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Abstract 

Background:  Although protein-based methods using cell-penetrating peptides such as TAT have been expected to 
provide an alternative approach to siRNA delivery, the low efficiency of endosomal escape of siRNA/protein com-
plexes taken up into cells by endocytosis remains a problem. Here, to overcome this problem, we adopted the mem-
brane penetration-enhancing peptide S19 from human syncytin 1 previously identified in our laboratory.

Results:  We prepared fusion proteins in which the S19 and TAT peptides were fused to the viral RNA-binding 
domains (RBDs) as carrier proteins, added the RBD-S19-TAT/siRNA complex to human cultured cells, and investigated 
the cytoplasmic delivery of the complex and the knockdown efficiency of target genes. We found that the intracel-
lular uptake of the RBD-S19-TAT/siRNA complex was increased compared to that of the RBD-TAT/siRNA complex, 
and the expression level of the target mRNA was decreased. Because siRNA must dissociate from RBD and bind to 
Argonaute 2 (Ago2) to form the RNA-induced silencing complex (RISC) after the protein/siRNA complex is delivered 
into the cytoplasm, a dilemma arises: stronger binding between RBD and siRNA increases intracellular uptake but 
makes RISC formation more difficult. Thus, we next prepared fusion proteins in which the S19 and TAT peptides were 
fused with Ago2 instead of RBD and found that the efficiencies of siRNA delivery and knockdown obtained using TAT-
S19-Ago2 were higher than those using TAT-Ago2. In addition, we found that the smallest RISC delivery induced faster 
knockdown than traditional siRNA lipofection, probably due to the decreased time required for RISC formation in the 
cytoplasm.

Conclusion:  These results indicated that S19 and TAT-fused siRNA-binding proteins, especially Ago2, should be useful 
for the rapid and efficient delivery of siRNA without the addition of any endosome-disrupting agent.
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Background
In recent years, membrane-active peptides such as cell-
penetrating peptides (CPPs) have been widely used for 
the intracellular delivery of various biomacromolecules, 
such as proteins and nucleic acids, as well as nanomateri-
als for biomedical and nanobiotechnological applications 

[1–10]. The first and most commonly used CPP is a cati-
onic peptide TAT derived from HIV1 that binds to the 
cell surface by electrostatic interaction and is taken up 
into cells by endocytosis [11, 12]. Although there is con-
cern about the low efficiency of endosomal escape after 
uptake into cells [1, 2, 9], several approaches have been 
shown to enhance the efficiency of endosomal escape of 
the TAT peptide [13–15]. We previously found that the 
19 amino-acid fusogenic peptide named S19 from human 
syncytin 1, a protein involved in cell membrane fusion 
in placenta formation, enhances the efficiency of the 
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intracellular delivery of TAT-fused proteins [16]. In this 
study, we applied the membrane penetration-enhancing 
peptide S19 to the cytoplasmic delivery of small interfer-
ing RNA (siRNA).

siRNA causes RNA interference (RNAi), which medi-
ates sequence-specific cleavage of target mRNAs. Long 
precursor double-stranded (ds) RNA is processed by 
Dicer2 into a 21–23 nt small RNA called the siRNA 
duplex, followed by the formation of RNA-induced 
silencing complex (RISC), which cleaves a target mRNA 
with a complementary sequence region. Although many 
proteins are known to be involved in RISC formation, the 
complex of siRNA and Argonaute 2 (Ago2), which acts 
as the core of RISC, is defined as the smallest RISC [17]. 
For knockdown experiments on a target gene of interest 
in  vitro, lipofection reagents (e.g., Lipofectamine) have 
been widely used for the transfection of siRNA into cells, 
although this approach exhibits substantial cytotoxic-
ity [18]. For therapeutic applications, lipid nanoparticles 
(LNPs) or GalNAc conjugates have been successfully 
used in FDA-approved siRNA therapeutics, although 
they have some limitations, such as accumulation in the 
liver [19, 20]. Thus, a variety of other siRNA delivery car-
riers have been reported; e.g., the lipid [21], peptide [22, 
23], polymer [24], and inorganic [25] nanoparticles [26] 
and nanogels [27].

