].

Dysfunctional apoptotic pathways, increased repair of
DNA damage, alterations in the cell cycle, and overex-
pression of cyclin-dependent kinases (CDKs) contribute
to the development of resistance to chemotherapeutic
drugs in cancer cells [22]. Moreover, defective apoptotic
machinery has been associated with treatment failure in
cancer clinics. For example, mutations in the p53 tumor
suppressor gene or disrupted functions of p53 protein
have been found to be responsible for treatment failure
and poor prognosis in B- and T-cell Non-Hodgkin’s lym-
phoma [23, 24]. Rapid metabolism of anticancer drugs
and detoxification of drugs by cytochrome P450 are

associated with rapid turnover and elimination of anti-
cancer drugs [25]. Therefore, inactivation and detoxifica-
tion of chemotherapeutic drugs by human cytochrome
P450s (CPY) phase I and/or II enzymes can contrib-
ute to the development of cancer MDR [7]. A recent
report demonstrated that the inter-individual variation
in cytochrome P450 expression determines the chemo-
therapeutic drug efficacy [26]. Furthermore, tumor het-
erogeneity plays a major role in the development of MDR
[27, 28] as cancer stem cells (CSCs) are capable of self-
renewal and differentiation [29]. Table 1 shows various
ways nanoparticles have been used to combat cancer
MDR.

Multidrug resistance and ABC drug efflux transporters
Some of the members of the superfamily of ABC proteins
are typically expressed on the plasma membrane. They
efflux cytotoxic agents from cells, thereby contributing
to clinical MDR [30-33]. ABC transporters play a major
role in the absorption, distribution, metabolism, excre-
tion and toxicity (ADMET) of drugs [32]. Mammalian
P-gp is the most widely studied transporter and it plays a
significant role in MDR [34].



Yadav et al. Journal of Nanobiotechnology (2022) 20:423

Page 4 of 35

Table 1 Various applications of nanoparticles to combat cancer MDR

Target Chemotherapeutic agent Mechanism of action Type of nanoparticles Refs
Efflux transporters P-gp targeted siRNA and/or P-gp inhibitors  Bypass and/or inhibit efflux transporter ~ Polymeric NPs [217-220]
Lipid NPs [77,221,222]
Silicon NPs [141,223,224]
Gold NPs [133,225-227]
Graphene oxide NPs [228-230]
Hypoxia HIF-1a siRNA Silence HIF-1a gene Lipid NPs [231 -233]
Micellar NPs [149, 174, 234]
Polymeric NPs [175, 235, 236]
HIF-1a inhibitors (PX-478) Inhibit the function of HIF-1a SPION NPs [237,238]
Silver NPs [173,239]
Cu2-xSe NPs [240]
Apoptosis Bcl-2-targeted siRNA Inhibit anti-apoptotic pathway SPION NPs [241]
Mesoporous silica NPs  [204]
Polymeric NPs [242-244)
NF-kB inhibitor Activate pro-apoptotic pathway Polymeric NPs [156, 245, 246]
Cell cycle Flavopiridol, sikNA and UCN-01 Inhibit CDK Polymeric NPs [247-253]
Metallic NPs [254]
Detoxification system  Buthionine sulfoximine (BSO) Inhibit GSH biosynthesis Polymeric NPs [255, 256]
Metal NPs [257,258]
Ethacrynic acid Inhibit GST Metal NPs [259]
Polymeric NPs [193, 260]

Since the early 1990s many drugs have been evaluated
for their possible inhibition of ABC efflux transporters.
First-generation P-gp inhibitors such as verapamil, cyclo-
sporine A, quinine, and erythromycin were found to be
effective in-vitro but showed inadequate pharmacological
limitations, adverse side effects and low affinity towards
this transporter during in-vivo experiments [35, 36]. To
prevail over the adverse side effects of first-generation
inhibitors, researchers modified their structures and
these inhibitors, known as second-generation P-gp inhib-
itors, were developed including dexverapamil, S9788, and
PSC-833 also called valspodar (cyclosporine A analog),
etc. The second-generation P-gp inhibitors often caused
interference with anticancer drugs and affected their
pharmacokinetics, resulting in adverse side effects [37,
38]. The third generation of inhibitors such as elacridar,
zosuquidar and tariquidar were subsequently tested in
clinical studies but also failed to achieve clinical approval
due to severe cytotoxic side effects [39, 40].

Fourth-generation inhibitors include natural compounds
and several flavonoids with inhibitory effects on ABC efflux
pumps. Natural compounds such as curcumin, piperine,
tea polyphenol epigallocatechin-3-gallate (EGCG), silibinin,
parthenolide, quercetin, capsaicin, carnosic acid, 6-gin-
gerol, procyanidin, limonin, and [-carotene act as inhibi-
tors of P-gp, and can be utilized as chemosensitizing agents
to reverse MDR. Natural phytochemicals can sometimes

downregulate P-gp expression by modulating different cell
signaling pathways. These phytochemicals augment chemo-
therapy-mediated apoptotic signals in P-gp-overexpressing
cells [41]. They have been found to alter the MAPK, PI3K,
and GSK signaling pathways that promote the activation
of downstream signaling molecules such as AP-1, NF-kB
and PB-catenin. These signaling molecules interact with
transcription factors and initiate the downregulation of
P-gp in cancer cells, eventually assisting in the reversal of
P-gp-mediated MDR. In one study, for example, Ganesan
et al. demonstrated the role of ferulic acid on P-gp modula-
tion to overcome MDR in colchicine-selected KB-Ch®-8-5
resistant cells and in the MDR xenograft mouse model via
the PI3BK/Akt/NF-kB signaling pathway [42]. These natural
compounds were established as potential candidates with
no toxicity but did not succeed due to minimal solubility
and bioavailability, hampering their efficacy. Therefore, they
could not be established as potent P-gp inhibitors or success-
ful contenders to reverse chemoresistance [43, 44].

Tyrosine kinase inhibitors as modulators of drug efflux
transporters

More than 50 tyrosine kinase inhibitors (TKIs) have
been found to be efficient in clinical research and are
approved by the US Food and Drug Administration
(FDA) for anticancer therapy [45, 46]. Numerous inves-
tigations indicated that TKIs in addition to their kinase
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target also interact with the ABC efflux pumps [47,
48]. These inhibitors were found to competitively bind
at the drug-substrate-binding site of the ABC efflux
pumps, thereby inhibiting their function and sensitiz-
ing the drug-resistant cancer cells. This chemosensi-
tization enhances the intracellular accumulation of
drugs in cancer cells. The first generation TKI imatinib
reverses the ABCG2-mediated chemoresistance of
topotecan [49] and doxorubicin [50] in experimental
models. Another inhibitor, dacomitinib, was shown to
inhibit ABCG2 efflux pumps and enhance drug accu-
mulation and retention, thereby reversing ABCG2-
mediated MDR in cancer cells [51]. Combination
treatment of dacomitinib and topotecan appreciably
inhibits tumor growth as compared to topotecan and/
or dacomitinib treatment alone, without any additional
toxicity. Narayanan et al. performed an extensive in-
vitro study that tested the role of the spleen TKI entos-
pletinib (GS-9973) in the reversal of ABCG2-mediated
MDR. Entosletinib was found to reverse resistance to
mitoxantrone and doxorubicin in cells overexpressing
ABCG2 transporters. The ATPase activity of ABCG2
was enhanced due to the binding of entospletinib at the
drug-substrate binding site [52]. Yang et al. reported
that sitravatinib interferes with the tumor microen-
vironment and immune-checkpoint blockade (PD-1)
in many cancer models [53]. It also has the potency to
reverse MDR mediated by the ABCG2 efflux pump in
cancer cells. Combination therapies along with FDA-
approved TKIs and established chemotherapeutics are
under clinical trials [54, 55]. Major drawbacks of using
TKIs as adjuvants with chemotherapy are their poor
solubility, adverse toxicity and severe side effects in
patients [56, 57].