As another simple approach to siRNA delivery, protein-
based methods have been proposed by several groups 
[28–32]. They combined cell-surface binders such as TAT 
with RNA-binding domains (RBDs) that bind to siRNA 
in a sequence-independent manner. In comparison with 
LNPs, the protein-based small delivery vehicles have the 
advantage of higher tissue permeability [33]. In compari-
son with GalNAc conjugates, siRNA embedded in RBD 
can be protected against degradation by nucleases [29]. 
However, the problem remains that the efficiency of 
endosomal escape of the siRNA/protein complex taken 
up into cells by endocytosis is low. To overcome this 
problem, we fused the membrane penetration-enhancing 
peptide S19 and TAT with RBD and investigated whether 
the intracellular uptake and knockdown activity of siRNA 
were improved. Furthermore, we fused S19 and TAT with 
Ago2 instead of RBD and tested the direct delivery of the 
smallest RISC into cells to build a simpler and more effi-
cient delivery system.

Results
Application of the S19‑TAT peptide to siRNA delivery using 
the viral RNA‑binding domain
As the siRNA carrier protein, we chose RBD from the 
19-kDa Tombsvirus protein with several mutations previ-
ously reported by Yang et  al. [32]: they first introduced 
two mutations, C134S and C160A, into RBD to prevent 

uncontrolled crosslinking; here, we called this mutant 
RBDwt and the high-affinity mutant with the additional 
N15K and G16R mutations RBDmut (Fig.  1a). Whereas 
Yang et  al. combined the pore-forming protein perfrin-
golysin O as an endosome-disrupting agent in trans with 
the RBD/siRNA complex [32], we fused the membrane 
penetration-enhancing peptide S19 and TAT in cis with 
the RBD. By using the SLIC method [34], we constructed 
two plasmids based on the pET15 vector containing the 
T7 promoter for E. coli expression of RBDwt-S19-TAT 
and RBDmut-S19-TAT fusion proteins with the N-termi-
nal 6 × His-SUMO-tag for affinity purification and Ulp1 
cleavage [35] (Fig. 1a). We confirmed the expression and 
purification of these proteins by SDS–PAGE (Additional 
file 1: Fig. S1).

Then, we confirmed the binding of the purified RBD-
S19-TAT proteins with Cy3-labelled siRNA by a gel 
shift assay. As shown in Fig. 1b, we observed a mobility 
shift of the Cy3-siRNA bands when more than 2 pmol 
of RBDmut-S19-TAT was added to 1  pmol of Cy3-
labelled siRNA and when more than 4 pmol of RBDwt-
S19-TAT was added to 1 pmol of siRNA, indicating that 
RBDmut has higher affinity for siRNA than RBDwt, 

Fig. 1  Intracellular delivery of the siRNA/RBD-S19-TAT complex. a 
DNA constructs for RBD-S19-TAT fusion proteins. b Confirmation of 
binding between the RBD-S19-TAT fusion protein and Cy3-labelled 
siRNA by electrophoretic mobility shift assay. c Confocal images of 
HeLa cells treated with the complex of RBD-S19-TAT protein (400 nM) 
and Cy3-labelled siRNA (100 nM) (red) for 1 h. Nuclei were stained 
with Hoechst 33,342 (blue). Scale bars, 20 μm
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as expected. In addition, we evaluated whether Cy3-
siRNA bound to the RBD-S19-TAT protein is protected 
from nuclease degradation. We exposed the Cy3-siRNA 
or Cy3-siRNA/RBD-S19-TAT protein complex to 
bovine serum and determined the residual amount of 
Cy3-siRNA by native PAGE. After 3 h of bovine serum 
exposure, more than 80% of the siRNA was degraded 
in the absence of the RBD-S19-TAT protein, while most 
siRNA remained in the presence of the carrier protein 
(Additional file 1: Fig. S2).

Next, we confirmed the intracellular uptake of the 
complex of Cy3-labelled siRNA with the RBD-S19-TAT 
protein into HeLa cells with a laser scanning confo-
cal microscope (LSCM). When the RBDmut-S19-TAT 
complex with Cy3-siRNA was added to HeLa cells, Cy3 
fluorescence was observed in the cells (Fig. 1c), whereas 
very little fluorescence was observed when siRNA alone 
or the siRNA complex with the RBDmut-TAT protein 
was added (Additional file 1: Fig. S3). This result verified 
that the S19 peptide promoted the intracellular deliv-
ery of the siRNA/protein complex. We also confirmed 
the uptake pathway of the siRNA/RBDmut-S19-TAT 
complex by using various endocytosis inhibitors. TAT-
fusion proteins have previously been shown to bind 
to heparan sulfate proteoglycans on the cell surface 
and to be internalized by lipid raft-dependent macro-
pinocytosis [13]. As a result, the intracellular fluores-
cence of Cy3-siRNA was suppressed in the presence of 
dynasore, cytochalasin D or wortmannin, all of which 
inhibit macropinocytosis, while Cy3 fluorescence was 
maintained in the presence of methyl-β-cyclodextrin 
(MβCD), which inhibits caveolin-dependent endocyto-
sis, or chlorpromazine, which inhibits clathrin-depend-
ent endocytosis (Fig.  2). Thus, the uptake pathway of 
the siRNA/RBDmut-S19-TAT complex was confirmed 
by TAT-mediated macropinocytosis. These results are 
consistent with a previous study on the intracellular 
delivery of eGFP-S19-TAT proteins [16]. Finally, we 
compared the intracellular uptake of Cy3-siRNA using 
RBDmut-S19-TAT and that using RBDwt-S19-TAT. 
As expected, when using RBDmut, which has a higher 
affinity for siRNA, more siRNA was taken up than 
when using RBDwt, which has a lower affinity (Fig. 1c).

To confirm whether siRNA taken up into cells causes 
gene knockdown, we used two siRNAs targeting endog-
enous CSK and AR genes. Each siRNA/RBD-S19-TAT 
protein complex was added to HeLa cells or prostate can-
cer-derived LNCaP cells that highly expressed AR, and 
the amount of CSK or AR mRNA was quantified by RT–
qPCR. As expected, a decrease in CSK mRNA (Fig. 3a) or 
AR mRNA (Fig. 3b) was observed when the correspond-
ing siRNA was bound to RBDwt-S19-TAT protein, while 
no decrease was observed when RBDwt-TAT protein was 

used (Fig.  3ab), indicating that S19 promotes the cyto-
plasmic delivery of siRNA.

Unexpectedly, however, no decrease in CSK mRNA 
was observed when the S19-TAT-fused RBDmut protein 
with higher affinity was used (Fig. 3a), despite the higher 
uptake of siRNA/RBDmut-S19-TAT compared to siRNA/
RBDwt-S19-TAT (Fig. 1c). The reason is speculated to be 
as follows. After the RBD/siRNA complex is delivered 
to the cytoplasm, siRNA must dissociate from RBD and 
bind to Ago2 to form RISC (Fig. 4a). The binding between 
siRNA and S19-TAT-fused RBDmut protein might be too 
strong, so that siRNA cannot dissociate from RBD in 
the cytoplasm and then cannot be loaded into RISC. To 
overcome this problem, we next investigated whether it 
is possible to reliably induce RNAi after uptake into cells 
by fusing the S19 and TAT peptides with Ago2 instead 
of RBD for binding to siRNA (Fig.  4b). Although five 
chaperones are required for the in vitro reconstitution of 
human Ago2 and ds-siRNA [36], a high-concentration of 
single-stranded (ss)-siRNA also binds to Ago2 without 
chaperones [37–40]. Thus, we used ss-siRNA in the sub-
sequent experiments.

Cytoplasmic delivery of the siRNA/Ago2 complex using 
the TAT‑S19 peptide
We constructed plasmids based on the pFastBac1 vector 
containing the polyhedrin promoter (PPH) for the insect 
cell expression of Ago2 fusion proteins, in which the 
TAT-S19 or TAT peptide as well as the 6 × His-SUMO-
star-tag [41] were fused to the N-terminus of Ago2 
(Fig.  5a), because the C-terminal amino acid of Ago2 
has been shown to be involved in binding to siRNA [42]. 
Recently, we investigated the appropriate linking position 
and order of the S19 and TAT peptides to a cargo protein 
and found that both the previous C-terminal S19-TAT 
tag [16] and the N-terminal TAT-S19 tag promote the 
cytoplasmic delivery of the fusion protein [43]. SUMO-
star-tag is a mutant SUMO-tag that is not cleaved by the 
endogenous protease in insect cells [41]. We expressed 
the Ago2 fusion proteins in Sf9 insect cells, purified them 
using a 6 × His-tag, and cleaved their SUMOstar-tag 
using SUMOstar protease (Additional file 1: Fig. S4).

Next, we examined the intracellular uptake of the 
Ago2 fusion proteins. The cysteine residues of the puri-
fied Ago2 proteins were fluorescently labelled using Cy3-
maleimide, and the Cy3-labelled Ago2 fusion proteins 
were added to HeLa cells and observed with LSCM. As 
a result, the Cy3 fluorescence of TAT-S19-Ago2 in cells 
was higher than that of TAT-Ago2 (Fig. 5bc), indicating 
that S19 promoted the intracellular uptake of TAT-fused 
Ago2.