Small interfering RNA (siRNA) for inhibition of drug efflux
transporters

Combining gene therapy with chemotherapeutic agents
can sometimes improve therapeutic efficacy. Various
types of nucleic acid-based molecules such as small inter-
fering RNAs (siRNAs), plasmid DNA, short hairpin loops
and circulating miRNAs enable the regulation of specific
genes to regulate and reverse MDR in cancer cells [58,
59]. Donmez and co-workers sensitized resistant breast
cancer cells by transfecting with MDR1 siRNA plus doxo-
rubicin to overcome P-gp-mediated cancer MDR. The
siRNA targeting the MDRI gene successfully silenced the
MDRI mRNA by approximately 90% and enhanced the
accumulation of doxorubicin in drug-resistant cells [60].
Major obstacles to applying nucleic acid-based drugs are
their stability, enzymatic degradation, poor membrane
permeability and short half-life.
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Nanotechnology-based strategies to overcome
MDR

To overcome the inadequacies of existing treatment and
therapy, nanomedicine offers innovative, robust and flexi-
ble drug design and delivery alternatives based on genetic
profiling of individual patients to engender personal-
ized treatment of cancer MDR [61-63]. The fascinating
physicochemical properties of nanomaterials contribute
to the improvement of the therapeutic index of poten-
tial chemotherapeutic drugs by enhancing their efficacy
and reduced adverse toxic effects. Multimodal nanofor-
mulations composed of materials such as gold, iron or
quantum dots, functionalized with ABC efflux pump
inhibitors and targeting molecules/peptides, have been
shown to improve the pharmacokinetics and biodistribu-
tion of chemotherapeutic drugs in multidrug-resistant
cancer cells [64]. P-gp inhibitors released in cancer cells
from nanocarriers bind at the drug-binding pocket in
the transmembrane domains (TMDs) of the transporters
and inhibit their drug efflux function [65]. This approach
was reported to enhance the therapeutic efficacy of sev-
eral anticancer drugs [66—68]. Similarly, the co-delivery
of suitable adjuvants using nanocarriers can improve the
anticancer drugs’ therapeutic efficacy by targeting the
drug detoxification process, DNA repair mechanism and
apoptotic cell death [52, 69, 70].

The delivery of nanomaterials to tumor cells is typi-
cally achieved by both active and passive mechanisms.
In the active mode of nanoparticle uptake, the surface of
nanoparticles is decorated with specific targeting ligands
such as antibodies or peptides, cell-specific ligands which
facilitate uptake of the nanoparticles via receptor-medi-
ated endocytosis. During passive uptake, the nanomateri-
als tend to accumulate in the tumor interstitial spaces due
to long-circulating systemic properties and are selectively
taken up by cells due to leaky vasculature and impaired
lymphatic systems [71]. Passive uptake is mainly achieved
by the enhanced permeability and retention (EPR) effect
in cancer cells [72]. The co-delivery of inhibitors of ABC
efflux transporters and potent anticancer chemothera-
peutic drugs via nanocarriers has been widely explored,
accepted and is under clinical investigations to overcome
MDR in tumors [73].

Various nanomaterials found successful for drug deliv-
ery and targeting tumors are liposomes, polymeric nan-
oparticles, micelles, dendrimers, metal nanoparticles,
mesoporous silica nanoparticles, graphene nanoparticles,
quantum dots and siRNA-conjugated nanomaterials,
which all help to reverse the MDR in cancer cells. Dual
drug delivery via nanoparticle systems was also devel-
oped in which combinations of drugs are co-delivered
to cells, and the presence of one drug enhances the bio-
availability of another drug [74, 75]. Certain non-ionic
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surfactants have been investigated for the inhibition of
ABC efflux transporters and reversal of MDR, including
polyethylene glycol, Tween 80, and Pluronics. These sur-
factants are known to evade recognition by P-gp, facilitat-
ing the intracellular uptake of drugs. Besides surfactants,
other nanoformulations such as liposomes, polymeric
nanoparticles, metallic nanoparticles, nanoemulsions,
and inorganic nanoparticles have been designed with
the ability to bypass drug efflux transporters and deliver
chemotherapeutic drugs to MDR cancer cells [75-80].

Furthermore, the combination of chemotherapeutic
drugs with gene therapy, specifically siRNA co-delivery
via nanoparticles, was found to be more successful in
the reversal of cancer MDR by targeting cellular signal-
ing pathways [81, 82]. Nanocarriers provide stability to
siRNA, thereby preventing its rapid degradation and
clearance in the cellular system [83]. Anselmo et al. pro-
vided an update on several nanoparticles which showed
improved therapeutic abilities in clinical studies and
listed the approval status of promising nanosystems to
improve human health from the early 1990s to 2019 [84].
In recent years, nanosystems have gained more atten-
tion for the delivery of chemotherapeutic drugs with
suitable adjuvants to circumvent MDR in different can-
cer subtypes. Figure 2a shows the number of research
articles published during the years 2001-2021 on the
reversal of cancer MDR in various experimental models
via chemotherapeutic drugs and/or adjuvant-conjugated
nanomaterials. In the last 10 years, the number of such
articles has quadrupled. The Venn diagram in Fig. 2b
categorizes a total of 195,591 published research articles
on nanotechnology. More than 42,950 of them involved
cancer research, with 4679 (10%) of the nanotechnology
and cancer articles specifically dealing with multidrug
resistance.

ABC transporters are overexpressed by brain endothe-
lial cells that form the blood—brain barrier (BBB) and are
involved in the efflux of toxic foreign compounds as well
as blood-derived compounds. These transporters prevent
chemotherapeutic drugs from reaching their target site of
action within the brain [85, 86]. Several polymeric, lipo-
some-based and metallic nanoformulations were found
to be suitable carriers to cross the BBB for controlled and
sustained drug delivery. The surfaces of these nanofor-
mulations were modified to enable them to cross the BBB
for accurate diagnosis and to deliver appropriate antican-
cer drugs to treat brain tumors [87, 88]. Gregory et al
reported the efficacy of iRGD functionalized albumin-
based synthetic protein nanoparticles (SPNPs) to deliver
siRNA specific for STAT3 into intracranial GBM tumors.
STAT3 siRNA-loaded SPNPs showed efficient penetra-
tion of the BBB, significant downregulation of the STAT3
expression and tumor regression in both GL26 glioma
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cell and GL26 syngeneic mouse models [89]. The use of
transferring receptor (TR)-targeted liposomal nanofor-
mulation was found to significantly enhance the deliv-
ery of cisplatin across the BBB for the treatment of brain
tumors in C6 cells and Wistar rats [90].

Over the past decade, photodynamic therapy (PDT)
has attracted substantial attention as an efficacious alter-
native treatment approach to overcome MDR. Deliv-
ery of photosensitizers and drugs simultaneously is
difficult. It was found that PDT could also be improved
by employing nanomaterials to mitigate MDR [91]. PDT
mainly eradicates cancer cells through the transfer of
energy from light-activated photosensitizers to oxygen
and generates intracellular oxidative stress via reactive
oxygen species (ROS) [92]. The resultant intracellular
ROS decreases the expression of membrane efflux pro-
teins and anti-apoptotic Bcl-2 family proteins [93]. Due
to disruption of mitochondrial membranes, the level
of intracellular ATP declines and the activity of ATP-
dependent ABC proteins is subsequently decreased. Guo
and co-workers revealed the use of a nanosized hydrogel-
like polyprodrug of platinum (IV) complex that has long-
term circulation, tumor accumulation and also generates
a high level of intracellular ROS. The elevated level of
ROS downregulates the expression of MDR-associated
protein 1 (MRP1), thus reversing MDR in A549R cells
and in A549 tumor-bearing BALB/c mice model [94]. Li
et al. demonstrated the role of mitoxantrone loaded poly
(e-caprolactone)-pluronic  F68-poly (e-caprolactone)/
PLGA-PEG-PLGA) mixed nanomicelles to reverse MDR
in MCEF-7/ADR cells under exposure of near-infrared
(NIR) light. These nanomicelles upon irradiation with
NIR light generate higher levels of ROS, thus decreasing
P-gp activity, leading to improved, higher concentrations
of intracellular drugs and further cell apoptosis. This
approach reverses MDR via nano-mediated PDT [95].
Figure 3 summarizes the strategies of different multi-
modal nanosystems functionalized with various targeting
molecules to deliver drugs. These nanosystems are able
to reverse MDR under the influence of various stimuli
depending on the tumor microenvironment.