Finally, we confirmed whether the siRNA com-
plex with the TAT-S19-Ago2 protein was delivered to 
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the cytoplasm and caused gene knockdown. Here, we 
used a chemically modified ss-siRNA (Additional file 1: 
Table  S2) because ss-siRNA is more easily degraded 
than ds-siRNA. We mixed ss-siRNA targeting the AR 
gene with each Ago2 fusion protein, added them to 
LNCaP cells for 24 h, and verified the gene knockdown 
activity by RT–qPCR. As shown in Fig.  6a, a reduc-
tion in AR mRNA was observed for TAT-S19-Ago2, 
while no decrease in the mRNA was observed when 
TAT-Ago2 or commercially available Ago2 protein 
was used. These data clearly show that S19 promoted 
the cytoplasmic delivery of the Ago2/siRNA complex. 
The knockdown efficiency obtained with the TAT-S19-
Ago2/siRNA complex after 24 h was comparable to that 

obtained with commercially available lipofectamine and 
siRNA (Fig. 6a, Lipofection). On the other hand, when 
the time of addition to cells was shortened from 24 to 
6  h, the knockdown efficiency obtained by lipofection 
was reduced, but the knockdown efficiency obtained by 
using TAT-S19-Ago2 was not reduced (Fig.  6b). These 
results suggest that the delivery of the TAT-S19-Ago2/
siRNA complex induced faster knockdown than tradi-
tional siRNA lipofection, probably due to the shorter 
time required for RISC formation in the cytoplasm.

Fig. 2  Effect of endocytosis inhibitors on the intracellular delivery of the complex of RBDmut-S19-TAT protein with Cy3-labelled siRNA. a Confocal 
images of HeLa cells treated with the complex of 400 nM RBDmut-S19-TAT and 100 nM Cy3-labelled siRNA (Red) in the absence (Untreated) or the 
presence of 80 μM dynasore, 1 μM cytochalasin D, 100 nM wortmannin, 1 mM MβCD or 50 μM chlorpromazine for 1 h and observed on live cells. 
Nuclei were stained with Hoechst 33,342 (blue). Scale bars, 20 μm. b ROI was taken for each cell and the average fluorescence intensity of Cy3 was 
quantified. N = 52, 38, 38, 24, 41 or 34; means ± SD; **p < 0.01
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Discussion
In the present study, we prepared fusion proteins in 
which the membrane penetration-enhancing peptide 
S19 and the classical cell-penetrating peptide TAT were 
tandemly fused with siRNA-binding proteins (RBD or 
Ago2) and found that the efficiencies of siRNA delivery 
and knockdown obtained using RBD-S19-TAT or TAT-
S19-Ago2 were higher than those using RBD-TAT or 
TAT-Ago2, respectively. The mechanism by which S19 
promotes cytoplasmic delivery of TAT-fused proteins 
was presumed to be that S19 promotes TAT dimeriza-
tion by parallel β-sheet formation between two S19-TAT 
peptides in the late endosomes (LEs), because (i) the 
negatively charged phospholipid in the LE membrane is 
known to interact with the TAT peptide electrostatically 
[44, 45], (ii) the dimerization of the TAT peptide has been 
reported to promote endosomal escape from LEs [14, 
46, 47], (iii) the S19-TAT peptide has a β-structure in the 
presence of liposomes mimicking LEs [16], and (iv) the 
Ala-scanning mutagenesis of S19 indicated that amino-
acid residues with high β-sheet forming propensities in 
S19 are important for the delivery of S19-TAT-fused pro-
teins [43].

As mentioned in the background section, RBD has thus 
far been used as the carrier protein for siRNA delivery by 
multiple research groups. For example, Danielson et  al. 
fused TAT to RBD, as in this study, but improved the 
affinity with siRNA by linking two RBDs forming a dimer 
with a polypeptide linker [31]. Furthermore, since the 
knockdown efficiency with this protein/siRNA complex 