Nanocarrier-based drug delivery systems

to overcome MDR

Polymeric nanomaterials

Polymeric nanomaterials have been found to play a
crucial role in the delivery of dual chemotherapeu-
tic drugs for the reversal of MDR. In fact, a polymeric
liposome was the first nanoformulation approved by
FDA to be used as a nanotechnology-based antican-
cer therapeutic [75]. These nanoparticles are colloi-
dal, biocompatible and biodegradable nanomaterials
that entrap or encapsulate hydrophobic drugs such as
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cyclosporin, curcumin, paclitaxel and oxaliplatin in
their matrices to improve their bioavailability in cells
[96]. Table 2 lists the various types of polymeric nano-
materials that have been investigated for the reversal of
cancer MDR. These nanomaterials are highly stable and
have the intrinsic property of sustained and controlled
drug release as compared to liposomes and micelles.

Natural biopolymers such as chitosan, sodium algi-
nate as well as some other synthetic polymers includ-
ing hydroxypropyl methylcellulose (HPMC), Poly
(lactic-co-glycolic acid) (PLGA), Poly-L-lysine (PLL),
and N-(2-hydroxypropyl)-methacrylamide (HPMA)
are commonly used for nanoformulation synthesis and
drug delivery [97]. Polymeric nanoparticles provide
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sustained release of drugs, prevent drug metabolism
and detoxification and have a long circulation time,
avoiding clearance from the system and enhancing
uptake within cells [98]. Many polymeric nanoparticles
loaded with chemotherapeutic drugs and P-gp inhibi-
tors have been studied to modulate ABC efflux trans-
porters and enhance the intracellular accumulation
of anticancer drugs in MDR tumor cells [99-101]. Le
and co-workers, for example, evaluated doxorubicin-
loaded liponanoparticles (LNPs) in order to bypass
the P-gp efflux mechanism in doxorubicin-resistant
MCE-7/ADR breast cancer cells. The drug-loaded
polymeric nanoparticles significantly increased the
accumulation of doxorubicin in the nuclei of drug-
resistant cells [102]. In another study, curcumin and
nutlin-3a in PLGA functionalized with folate reversed
MDR through downregulation of MRPI via inhibition
of NF-«B in retinoblastoma Y79 cells [103]. Figure 4
shows different types of nanomaterials such as organic
polymer, lipid, metallic and quantum dost-based nano-
materials functionalized with various ligand molecules
for the co-delivery of chemotherapeutic drugs to over-
come cancer MDR in resistant cells.

Liposomal nanoformulations

Liposomal nanoformulations are spherical vesicles that
encompass amphiphilic phospholipids and cholesterol
associated with an aqueous lumen. Liposomes can
allow the encapsulation of both hydrophobic as well
as hydrophilic chemotherapeutic drugs within their
cores. A liposomal nanoformulation was the first clini-
cally approved nanosystem for anticancer drug delivery
[104]. Table 2 provides a comprehensive list of various
liposomal and solid lipid nanoformulations used for the
reversal of MDR. Liposomes can also be utilized as a
co-delivery system to deliver a chemotherapeutic agent
along with inhibitors to sensitize cancer cells to anti-
cancer drugs [105]. In one study, the co-encapsulation
of doxorubicin and verapamil in liposomal-mediated
delivery was found to overcome P-gp-mediated MDR
in human breast cancer cells with reduced toxicity in
vital non-target organs [105]. Tang and co-authors
synthesized a liposomal formulation and decorated its
surface with octa-arginine (R8), which acts as a cargo
peptide and delivers the liposomal formulation into
cells. This nanoformulation was revealed to cause sig-
nificant inhibition of tumor growth in female nude
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Fig. 4 Different nanoparticles designed to overcome cancer MDR. Organic, lipid, polymer, metallic and quantum dots-based nanomaterials
decorated with ligands for the co-delivery of chemotherapeutic drugs and siRNA to overcome cancer MDR in resistant cells. The drugs are released
in the cancer cells in response to external stimuli, resulting in the inhibition of ABC drug efflux pumps, thereby sensitizing multidrug-resistant cells

mice with negligible distribution in healthy tissues and
organs. Thus, liposomal nanoformulations offer a plat-
form for co-administration of chemotherapeutic drugs
in combination with inhibitors of ABC drug transport-
ers to eliminate MDR in both cellular and animal mod-
els [105-108]. Several liposomal nanoformulations of
chemotherapeutic drugs are under clinical studies and
approved by the FDA for the treatment of different sub-
types of cancers [109, 110]. These liposomal nanofor-
mulations can deliver the drugs for maximal synergy at
a specific molar ratio suitable for the tumor microen-
vironment. For example, the FDA-approved nanolipo-
some Vyxeos was used for the co-delivery of cytarabine
and daunorubicin to achieve effective treatment of
acute myeloid leukemia (AML) [111].

Micellar nanoparticles

Micelles are specialized nanomaterials obtained by
self-assembly of hydrophilic and hydrophobic blocks
in an aqueous environment with a hydrophobic core.
The hydrophobic core has the advantage of being able
to entrap hydrophobic drugs within its core. Polymers
such as poly (aspartic acid) (PAA), poly (caprolactone)
(PCL), poly (lactic-co-glycolide) (PLG) and polyethyl-
ene glycol (PEG) are used for micelle formation. Table 3
shows recent developments in the application of various
nanomicelles to overcome cancer MDR. Several poly-
meric micelles loaded with certain chemotherapeutic
agents (doxorubicin, cisplatin and paclitaxel) have been
evaluated for their anticancer efficacy in experimen-
tal as well as clinical studies. Lv et al. demonstrated the
use of polymeric micelles (PEG,,-PLA;,) for co-delivery
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of doxorubicin with curcumin to reverse MDR via dual-
drug based nanomicelles in drug-resistant MCF-7/ADR
cells and in a xenograft model [112]. Nanomicelles were
also used for co-delivery of P-gp-specific siRNA and anti-
cancer drugs in a single system for synergistic and effec-
tive anticancer therapy. For example, Zhang et al. applied
a triblock polymer (NSC-PLL-PA) for co-delivery of si-
MDRI RNA and doxorubicin to resistant HepG2/ADM
cells and a xenograft model. Moreover, nanomicelles
were observed to accumulate in tumors 24 h post-injec-
tion and inhibit tumor growth [113]. Various polymeric
nanomicelles have been found to be effective and have
achieved success in different clinical stages. Genexol-PM,
nanomicelles loaded with paclitaxel, has been approved
by the FDA for use in patients to treat breast cancer. Pre-
clinical in-vivo studies revealed a threefold increase in
the maximum tolerated dose of paclitaxel and enhanced
antitumor activity as compared to the free drug. Another
advantage of using nanomicelles is their hydrophilic
outer shells. Such micellar nanomaterials have prolonged
circulation time and accumulate in tumor tissues via the
EPR mechanism [114].

Nanoemulsions

Nanoemulsions (oil/water) are biocompatible, highly sta-
ble nano-size (10—1000 nm) emulsions that are frequently
used to entrap and improve the delivery of hydrophobic
drugs and pharmaceutically active compounds [115].
Table 3 shows various nanomicelles and nanoemulsions
that have been used to overcome cancer MDR. Through
nanoemulsion, the co-administration of a different com-
bination of chemotherapeutic drugs and/or efflux trans-
porter modulators can efficiently be introduced into
cancer cells. These nanoemulsions play a significant role
to overcome MDR [116]. Albumin-bound nanoparticles
(nab™) have been widely used for tumor treatment due
to elevated albumin accumulation within tumors. The
nab-paclitaxel nanoformulation (Abraxane®) was given
FDA approval for the treatment of metastatic breast can-
cer and non-small cell lung cancer [117]. Co-delivery of
docetaxel and thymoquinone in borage oil-based nanoe-
mulsion reduces the concentration necessary for effective
treatment in breast cancer (MCF-7 and MDA-MB-231)
cells as compared to drug-free treatment [118].

Dendrimers

Dendrimers are nano-size hyper-branched, spherical
polymeric nanomaterials with symmetric core and end
groups that facilitate surface conjugation and modifi-
cation. Anbazhagan et al, employed polyamidoamine
(PAMAM) dendrimers for the co-delivery of ferulic acid
and paclitaxel. These dual-drug loaded PAMAM den-
drimers were also decorated with arginyl-glycyl-aspartic
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acid (RGD) to combat MDR mediated by P-gp in drug-
resistant KB ChR-8-5 cells. These results revealed the
enhanced intracellular accumulation of paclitaxel in
cells and also indicated increased pro-apoptotic protein
expressions of caspase 3, caspase 9, p53 and Bax [119].
Similarly, Liu et al. demonstrated the role of dual-func-
tionalized PAMAM dendrimers in the inhibition of P-gp
function in Caco-2 and MDCK/MDRI cells [120].

Metallic nanoparticles

Several metals and metal oxides have attracted intense
biomedical attention for their use as nanomaterials in
diagnosis, drug delivery and therapy. Gold (Au) and iron
oxide nanoparticles (Fe;O, NPs) have intrinsic properties
that make them ideal nanosystems to facilitate therapies
using radiation, photodynamics and hyperthermia. Iron
oxide nanoparticles can be utilized as a contrast agent to
improve conventional MRI imaging [121]. Various metal-
lic nanomaterials used for the reversal of drug resistance
are listed in Table 4.

Green synthesized metal nanomaterials have attracted
enormous attention and have been exploited for their
biomedical applications. These green synthesized nano-
materials are prepared by using different plant parts,
natural compounds, and microorganisms. Many reports
have demonstrated the use of biosynthesized nanomate-
rials of different metals on cancer sub-types. Saravanan
et al. in their systematic report elaborated comprehensive
insights regarding the significant role of biogenic AuNPs
in breast cancer treatment and molecular mechanisms
for anticancer activity in in-vitro studies. The biogenic
nanoparticles facilitate excessive production of ROS and
apoptotic enzymes that contributes to higher cytotoxicity
in cancer cells [122]. Mostafavi et al. described the effi-
ciency of biogenic AgNPs and AuNPs for antineoplastic
activity against leukemic models [123]. Barabadi et al
provided detailed information regarding the application
of biologically synthesized AgNPs against lung cancer.
Biogenic AgNPs were revealed to have elevated in-vitro
anticancer efficacy, thereby facilitating the reversal of
cancer MDR [124]. Another systematic review by Barab-
adi et al. demonstrated the relevance of biologically syn-
thesized AuNPs for the diagnosis and treatment of lung,
colorectal and cervical cancer cell lines using animal
models [125-127].

Several reports indicate that metal nanomaterials are
able to interfere with drug efflux transporters and cause
the reversal of drug resistance by increasing drug reten-
tion and cellular bioavailability [80, 128-131]. Cheng
et al. demonstrated the co-delivery of daunorubicin and
5-bromotetrandrin via magnetic nanoparticles (DNR/
BrTet MNPs) to reverse P-gp-mediated MDR in K562/
A02 leukemia cells. Their findings indicate that the
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transcriptional downregulation of the MDRI gene fur-
ther aids in the reversal of MDR [80]. Noruzi et al. evalu-
ated the effect of trimethoxusilylpropyl ethylenediamine
triacetic acid (EDT)-coated and doxorubicin-conjugated
iron oxide nanoparticles on human glioblastoma U251
cells and a mouse model for reversal of MDR. Their find-
ings indicate that drug-conjugated magnetic nanoformu-
lation activates multiple mechanisms to overcome drug
resistance. It inhibited cell proliferation and enhanced
apoptotic cell death. Furthermore, downregulation of
the DNA repair gene and upregulation of caspase 3 and
p53 genes were observed in U251 cells [132]. AuNPs have
been found to contribute to the enhancement of chemo-
therapy and radiation in a size-dependent manner. Jiang
et al conjugated 2-(9-anthracenylmethylene)-hydrazi-
necarbothioamide (ANS) and 6-mercaptopurine (6-MP)
with AuNPs and evaluated the resulting toxicity and drug
resistance in MCF-7/ADR cells. Their findings indicated
that smaller AuNPs have more efficient binding with
P-gp, whereas larger-size nanoparticles avoid effective
recognition by P-gp [133]. Rathinaraj et al. demonstrated
the exploitation of folate-gold-bilirubin (FGB) nanocon-
jugates to overcome P-gp-mediated MDR in P-gp-over-
expressing KB-ChR-8-5 cells and in a xenograft mouse
model. The results indicated the FGB nanoconjugate
proved to be a potent inhibitor as compared to biliru-
bin and AuNPs alone. FGB nanoconjugates also induced
intracellular ROS and initiated DNA strand breakage and
other apoptotic changes in P-gp-overexpressing cells. The
xenograft model treated with FGB nanoconjugates also
revealed suppression of tumor growth with pronounced
apoptosis [134]. Dearden et al. demonstrated that drug-
functionalized gold nanorods (AuNRs) mediated P-gp
trafficking in P-gp+]774.2 cells. Treatment with AuNRs
containing azithromycin (Azith-AuNRs), clarithromycin
(Clarith-AuNRs) and tricyclic ketolide (TriKeto-AuNRs)
led to ligand-dependent accumulation and inhibition of
the efflux of these nanorods by P-gp. Increased intracel-
lular accumulation of AuNRs was observed for nanorods
conjugated with P-gp substrates (Azith-AuNRs and
Clarith-AuNRs), while nanorods conjugated with low-
affinity P-gp substrates (TriKeto-AuNRs) was unaffected
[135].

Quantum dots

Quantum dots (QDs) are nanosized semiconductor par-
ticles with advantageous optical and electrical properties
that have been successfully employed in several biomedi-
cal applications. QDs generate intracellular ROS, thereby
causing cancer cell death through oxidative DNA damage
[136]. Furthermore, QDs and carbon-based nanomateri-
als have been employed to conjugate drugs, antibodies
and adjuvants to enhance anticancer therapeutic efficacy
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[137, 138]. In one study, P-gp-miR-34b and P-gp-
miR-185 conjugated with CdSe/ZnS-MPA QDs and
CdSe/ZnS-GSH QDs significantly inhibited P-gp expres-
sion in lung cancer A549 cells [139]. Graphene-based
QDs (GQDs) have also been evaluated for their ability
to modulate P-gp-mediated MDR. Single GQDs are able
to downregulate multiple MDR-linked genes by interact-
ing with their respective C-rich promoters. Furthermore,
increased drug uptake and retention were observed along
with suppression of MDR-related genes in MCF-7/ADR
cells [140]. Table 5 lists published reports on the reversal
of cancer MDR by QDs and carbon-based nanomaterials.

Mesoporous silica nanoparticles (MSNs)

Mesoporous silica nanoparticles are nanosize drug car-
riers that have gained attention as versatile drug deliv-
ery vehicles having a large surface area, high stability,
negligible toxicity, customized pore size and ease of
encapsulating various biogenic molecules. Table 5 lists
mesoporous nanoparticles that have been used to over-
come MDR. Liu and co-workers demonstrated the co-
delivery of quercetin (a P-gp inhibitor) and paclitaxel
in chondroitin sulphate-coated MSNs to reverse P-gp-
mediated MDR. Their results indicated that increased
drug release is dependent on the redox environment in
MCE-7/ADR drug-resistant cells, ultimately resulting in
downregulation of P-gp expression. In another report,
higher intracellular drug retention, associated apoptosis
and improved antitumor activity were observed in resist-
ant cells and female nude BALB/c mice [141]. Also, Zhao
et al. confirmed that pH-sensitive MSNs co-polymerized
with d-a-tocopheryl polyethylene glycol 1000 succinate
(TPGS) successfully deliver doxorubicin to resistant
MCEF-7/ADR cells. These MSNs showed clathrin-medi-
ated endocytosis, and higher drug uptake and retention.
The TPGS moiety of nanoformulation contributed exclu-
sively to the inhibition of P-gp drug efflux in tumor-bear-
ing SCID mice [142] and demonstrated the significant
reversal of drug resistance.