alone was quite low, they co-added E5-TAT peptide 
in trans as an endosome-disrupting agent to promote 
endosomal escape for efficient knockdown [31]. Yang 
et  al. fused the high-affinity RBDmut used in this study 
with EGFR-binding proteins for the delivery of siRNA 
into EGFR-expressing cells [32]. They also co-added an 
endosome-disrupting agent in trans to realize more effi-
cient knockdown than that of lipofection [32]. In this 
study, by fusing the membrane penetration-enhancing 
peptide S19 with TAT in the wild-type RBDwt, we suc-
ceeded in achieving knockdown efficiency comparable to 
that of lipofection without the addition of any endosome-
disrupting agent. On the other hand, in contrast to the 
results of Yang et al. [32], when we used the high-affinity 
RBDmut, the knockdown activity was lower than that 
of the wild-type RBDwt. (Fig.  3). We speculate that the 
reason is as follows. Since the membrane penetration-
enhancing peptide S19 is thought to promote dimer for-
mation [16, 43], the affinity of RBDmut-S19-TAT fusion 
protein with siRNA may have been further improved 
by this dimerization or by the interaction between cati-
onic TAT and anionic siRNA, resulting in less dissocia-
tion in the cytoplasm and consequent difficulty in RISC 
formation.

As far as we know, there are no examples of using Ago2 
alone as a carrier protein for siRNA. Li et  al. recently 
reported that the codelivery of Ago2 and siRNA with 
transfection reagents, causes RNAi with higher effi-
ciency than the delivery of siRNA alone [48]. They also 
proposed that one of the major barriers to RNAi-based 

Fig. 3  Gene knockdown with the RBD-S19-TAT protein/siRNA complex. a HeLa cells or b LNCaP cells were treated with RBD-S19-TAT loaded with 
siRNA against the AR gene (grey) or the CSK gene (white). After treatment, the total RNA was extracted and subjected to cDNA synthesis, and the 
relative expression of the CSK gene a or the AR gene b was determined by RT–qPCR using the comparative CT method based on the expression 
level of the housekeeping gene RPL37A. The relative expression levels of CSK a and AR b mRNA were normalized by the mRNA expression using 
lipofection of the negative-control siRNA against AR a or CSK b, respectively. N = 3; means ± SD; *p < 0.05, **p < 0.01
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therapy is the formation of a complex of siRNA and Ago2 
after siRNA is released from a carrier in the cytoplasm, as 
shown in Fig. 4. The major advantage of using the TAT-
S19-Ago2 protein as a carrier of siRNA is that rapid and 
efficient RNAi can be expected. Indeed, RBDwt-S19-TAT 
showed lower RNAi efficiency than lipofection (Fig. 3b), 
whereas TAT-S19-Ago2 showed better RNAi efficiency 
than lipofection (Fig.  6b). Therefore, we concluded that 
changing the carrier protein from RBD to Ago2 is effec-
tive. Although Li et al. also reported that the Ago2 com-
plex with ds-siRNA was more potent than that with 
ss-siRNA with low stability [48], we achieved efficient 
knockdown by using the complex between the TAT-S19-
Ago2 protein and ss-siRNA with standard chemical mod-
ifications (Additional file  1: Table  S2; 5’-phosphate [39], 
2’-methoxy [48–51] and 2’-fluoro [49, 52]).

In addition, the use of the TAT-S19-Ago2/siRNA com-
plex may have the benefit of reducing off-target effects 
and cytotoxicity. It has been suggested that the delivery 

of siRNA causes off-target effects due to nonspecific 
competition with the endogenous small RNA pathway 
[53] and that the overexpression of siRNA suppresses the 
natural function of Ago2 and leads to cytotoxicity [54]. 
To address this problem, several researchers suggested 
that the coexpression of Ago2 during siRNA delivery 
induced not only an increase in RNAi efficiency but also 
a reduction in off-target effects and cytotoxicity [48, 54, 
55]. The same effects can be expected in the codelivery 
of the TAT-S19-Ago2/siRNA complex used in this study, 
and we will verify these effects in the future.

One of the drawbacks of using Ago2 as the carrier pro-
tein is the difficulty of preparing Ago2 in large quanti-
ties thus far because Ago2 protein is extremely unstable 
and has problems such as being adsorbed on beads too 
strongly to elute during affinity purification. However, 
Tsuboyama et al. [56] recently discovered Hero proteins 
that stabilize Ago2 and other intrinsically disordered pro-
teins, which are expected to promote the efficient elution 
and mass preparation of the TAT-S19-Ago2 protein for 
future therapeutic applications.