Recent advancements in nanotechnology

to overcome MDR

Numerous engineered nanomaterials have emerged
recently with the ability to deliver multiple agents such
as chemotherapeutic drugs, adjuvants, and nucleic acids
(DNA, siRNA, mRNA) to overcome MDR. These nano-
materials help to overcome MDR achieved by both efflux
pump-mediated and efflux pump-independent mecha-
nisms [101, 143].
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Nanomediated approaches to combat drug efflux
pump-mediated MDR

P-gp transporters play a role in the development of clini-
cal MDR in several cancer subtypes [144]. Therefore,
inhibition of P-gp transport function has been considered
an appropriate strategy to overcome MDR in cancer cells.
Smart engineered nanomaterials have come to the res-
cue and have been shown to reverse efflux pump medi-
ated-MDR by successfully altering the pharmacokinetic
parameters that facilitate drug retention [145]. Several
nonionic surfactants (Tween 80, vitamin E/TPGS, Brij 35,
Pluronic, PEG and PEQ, etc.) are now known to be able to
inhibit P-gp activity [143]. These surfactants form strong
hydrogen bonds with the transmembrane sequence
of P-gp and engage the drug binding sites, enhancing
drug absorption and retention. In one study, phosphati-
dylethanolamine (PE) conjugated with PEG (PEG-PE/
vitamin E)-based nanomicelles were synthesized to
co-encapsulate paclitaxel and curcumin for delivery to
human ovarian adenocarcinoma SK-OV-3TR paclitaxel-
resistant cells. The results of that study indicated suc-
cessful delivery of drugs and inhibition of tumor growth
in female nude mice by nanomicellar-mediated delivery
[146]. Shafiei et al. conjugated TPGS-PLGA with doxoru-
bicin and metformin for the co-delivery of P-gp inhibitor
and chemotherapeutic drugs to inhibit drug efflux [147].
Drug delivery by polymer lipid nanoparticles (PLNs) has
been shown to enhance chemotherapeutic efficacy and
retention in resistant cells. Wong et al. conjugated doxo-
rubicin with PLNs and evaluated their potential for drug
delivery and P-gp inhibition in MDA435/LCC6/MDR1
and EMT6/ARI resistant cell lines. The nanoformula-
tions were able to bypass the efflux pumps as they were
phagocytized into cells, thereby enhancing doxorubicin
accumulation and retention in resistant cells as compared
to free doxorubicin [148]. Joshi et al. demonstrated the
reversal of hypoxia-mediated drug resistance in resistant
A2780/ADR and MCEF-7/ADR cell lines as well as in 3D
spheroid cultures via co-delivery of doxorubicin and anti-
P-gp siRNA (siP-gp)-conjugated PEGylated nanoparti-
cles. The siRNA inhibits MRPI gene expression under
hypoxic conditions, thereby increasing doxorubicin
delivery to MDR cells [149]. Lamprecht et al. demon-
strated the role of etoposide-conjugated lipid nanocap-
sules in the reversal of P-gp-mediated MDR in C6, F98
and 9L glioma cells. Etoposide intracellular efficiency was
enhanced by lipid nanocapsules in P-gp-overexpressing
MDR cells [150]. Some studies have been conducted to
reverse MDR1 membrane pump-mediated cancer MDR
with the employment of thermosensitive polymeric
nanomaterials. Interestingly, Fan et al. developed beta
cyclodextrin (B-CD)-based temperature-sensitive supra-
molecular nanoparticles by utilizing PEG-PNIPAAm
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for delivery of paclitaxel (B-CD-g-(PEG-v-PNIPAAm),/
PTX) and doxorubicin (B-CD-g-(PEG-v-PNIPAAm),/
Dox) both in-vitro (HepG2/MDR1 and H460/MDR1
cells) and in-vivo (HepG2/MDR1 bearing xenograft
BALB/c mice). These novel nanoparticles facilitate the
reversal of cancer MDR by enhancing the cellular uptake
of nanoparticulated drugs, intracellular drug retention,
and inhibiting pump-mediated drug resistance [151].
Cheng and co-workers developed a novel star-like ther-
moresponsive nanocarrier by using f-CD grafted with a
copolymer of PNIPAAm-b-POEGA to form an inclusion
complex for the delivery of doxorubicin and paclitaxel
in HepG2/MDR1 and H460/MDR1 cells. Nanocar-
riers (B-CD-g-(PNIPAAm-b-POEGA)x/PTX@NPs)
were highly stable and demonstrated enhanced cellu-
lar uptake of chemotherapeutic drugs. The nanocarriers
were used at 37 °C (normal body temperature), thereby
inhibiting MDR1-mediated cancer drug resistance. The
B-CD-g-(PNIPAAm-b-POEGA)x/PTX@NPs) were
shown to have an improved therapeutic effect attribut-
able to enhanced cellular uptake and partial destruction
of MDR1 membrane pumps with PEGylated nanocarri-
ers in an in-vivo HepG2/MDR1 tumor xenograft nude
mouse model [152]. Han et al. described the application
of a PEGylated PLA nanosystem for the combined deliv-
ery of cyclosporine A and gefitinib in in-vitro and in-vivo
cancer resistance models. Their findings indicated that
the nanosystem disrupts EGFR-mediated downstream
signaling cascades and eventually inhibits tumor growth
and invasion. It also inactivates the function of the signal
transducer and the activator of transcription-3 (STAT-
3)-mediated signaling [153].

Nanodiamonds are carbon nanoparticles that offer
binding sites for certain therapeutic agents. Reversible
binding allows sustained release of drug at the target site,
thereby achieving excellent biocompatibility. Chow et al.
showed that nanodiamonds are an ideal drug delivery
system that offers biocompatibility, drug conjugation,
controlled release and enhanced aqueous dispersion
properties. Nanodiamonds alter the tumor efflux pumps,
hence facilitating doxorubicin intracellular retention and
pronounced apoptosis in various human and murine
breast cancer resistant cells and in a xenograft model
[154].

Calcium phosphate-based nanomaterials are also used
for the reversal of P-gp-mediated drug resistance via
energy-dependent inhibition of efflux transporters [155].
Calcium phosphate nanoparticles loaded with doxoru-
bicin decorated with an RGD peptide were evaluated for
targeting MDR cells for reversal of P-gp-mediated drug
resistance by inducing intracellular calcium ion bursting
and designated as tumor Targeting Calcium ion Nano-
Generator (TCaNG). The mechanism of action of this
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nanosystem was an initial burst of Ca®* ions within mito-
chondria, which curbs cellular respiration by disturbing
mitochondrial calcium ion homeostasis, blocking ATP
production and further inhibiting P-gp-mediated cell
resistance. Hypoxia conditions generated within cells
due to suppressed cellular respiration also downregu-
late the hypoxia-inducible factor-1 alpha (HIF-1a) gene
and inhibit expression of the P-gp efflux transporter. The
study revealed that the TCaNG nanosystem inhibits the
biosynthesis as well as functional activity of P-gp trans-
porters and facilitates the reversal of tumor drug resist-
ance in MCF-7/ADR resistant cells and nude mice [155].
These multi-targeted nanomaterials could be advanta-
geous in preclinical and clinical applications.

Certain natural compounds have also been used to
inhibit drug efflux transporters. Zhao et al. demonstrated
the co-delivery of curcumin and paclitaxel via core—shell
polymeric NPs in human ovarian cancer SKOV3 and
SKOV3-TR30 cells and in tumor-bearing xenograft mice
to reverse drug resistance. Their results demonstrated
that the NPs are internalized via CD44 receptors present
on the surface of ovarian cells. Curcumin was found to
efficiently inhibit the P-gp drug efflux transporter, result-
ing in elevated intracellular paclitaxel retention, inhibi-
tion of cellular migration and cytotoxicity and enhanced
reduction in tumor growth in a murine model [156].

Single-walled carbon nanotubes (SWCNTs) have been
reported to efficiently overcome drug resistance in some
experimental models. Li et al. demonstrated the co-deliv-
ery of anti-Pgp antibody and doxorubicin in SWCNTs in
efforts to target and eliminate K562R leukemia stem cells.
Their results clearly showed inhibition of tumor develop-
ment and metastases [157]. In an earlier study, Li et al
conjugated both ABCG2 and ABCB1 sequences onto
pH-sensitive carbonate apatite nanoparticles for dual
siRNA-mediated targeting of human breast cancer cell
lines (MCEF-7). This dual targeting approach sensitized
the MCEF-7 cells and enhanced toxicity by more than 50%
when treated with cisplatin, paclitaxel and doxorubicin.
While single siRNA targeting resensitized the cells, the
dual siRNA targeting approach offered enhanced toxicity
[158].

Nanomediated approaches to combat MDR not dependent
on efflux pumps

Normal cells employ various repair mechanisms to
avoid the replication of mutated DNA and to circum-
vent malignant transformation. If the damaged DNA
is not repaired, the mutated cells are normally elimi-
nated by apoptosis [159]. MDR not dependent on efflux
pumps can also develop in cancer cells via activation of
anti-apoptotic cellular mechanisms including elevated
expression of the B-cell ymphoma 2 (Bcl-2) gene and inhi-
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bition of pro-apoptotic signals, or via HIF-1a and NF-«xB
[160-163]. NF-kB is responsible for the transcriptional
regulation of several genes involved in cell proliferation,
migration, invasion, apoptosis escape processes and sur-
vival. Atypical regulation of NF-«xB has been shown to be
crucial for the development of MDR.

Nanomaterial-based approaches to combat tumor
microenvironment-mediated MDR

The tumor microenvironment also plays an important
role in MDR as well as cancer progression and develop-
ment. Cancer cells and stromal cells embedded in the
extracellular matrix play a crucial role in cancer cell inva-
sion, metastasis and drug sensitivity [164]. Cancer cells
are known to utilize more aerobic glycolysis than oxida-
tive phosphorylation due to high levels of glycolysis and
poor transportation of metabolites from cells. Lactic acid
accumulation makes the intracellular environment acidic
by increasing proton concentrations. The significant dif-
ference in pH (acidic pH in the extracellular matrix and
neutral to basic pH in the intracellular environment) also
influences the effectiveness of chemotherapeutic agents
by ionizing them, hindering their ability to cross cell
membranes and reducing intracellular uptake via trans-
porters, leading to MDR in cancer cells [165, 166]. The
tumor microenvironment possesses inimitable character-
istics, contributing actively to the development of MDR.
Smart nanomaterials utilize the physiological character-
istics of the tumor cells and respond according to the
tumor microenvironment, thus offering more effective
treatment than conventional chemotherapy. Smart engi-
neered nanoparticles respond according to the cellu-
lar pH, for the release of chemotherapeutic drugs at the
tumor site. Several pH-sensitive polymeric nanomateri-
als have been extensively studied in efforts to overcome
acidic tumor microenvironment-mediated drug resist-
ance. Bahadur et al. synthesized poly (2-)pyridine-2-yld-
isulfanyl)ethyl acrylate) (PDS) nanoparticles loaded with
doxorubicin and decorated with a cRGD peptide and
observed their stability and drug release in both acidic
pH and redox potential conditions in colon cancer HCT-
116 cells. Their results indicated that these nanoparticles
are a promising nanotherapeutic system [167]. Huo et al.
employed a nanomicelle system for the co-delivery of
the P-gp inhibitors disulfiram and paclitaxel in PEG-b-
PLL/DMA with L-lysine side chains in efforts to reverse
drug resistance. The nanomicelles tend to reverse sur-
face charges depending on cellular pH conditions. Usu-
ally, nanomicelles have negative surface charge densities
in neutral plasma circulations (pH 7.4) but they switch
to a positive charge in an acidic tumor environment
(pH 6.5-6.7). These positive surface charges facilitate
their enhanced uptake into cells to overcome the drug
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resistance in MCF-7/ADR cells [168]. Similarly, Mao and
co-workers found that PDPA-b-P(FPMA-co-OEGMA)
nanomicelles conjugated with doxorubicin have either
a negative or positive surface charge depending upon
the tumor microenvironment and are able to efficiently
deliver drugs to HeLa cells [169].

The tumor microenvironment is also responsible for
creating the hypoxic conditions that lead to MDR, as
oxygen-deprived cells grow slowly and are less suscepti-
ble to conventional chemotherapeutic drugs. Oxidative
stress leads to changes in the cancer microenvironment.
Increased oxidative stress promotes tumor development
and associated drug resistance [170]. Targeting oxida-
tive stress and the hypoxic microenvironment of tumors
could also provide an opportunity to overcome MDR.
Hypoxic conditions are associated with many cancers
due to limited oxygen supply, which leads to overexpres-
sion of a transcription factor called HIF-1a. HIF-1a is
the pivotal moderator of hypoxia-related responses that
promote abnormal angiogenesis and MDR in several can-
cer subtypes [171]. The hypoxic conditions also critically
influence the expression of ABC drug transporters [21,
165, 171]. Several studies have demonstrated that HIF-1«
inhibition in cancer cells significantly sensitizes the cells
to chemotherapeutic drugs and also contributes as an
antagonist of p53-mediated cell death. Nanoformula-
tions can easily target the HIF-1a factor to resume apop-
totic signalling and contribute to the reversal of drug
resistance. Tian et al. investigated the role of polymeric
nanomaterials that mimic the cancer cell membrane and
could be conjugated with haemoglobin and doxorubicin
for reversal of drug resistance. The haemoglobin has an
oxygen-carrying capacity that suppresses the expression
of the HIF-1a factor, further downregulating the MDRI
gene and enhancing cytotoxicity in MCF-7 and MCEF-
10A cell lines [172]. Yang et al. demonstrated the appli-
cation of silver nitrate nanoparticles (AgNPs) to target
angiogenesis by downregulating VEGF and GLUT1 gene
expression and inhibiting HIF-1a signaling in MCE-7
cells [173]. Liu et al. evaluated the role of nanomicelles
decorated with siRNA specific to silence the HIF-1a gene
(siHIF) and doxorubicin in prostate cancer PC3 cells and
in a xenograft mice model. Their findings indicated the
inhibition of cell proliferation, disturbed angiogenesis
and suppressed migration of cells in hypoxic conditions
along with tumor growth inhibition in PC3 xenograft
mice without elicitation of any immune reaction. siHIF-
decorated nanomicelles downregulate MDRI gene
expression and also sensitize the cells to doxorubicin
under a hypoxic environment [174]. Lian et al. demon-
strated the co-delivery of siHIF and cisplatin-conjugated
chitosan-modified TPGS-b-(PCL-ran-PGA) nanoparti-
cles in nasopharyngeal carcinoma for improved reversal
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of drug resistance in CNE-2 cells. The observations
showed that silencing HIF-1a gene expression eventu-
ally inhibits P-gp expression, enhancing the sensitivity of
cisplatin in multidrug-resistant cancer cells [175]. Song
et al. observed that perfluorocarbon nanocarriers supply
oxygen targeted to the tumor hypoxic microenvironment
in tumor-bearing nude mice for lung re-oxygenation and
to overcome drug resistance [176]. Alsaab et al. reported
co-delivery of sorafenib and CA IX-C4.16 by TPGS nano-
particles in multidrug-resistant cancer cells to overcome
hypoxia-mediated MDR. Sorafenib inhibited the p-AKT
signaling pathway and upregulated the tumoricidal M1
macrophage by inducing caspase 3/7 apoptotic pathways
in experimental human renal cell carcinoma A498/Evr
resistant cells and RAW 264.7 macrophages [177].