Recently, Ide et al. succeeded the hepatocyte-selective 
delivery of protein-therapeutics by using our membrane 
penetration-enhancing peptide S28 derived from syn-
cytin 1 and a fragment antibody against the asialogly-
coprotein receptor [57]. Since the TAT peptide used in 
this study has low cell-selectivity, it is desirable to real-
ize the tissue- or cell-specific delivery of siRNA by fus-
ing ligands/antibodies with receptors/markers that are 
specifically expressed in target cells instead of fusing TAT 
to Ago2 together with membrane penetration-enhancing 
peptides. Although there have been many reports of the 
direct conjugation of ligands/antibodies to siRNA, the 
problem of low endosomal escape efficiency remained 
[19, 20, 58, 59]. The addition of membrane penetration-
enhancing peptides and Ago2, that is, the use of Ago2, 
which is a fusion of a ligand/antibody and a membrane 
penetration-enhancing peptide, as an siRNA carrier, can 
be expected to lead to more efficient cell-specific delivery 
and RNAi.

Conclusion
In this study, we applied the membrane penetration-
enhancing peptide S19 derived from human syncytin 
1 to the cytoplasmic delivery of siRNA. We prepared 
fusion proteins in which the S19 and TAT peptides 
were fused to the RNA-binding proteins RBD or Ago2 
as carrier proteins and investigated the cytoplasmic 
delivery of the siRNA/protein complex and the knock-
down efficiency of the target genes. As expected, the 
siRNA/protein complex was incorporated into cells by 
TAT-mediated cell uptake, and the S19 peptide pro-
moted the efficiency of cytoplasmic delivery and gene 

Fig. 4  Schematic representation of the cytoplasmic delivery of siRNA 
in this study. By using a RBD or b Ago2 as the carrier protein fused 
with the membrane-penetrating peptides S19 and TAT, siRNA/protein 
complexes can be incorporated into cells by macropinocytosis (Step 
1) and escape from endosomes (Step 2). Although a siRNA must 
dissociate from RBD-S19-TAT (Step 2’) and reassociate with Ago2 
(Step 2") to form RISC (Step 3), b the TAT-S19-Ago2/siRNA complex is 
expected to act immediately as RISC (Step 3)
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Fig. 5  Intracellular delivery of Ago2 fusion proteins. a DNA constructs for Ago2 fusion proteins. b Confocal images of HeLa cells treated with 
100 nM of Cy3-labelled Ago2 fusion proteins (red) for 1 h. Nuclei were stained with Hoechst 33,342 (blue). Scale bars, 20 μm. c ROI was taken for 
each cell and the average fluorescence intensity of Cy3 was quantified. N = 40 or 54; means ± SD; **p < 0.01

Fig. 6  Gene knockdown with the TAT-S19-Ago2 protein/siRNA complex. LNCaP cells were treated with 200 nM (grey) or 100 nM (white) of the 
protein/siRNA complex. After 24 h a or 6 h b, the total RNA was extracted and used for cDNA synthesis, and the relative expression of the AR gene 
was determined by RT–qPCR using the comparative CT method based on the expression level of the housekeeping gene RPL37A. The relative 
expression levels of AR mRNA were normalized to the mRNA expression of free protein (200 nM siRNA). N = 5 or 3; means ± SD; *p < 0.05, **p < 0.001
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knockdown. In particular, it was suggested that the use 
of Ago2 as a carrier protein enables rapid and efficient 
knockdown. We believe that such protein-based meth-
ods have the potential to develop novel small delivery 
vehicles with heightened tissue permeability for RNAi-
based therapy.

Materials and methods
Plasmid construction
All primers used in this study were purchased from 
Eurofins Genomics (Additional file  1: Table  S1). All 
plasmids were constructed by the cloning method SLIC 
[34] using the following PCR products with overlap 
sequences.

For the construction of plasmids encoding 6 × His-
SUMO-RBDmut-S19-TAT and 6 × His-SUMO-RBDmut-
TAT, each insert was amplified from the RBDmut gene 
[32] synthesized by Eurofins Genomics with PrimeS-
TAR Max DNA polymerase (Takara) using the prim-
ers SUMO-RBD-F and RBD-S19-R or SUMO-RBD-F 
and RBD-TAT-R, respectively. Each vector was ampli-
fied from a pET vector encoding 6 × His-SUMO-eGFP-
S19-TAT [16] using the primers S19-F and SUMO-R or 
TAT-F and SUMO-R, respectively. The resulting PCR 
products for the inserts and vectors were digested with 
DpnI (New England Biolabs) and purified using the 
QIAquick PCR extraction kit (Qiagen) before SLIC.

The above plasmids were used as templates for the con-
struction of plasmids encoding 6 × His-SUMO-RBDwt-
S19-TAT and 6 × His-SUMO-RBDwt-TAT by PCR using 
the primers K15N-R16G-F and K15N-R16G-R.