Nanomedical approaches to combat MDR mediated

by dysfunctional cell cycle regulation

Cell cycle regulation is essential for proper cell division
and growth; it is maintained and regulated by cyclins
and cyclin-dependent kinases (CDKs). Some chemo-
therapeutic drugs specifically target different stages of
the cell cycle to arrest the cell growth of rapidly dividing
cancer cells. The overexpression of CDKs in cancer cells
can also account for resistance to conventional chemo-
therapy [178]. A recent review published by Si et al
explains the crucial role of miRNA regulation in different
types of cancer [179]. Polymeric nanosystem-mediated
delivery of miRNA modulates CDK expression to over-
come drug resistance. Co-delivery of miRNA with CDK
inhibitors has a synergistic effect that enhances inhibi-
tion of tumor development and reversal of drug resist-
ance. For example, Hallaj et al. showed the role of folic
acid-conjugated chitosan nanoparticles for co-delivery
of anti-CD73 siRNA and dinaciclib to manage tumor
growth and to reverse drug resistance in murine breast
cancer 4T1 cells, murine colon cancer CT26 cells and
in xenograft mice [82]. Targeting the CDK4/6 cell cycle
machinery using palbociclib and hydroxychloroquine-
conjugated silica nanoparticles enhanced the biodistribu-
tion profile of chemotherapeutics and contributed to the
reversal of MDR in pancreatic ductal adenocarcinoma in
a xenograft mice model [180]. Deng et al. demonstrated
the co-delivery of mir-34a and doxorubicin in hyalu-
ronic acid-functionalized chitosan nanoparticles to target
apoptotic signaling pathways. Their results demonstrated
the enhanced delivery of a nanoformulation into tumor
cells and inhibition of Bcl-2 expression and Notch-1 sign-
aling pathways in human breast cancer MDA-MB-231
cells and in nude BALB/c mice [181]. Mittal et al. syn-
thesized nanomicelles for co-delivery of gemcitabine
and miRNA-205 in pancreatic cancer MIA PaCa-2® and
CAPAN-1R cells and nude xenograft mice. Their results
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showed sustained drug release and miRNA-205-medi-
ated suppression of tumor growth, activation of apop-
tosis-mediated signaling pathways and reversal of drug
resistance [182]. Because nanoparticles are able to cross
the blood—brain barrier, a siRNA-conjugated liposomal
nanoformulation was used to overcome drug resistance
in glioma CSCs. The glioblastoma cells typically have ele-
vated levels of O%-methylguanine DNA methyltransferase
(MGMT), a DNA repair protein that facilitates acquired
drug resistance. In another study, Kato et al. synthesized
a novel liposomal nanoformulation known as LipoTrust
conjugated with siRNA that is able to silence the gene
responsible for MGMT and enhance the sensitivity of gli-
oma cells to treatment. Treatment with the nanoformula-
tion led to a reduction in tumor volume and inhibition
of the activity of the MGMT enzyme in a majority of the
cells and in a xenograft mouse model [183].

Nanomedical approaches to combat detoxification
system-mediated MDR

Cytochrome P450 (CYP) superfamily enzymes oxidize
fatty acids, steroids, and xenobiotics. They are involved
in the clearance of various compounds from cells. In
addition to carcinogenesis, CYP2 and CYP3 enzymes
also contribute to MDR by activation or degradation of
chemotherapeutic agents. There is a significant corre-
lation between the upregulation of CYP enzymes and
induction of the efflux transporters involved in the
metabolism and detoxification of a wide spectrum of
anticancer drugs, leading to MDR in cancer cells [184,
185]. For instance, the therapeutic effect of docetaxel
was found to be constrained by CYP3A4/5 enzymes by
oxidation to form pharmacologically inactive metabo-
lites including t-butyl hydroxy docetaxel [186]. Other
anticancer drugs such as paclitaxel, vincristine, tenipo-
side, vinblastine, etc., are substrates of both CYP3A4
and P-gp [187-190]. Glutathione S-transferases (GSTs)
also function along with efflux transporters where
substrates or pharmacologically inactive metabo-
lites conjugated with GSH tend to be effluxed by MRP
transporters from the body [185]. A significant cor-
relation has been established between CYP enzymes
and drug efflux transporters. Hence, inhibition of CYP
enzymes could also constitute an alternative therapy
to overcome MDR [191]. Nanomaterials can actively
modulate the regulation of CYP enzymes, serving as
an anticancer therapy. Minko et al. demonstrated that
doxorubicin conjugated with an HPMA copolymer
has the potential to reverse drug resistance by inhibit-
ing the drug detoxification system, inducing apoptosis
by enhancing DNA damage and also suppressing UDP
and glutathione expression [192]. Han and co-work-
ers showed that inhibition of GST through ethacrynic
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acid-conjugated polymeric nanoparticles (MPEG-PLA-
SS-ECA) could overcome the tumor cell detoxification
system and associated drug resistance. Their findings
demonstrate enhanced delivery of ethacrynic acid
and inhibition of GST in cell lines. Two modifications
were prepared for the purpose of disrupting the tumor
detoxification system and overcoming drug resistance
in oral squamous carcinoma SCC15/CBP and SCC15/
PYM resistant cells, pingyangmycin (MPEG-PLA-SS-
ECA/PYM) and carboplatin (MPEG-PLA-SS-ECA/
CBP) [193]. Niu et al. developed organosilicate nano-
particles for co-delivery of ethacrynic acid (EA) and
cisplatin to inhibit GST and intracellular GSH detoxi-
fication. The EA treatment induced inhibition of GST
and enhanced intracellular uptake of cisplatin, syner-
gistically preventing cellular detoxification in A375/
DDP cells and suppressing tumor development in a
nude xenograft murine model [194]. Wu et al. dem-
onstrated the co-delivery of buthionine sulfoximine (a
GSH inhibitor), celecoxib (a P-gp inhibitor) and doxo-
rubicin in hybrid polymeric nanoparticles. They found
that there was enhanced downregulation of GSH and
P-gp expression and elevated intracellular doxorubicin
retention in MCF-7/ADR cells. This nanomediated
drug delivery platform exhibited the improved delivery
of multiple target inhibitors and potent chemothera-
peutic drugs to efficiently overcome MDR [78]. Zhu
et al. developed cisplatin-conjugated 2-dimensional
(2-D)-titanium carbide nanomaterials and evaluated
their potency in non-small lung carcinoma A549/DDP-
resistant cells and nude xenograft mice. Their results
showed that the 2D nanomaterials interfered with total
glutathione (GSH/GSSG) levels, expression of gluta-
mylcysteine synthetase and glutathione peroxidase in
both resistant cell lines and a murine model. The tita-
nium carbide 2D nanomaterials also revealed excellent
biocompatibility in a murine model, enhanced intra-
cellular accumulation of cisplatin and suppression of
tumor growth [195]. Wang et al. developed a glucosa-
mine-grafted and doxorubicin-loaded hybrid nanosys-
tem that interacted with GLUT1 receptors to enhance
targeted receptor-mediated endocytosis in MCF-7 and
MCE-7/ADR cells and tumor bearing nude xenograft
mice. Due to elevated levels of GSH within cells, the
pluronic L61 entity of the nanosystem induced intra-
cellular ROS generation, release of cytochrome-c and
also disruption of mitochondrial respiration. Intracel-
lular doxorubicin accumulation was observed in cells
that led to inhibition of cancer cell growth and tumor
development, eventually facilitating the reversal of drug
resistance [196]. Wang and co-workers demonstrated
a long-term effect of copper nanoparticles (CuNPs) on
CYP450 enzymes in rat brains. Their findings proved
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that a higher dose of CuNPs induces oxidative stress via
hydroxyl radicals and malondialdehyde in the brain and
a simultaneous decrease in the cellular intrinsic anti-
oxidant enzyme system (total superoxide dismutase,
glutathione). CuNPs also led to a reduction in the pro-
tein expression of CYP450 2C11/3A1 and eventually a
reversal of the associated drug resistance in male rats
[197].

Nanotechnology-based approaches to combat MDR
mediated by apoptotic pathways

Downregulation of apoptotic pathways is often observed
in cancer cells. Activation of certain signal transduc-
tion pathways is known to result in decreased apoptotic
cell death in cancer cells [7]. For example, upregulation
of STAT family transcription factors plays a crucial role
in cancer cell growth and metastasis, eventually leading
to clinical MDR [198]. Also, a dysfunctional TP53 gene
results in attenuated apoptosis in multidrug-resistant
cancer cells [162, 199]. Engineered nanomaterial that
targets multiple molecular pathways is an ideal therapeu-
tic platform to eliminate MDR. Prabha et al. studied the
efficacy of wild-type p53 DNA loaded into PLGA nano-
particles to treat breast cancer, and evaluated their anti-
proliferative activity. They found the stable and sustained
transfer of the wild-type p53 gene into cells with anti-
proliferative activity to overcome drug resistance [200].
Choi et al. synthesized solid lipid nanoparticles for gene
delivery to overcome drug resistance. Their results indi-
cated efficient delivery of the p53 gene (plasmid DNA;
pp53-EGFP) through nanoparticles in non-small cell lung
carcinoma H1299 cells and in a xenograft murine model
with improved biodistribution, inhibition of cell growth,
suppression of tumor development and upregulated
apoptotic pathways [201]. Wang et al. utilized the co-
delivery of Bcl-2-specific siRNA and paclitaxel through a
liposomal nanoformulation with the aim of silencing Bcl-
2-mediated signaling pathways and suppression of tumor
growth in human breast cancer MDA-MB-231 cells and
in a 4T1 mouse model to facilitate the reversal of drug
resistance [202]. Saad et al. also demonstrated the co-
delivery of doxorubicin and siRNA specific to MRP1 and
Bcl-2 mRNA via cationic liposomal nanoformulations to
overcome drug resistance not related to drug efflux. Their
results showed efficient drug accumulation, inhibition of
efflux pumps via MRPI gene expression and induction
of cell death mechanisms in human lung cancer H69AR
cells, MCF-7/AD breast cancer cells, HCT15 colon can-
cer cells and A2780/AD ovarian cancer cells [203]. Chen
et al. reported co-delivery of doxorubicin and Bcl-2
targeting siRNA via mesoporous silica nanoparticles
resulting in enhanced cytotoxicity in human A2780/AD
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ovarian cancer cells. These nanoparticles bypassed efflux
pumps and were internalized in perinuclear regions,
thereby reversing drug resistance not dependent upon
efflux pumps [204]. In another study, Fan and co-work-
ers investigated folic acid-conjugated chitosan nanomi-
celles for the co-delivery of pyrrolidinedithiocarbamate
(PDTC) and doxorubicin to reverse drug resistance in
HepG2 liver cancer drug-resistant cells. PDTC is a potent
NF-«B inhibitor. After the nanomicelles were internal-
ized within resistant cells, NF-kB signaling was blocked
and intracellular doxorubicin delivery and retention were
enhanced, further overcoming drug resistance [205].

Nanotechnology-based approaches to combat tumor cell
heterogeneity and cancer stem cell-mediated MDR
Tumor heterogeneity is a distinct phenomenon that is
a major impediment to the treatment of cancer. Clonal
and subclonal mutations are mainly responsible for the
heterogeneity of tumors. Heterogeneity also occurs
due to the self-renewal and differentiation properties
of tumors [206]. Genetic and environmental factors are
the main causes of tumor heterogeneity and progres-
sion. It has been observed that subclonal mutations are
enhanced in patients who receive chemotherapy mainly
because the clonal population is eliminated by chemo-
therapeutic drugs during the initial treatment [207].
The emergence of resistant subclones that appear after
the initial treatment instigates tumor expansion and
eventually recurrence of tumors in the patients [208].
Tumor heterogeneity influences chemotherapeutic sen-
sitivity and stimulates MDR mechanisms. Researchers
are actively exploiting various nanosystems designed
to circumvent MDR mediated by tumor heterogeneity.
Ling et al. investigated pH-sensitive magnetic iron oxide
nanoparticles (PMNs) for the treatment of resistant het-
erogeneous tumors in-vivo. The PMNs were used for
diagnosis of early stage resistant heterogeneous tumors.
They allowed dual-modal tumor diagnosis via MRI and
fluorescence imaging of tumors with diameters up to
3 mm. PMNs engineered to respond to pH conditions
within the tumor could be an efficient treatment strategy
to overcome MDR [209]. Liu and co-workers applied the
CRISPR/Cas9-based nanosystem nano-Cas9 ribonucleo-
protein system (nanoRNP) to effectively combat tumor
heterogeneity-mediated MDR. The nanoRNP conjugated
with single guide RNAs (sgRNAs) specifically targeted
and disrupted STAT3 and RUNX1 expression, thereby
inhibiting the heterogenous tumor populations in glio-
blastoma U87MG cells and in a xenograft model [210].
Cancer stem cells (CSCs) are groups of cells (small
subpopulations less than 1%) within a tumor that are
characterized by stem-cell-like properties such as the
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ability to self-renew and to differentiate, leading to het-
erogeneity and acquired resistance to chemo- and/or
radiotherapy [164]. Most chemotherapeutic drugs target
rapidly dividing cells and therefore do not affect dor-
mant CSCs. Active DNA repair signaling contributes to
acquired MDR mechanisms in CSCs. The Notch path-
way, Wnt/p signaling and elevated expression of ABC
drug efflux transporters allow increased survival, stability
and the slow proliferation rate of CSCs [29]. After initial
chemotherapy, resistant CSCs repopulate the tumor by
self-renewal and generate highly differentiated subpopu-
lations. Cell surface markers such as CD133 and CD44
have exclusively been associated with the CSC pheno-
typic characteristics in different cancer types [211, 212].
Precise targeting of CSCs with drugs for their elimination
is urgently needed to manage cancer relapse and recur-
rence. Elimination of CSCs via nanoformulations is one
promising approach to overcoming MDR. Mamaeva et al.
targeted the Notch signaling pathway, which is a poten-
tial regulator of CSCs and facilitates cancer progression.
A nanomediated strategy to block the Notch pathway
could work efficiently against CSCs. y-secretase inhibi-
tors (GSIs) conjugated with MSNs have demonstrated
significant blocking of the Notch signaling pathway and
reduction in tumor growth in in-vivo xenograft model
after oral delivery of nanoparticles [28, 213].

Nanoconjugated gene silencing strategies have also
been employed to target MDR-specific genes and inhibit
CSC-mediated drug resistance. In one study, a lipid-
based nanoformulation for co-delivery of paclitaxel and
siRNA targeting CD133+-cells was evaluated to target
the specific subsets of cells that are responsible for drug
resistance and progression of colon cancer. The nano-
formulation was evaluated in CHOK1 cells and gene
silencing via siMDR1 was performed in CD133+4HT-29
colon cells which exhibited efficient MDRI gene knock-
down and enhanced intracellular retention of paclitaxel
and associated antitumor potency in colon cancer CSCs
[214].

Tissue transglutaminase (TG-2) is a multifunctional
enzyme and another key regulator that has a crucial role
in CSC-mediated cancer progression and drug resistance.
Verma et al. targeted the TG2 enzyme via co-delivery of
gemcitabine and a siRNA-conjugated liposomal nanofor-
mulation in pancreatic ductal adenocarcinoma (PDAC)
nude mice. Their results showed efficient downregula-
tion of endogenous TG2 by siRNA, inhibiting the growth
of PDAC and further enhancing therapeutic antitumor
activity [215]. Barth and co-workers synthesized indo-
cyanine green (ICG)-conjugated calcium phosphosilicate
nanoparticles (ICG-CPS NPs) for diagnostic imaging
and drug delivery to CSC-mediated drug-resistant can-
cers. CD117 antigens are found abundantly on leukemia
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stem cells, so the ICG-CPS nanoparticles were decorated
with anti-CD117 mAbs for direct targeting of NPs to
CD117+ leukemia stem cells. The nanoformulation was
found to mediate the elimination of specific leukemic cell
populations responsible for drug resistance and disease
progression in human samples as well as in a C3H/HeJ
murine leukemia model [216].

Conclusion and future prospective

Nanomaterials offer an extraordinary platform to over-
come the limitations imposed by different mechanisms
involved in the development of MDR. Combining con-
ventional treatments with current nanotechnology
advances might be a promising therapeutic approach to
eliminate multidrug-resistant cancer. Nanomaterials are
able to block P-gp and ABCG2 pumps and/or bypass the
transporters to reverse drug-efflux-mediated MDR. Fur-
thermore, nanomaterials functionalized with different
targeting ligands allow therapeutic drugs to reach tumor
sites directly via blood circulation. pH-sensitive nano-
systems can exploit hypoxic tumor microenvironments,
thereby reducing the expression of pro-angiogenic fac-
tors via downregulating the expression of HIF-1a. Stim-
uli-responsive nanosystems take advantage of unique
cellular properties including pH variation, redox poten-
tial as well as enzymatic activation to overcome the MDR
phenomena. Thermal, magnetic and light-based nanosys-
tems have recently been identified for efficient reversal of
drug resistance. Antibody-functionalized metal nanosys-
tems can actively target and recognize multidrug-resist-
ant tumor cells. Nanoparticles functionalized with siRNA
are able to reprogram the gene expression pattern of
resistant cells. Furthermore, nanomaterials improve the
therapeutic specificity and enhance the biodistribution
and pharmacokinetics of chemotherapeutic drugs. There
are currently many nano-based formulations in clinical
trials, and some are now used in the clinic. The merits of
nanosystems need to be further explored to effectively
combat drug-resistant cancer.
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