For the construction of plasmids encoding 6 × His-
SUMOstar-TAT-S19-Ago2, the Ago2 gene was ampli-
fied from a cDNA clone purchased from DNAFORM 
using the primers Ago2-F and Ago2-R. The SUMO-
star gene [41] was constructed by mutagenesis of the 
SUMO gene: a pET vector encoding 6 × His-SUMO-
TAT-S19-eGFP [43] was amplified using the primers 
R66T-F and R66T-R, and the resulting plasmid was 
amplified using the primers R73E-F and R73E-R. The 
resulting vector was amplified using the primers pET15-
F and Ago2-S19-R and joined to the insert Ago2 gene 
described above using SLIC. From the resulting vector, 
the 6 × His-SUMOstar-TAT-S19-Ago2 gene was ampli-
fied as the insert using the primers pFastBac-His-F and 
pFastBac-Ago2-R and cloned into the pFastBac1 vec-
tor (Thermo Fisher Scientific) amplified using the prim-
ers pFastBac-F and pFastBac-R by SLIC, resulting in 
pFastBac-6 × His-SUMOstar-TAT-S19-Ago2.

pFastBac-6 × His-SUMOstar-TAT-Ago2 was con-
structed from the above plasmid by PCR using the prim-
ers Ago2-F and Ago2-TAT-R and self-ligation by SLIC.

Protein expression and purification
RBD fusion proteins were expressed in E. coli BL21(DE3)-
RIPL cells (Agilent Technologies). For protein expression, 
E. coli cells transformed with each plasmid encoding the 
corresponding protein were grown in LB medium con-
taining 100  µg/mL ampicillin at 37  °C until the OD600 
reached 0.4–0.5. Then, 1  mM (final) isopropyl β-D-1-
thiogalactopyranoside was added, and the cells were fur-
ther cultivated at 25 °C for 24 h. Each protein was purified 
from the soluble fraction using cOmplete His-Tag Puri-
fication Resin (Sigma–Aldrich), as previously described 
[16]. Briefly, phosphate-buffered saline (PBS, Nacalai 
Tesque) supplemented with 500  mM NaCl and 10  mM 
imidazole and 0.1% Tween 20, PBS supplemented with 
500 mM NaCl and 300 mM imidazole, and PBS supple-
mented with 500 mM NaCl were used as the wash, elu-
tion, and exchange buffers, respectively. The N-terminal 
6 × His-SUMO tag was digested with Ulp1 at 4  °C over-
night and removed using cOmplete His-Tag Purification 
Resin. The expression and purification of each protein 
were confirmed using 12.5% SDS–PAGE with Coomassie 
brilliant blue staining.

Ago2 fusion proteins were expressed using the Baculo-
virus Expression System (Thermo Fisher Scientific). Sf9 
insect cells (5.0 × 104 cells/mL) were infected with virus 
for 96 h, harvested, and washed in PBS. Cells were pel-
leted by centrifugation at 2,000 × g for 5 min and resus-
pended in 5  mL of lysis buffer [1 × TBS (Tris-buffered 
saline), 0.5  M NaCl, 1  mM TCEP, 1% (v/v) NP40] and 
50 μL of ProteaseGuard EDTA-Free Protease Inhibi-
tor Cocktail (Thermo Fisher Scientific). The cells were 
lysed with a Dounce tissue grinder. The cell lysate was 
centrifuged at 15,000 × g for 30  min, and the superna-
tant was collected as a soluble fraction. Each protein 
was purified using cOmplete His-Tag Purification Resin 
as described above. The N-terminal 6 × His-SUMOstar 
tag was digested with SUMOstar protease (LifeSensors) 
at 4  °C overnight and removed using cOmplete His-Tag 
Purification Resin. The expression and purification of 
each protein were confirmed using 10% SDS–PAGE with 
Coomassie brilliant blue staining.

siRNA
The siRNAs used in this study were purchased from Gene 
Design. Their sequences (ds-siRNA for CSK [60] and AR 
[61], and ss-siRNA for AR [62]) and modifications are 
given in Additional file 1: Table S2.

Electrophoretic mobility shift assay
Cy3-labelled siRNA (100 nM) was mixed with 0–800 nM 
purified RBD fusion protein in binding buffer [20  mM 
Tris–HCl (pH 7.6), 100  mM NaCl, 1  mM EDTA, 0.02% 
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(v/v) TritonX-100, 2  mM dithiothreitol] at 4  °C for 1  h. 
The samples were then analysed by electrophoresis, 
where 5 × TBE sample buffer [90 mM Tris–HCl (pH 7.6), 
90  mM boric acid, 2  mM EDTA, 15% Ficoll type 400, 
0.02% xylene cyanol] was diluted to 1 × TBE in the bind-
ing reaction, and then 12.5 μL of the sample was applied 
to a 6% TBE gel and electrophoresed at a constant voltage 
of 100 V for 60 min in 0.5 × TBE buffer. Cy3 fluorescence 
was detected using ChemiDoc Touch MP (BioRad).

siRNA stability assay in serum
Cy3-labelled siRNA (100  nM) was mixed with 200  nM 
purified RBD fusion protein in 1 × PBS buffer at 4 °C for 
1  h. Then, this solution was mixed with foetal bovine 
serum (Nichirei Biosciences), and the mixture was incu-
bated at 37 °C for 3, 24 and 48 h. After 6% TBE gel elec-
trophoresis, the Cy3 fluorescence was detected using 
ChemiDoc Touch MP to confirm the remaining Cy3-
siRNA. The residual rate of siRNA was calculated from 
the band intensity.

Cell lines and cell culture
The human cervical cancer cell line HeLa (RIKEN Cell 
Bank) and human prostate cancer cell line LNCaP 
(RIKEN Cell Bank) were maintained in Dulbecco’s modi-
fied Eagle’s medium (DMEM) (Nacalai Tesque) or RPMI-
1640 (Nacalai Tesque) with 10% (v/v) foetal bovine serum 
(Nichirei Biosciences) and 1% (v/v) penicillin–strepto-
mycin (Life Technologies) and incubated at 37 °C and 5% 
CO2 in static culture.

The insect cell line sf9 (Thermo Fisher Scientific) was 
maintained in Grace’s Insect Medium (Thermo Fisher 
Scientific) with 10% (v/v) foetal bovine serum and 1% 
(v/v) penicillin–streptomycin (Life Technologies) and 
incubated at 27 °C.

Fluorescent imaging
The cells were seeded in glass-bottom dishes (AGC 
Techno Glass) for 24  h before the experiments. Each 
RBD fusion protein (400  nM) and Cy3-labelled siRNA 
(100 nM) were mixed at a molar ratio of 4:1 (RBD:siRNA) 
and incubated at 4 °C for 30 min. A fluorescently labelled 
Ago2 fusion protein was obtained by mixing the Ago2 
fusion protein and Cy3 maleimide (Lumiprobe) at 4  °C 
for 24  h. The sample medium was replaced by DMEM 
containing the RBD/Cy3-siRNA complex or Cy3-labelled 
Ago2 (100  nM) and Hoechst 33,342 at 1  μg/mL (Life 
Technologies). After 1  h of incubation, the cells were 
washed three times with PBS. The medium was replaced 
with DMEM without phenol red (Nacalai Tesque) con-
taining 10% (v/v) foetal bovine serum and 1% (v/v) 
penicillin–streptomycin and observed by LSCM (FV10i-
DOC, Olympus). Uptake via the endocytosis pathway 

was confirmed using various endocytosis inhibitors, as 
previously described [16].

RT–qPCR
The 1.0 × 105 HeLa cells or 5.0 × 104 LNCaP cells were 
seeded in a 24-well plate 24  h before the experiments. 
RBD or Ago2 fusion proteins and siRNA were mixed at a 
molar ratio of 4:1 (RBD:siRNA) or 1:1 (Ago2:siRNA) and 
incubated at 4  °C for 30 min or 1 h, respectively. Native 
Ago2 protein purchased from SinoBiological was used as 
a control. The protein/siRNA complex (100–200 nM) was 
added to a 24-well plate. As a positive control, siRNA was 
transfected using Lipofectamine 2000 (Thermo Fisher 
Scientific). After a predetermined time (3, 6, 12 or 24 h), 
total cellular RNA was extracted using the RNeasy Plus 
Mini Kit (Qiagen). Then, the mRNA in the total RNA 
was converted to cDNA with M-MLV Reverse Tran-
scriptase (Promega) using the Oligo dT primer (Addi-
tional file 1: Table S1). The resulting cDNA was amplified 
with a 2 × TB Green Premix ExTaq II (Tli RNaseH Plus) 
(Takara) using the primers CSK-sense and CSK-anti-
sense, AR-sense and AR-antisense, or RPL37A-sense 
and RPL37A-antisense (Additional file 1: Table S1) on a 
LightCycler (Roche) and analysed using the comparative 
CT method.
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