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Abstract 

Deficient deposition of X-rays and strong capacity of repairing damage DNA of cancer cells limit the effect of radiation 
therapy (RT). Herein, we synthesize CsLu2F7 nanoparticles with lactic acid (LA) ligands (CsLu2F7-LA) to overcome these 
limitations. The high-Z atoms of Lu and Cs can deposit more X-rays for generating enhanced hydroxyl radicals (·OH). 
Meanwhile, the LA ligand will guide CsLu2F7-LA to target monocarboxylic acid transporter (MCT) and impede the 
transportation of free LA, leading to decreased glycolysis and DNA damage repair. Consequently, the curative effect of 
RT will be enhanced and the strategy of LA accumulation induced radiosensitization is proved by in vivo and in vitro 
experiments, which will bring prospects for enhanced RT with nanomedicine.
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Background
Radiation therapy (RT) is widely used in clinic for the 
treatments of cancer [1–3]. According to the statistics, 
nearly 60% of the cancer patients need RT in the treat-
ment plans [4]. In the process of RT, X-ray will decom-
pose water molecules (H2O) to generate reactive oxygen 
species (ROS), mainly hydroxyl radicals (·OH). Generally, 
·OH will attack DNA molecules, induce irreversible DNA 
double-strand breaks (DSBs), and finally lead to the pro-
liferative death of cancer cells [5, 6]. Unfortunately, there 
are still some obstacles limit the curative effect of RT. 
Firstly, biological tissues mainly consist of low-Z atoms 
such as C, H, O, N, P and S, which can deposit few X-rays 

and result in deficient yield of ·OH [7, 8]. Secondly, can-
cer cells will devote themselves to repairing the dam-
age caused by RT [9–12]. For example, cancer cells will 
enhance the metabolism to synthesize enough lipids and 
proteins to replace the damaged organelles [9, 13]. Hence, 
it is necessary to develop new methods for increasing the 
deposition of X-rays and decreasing the metabolism of 
cancer cells in RT, simultaneously.

Recently, the progress of nanomedicine brings more 
chances for radiosensitization [14–21]. On the one 
side, a series of nanomaterials containing high-Z atoms 
including Lu, Hf, Ta, Au and Bi have been developed for 
increasing the deposition of X-rays [22–29]. On the other 
side, the metabolism of cancer cells depends on aerobic 
glycolysis, which is also called Warburg Effect [30, 31]. 
Inhibiting the process of glycolysis has much potential for 
enhancing the effect of cancer therapy [32]. Some small 
molecules have been developed for inhibiting critical 
enzymes including hexokinase, pyruvate dehydrogenase 
and lactate dehydrogenase in the process of glycolysis. 
In addition, these inhibitors have shown further syner-
gistic effect with RT or chemotherapy [33–36]. Hence, 
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developing high-Z nanomaterials with the ability of dis-
turbing glycolysis will present a satisfactory performance 
for radiosensitization.

Lactic acid (LA) is the final product in the process of 
glycolysis and plays an important role in tumor pro-
gression [37]. Cancer cells will generate a mass of LA 
and excrete them to tumor microenvironment (TME) 
through monocarboxylic acid transporter (MCT) [38, 
39]. The accumulation of LA will decelerate glycolysis 
and disturb metabolism of cancer cells [38, 39]. Herein, 
we synthesize CsLu2F7 nanoparticles with LA ligands 
(CsLu2F7-LA) for enhancing the effect of RT. As shown 
in Fig.  1a, after the synthesis of oleic acid (OA) modi-
fied CsLu2F7 (CsLu2F7-OA), LA can easily replace OA to 
obtain water-soluble CsLu2F7-LA because the strong acid 
can replace the weak one [40, 41]. As Cs and Lu are high-
Z atoms, CsLu2F7-LA can deposit more X-rays in tumor 
area (Fig.  1b). In addition, CsLu2F7-LA will target and 

disturb the MCT on the cancer cell membrane to block 
the transportation of LA (Fig.  1b). Then the resultant 
accumulation of LA will limit the speed of glycolysis and 
inhibit the repair of DNA DSBs. As a result, the curative 
effect of RT will be enhanced obviously. We believe this 
research will bring new ideas and chances for the design 
of nanomaterials for enhanced RT.

Materials and methods
Chemicals and reagents
LuCl3, cesium acetate (CsAc), lactic acid (LA), oleic acid 
(OA), 1-octadecene (ODE) and Rhodamine B (RhB) 
were purchased from Macklin. NH4F, methanol, etha-
nol and cyclohexane were purchased from Sinopharm 
Chemical Reagent Co., Ltd. Phosphate buffered solution 
(PBS), dulbecco’s modified eagle medium (DMEM) and 
fetal bovine serum (FBS) were obtained from Adamas 
Life. Cell counting kit-8 (CCK-8), histone H2AX rabbit 

Fig. 1  Illustration of a synthetic procedure of CsLu2F7-LA and b the mechanism that CsLu2F7-LA enhance the effect of RT
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polyclonal antibody, fluorescein isothiocyanate (FITC), 
FITC-labeled goat anti-rabbit IgG (H + L), DAPI staining 
kit, Ki67 staining kit, 2’,7’-bis-(2-carboxyethyl)-5-(and-
6)-carboxyfluorescein (BCECF) assay kit, 2,7-Dichlo-
rodi-hydrofluorescein diacetate (DCFH-DA) assay kit, 
ATP assay kit, hematoxylin and eosin (H&E) staining kit, 
TUNEL apoptosis assay kit, calcein/PI cell viability/cyto-
toxicity assay kit, Annexin V-FITC/PI apoptosis assay kit 
were bought from Beyotime.

Characterization
Transmission electron microscope (TEM) image was 
carried out by FEI Talos F200X. X-ray diffraction (XRD) 
was measured by Rigaku D/MAX-2250V. Dynamic light 
scattering was measured by Brookhaven omni. X-ray 
photoelectron spectroscopy (XPS) spectra was measured 
by Thermo Fisher Scientific ESCALAB 250XI. Confocal 
laser scanning microscopy was carried out on Leica TCS 
SP8 STED 3X. Fourier transform infrared spectroscopy 
(FTIR) was measured by Bruker Thermo Fisher Nicolet 
6700. The concentration of Lu element was measured by 
inductively coupled plasma optical emission spectrom-
eter (ICP-OES, Agilent 725). The fluorescence microplate 
system was TECAN SPARK. Flow Cytometer was BD 
FACSCalibur. Radiation therapy was carried out by clini-
cal 220 keV X-ray (SARRP, Gulmay Medical Inc.).

Synthesis of CsLu2F7‑OA and CsLu2F7‑LA
2 mmol LuCl3, 20 mL OA and 10 mL ODE were mixed in 
a flask with three necks and heated to 150 ℃ under the 
protection of N2 for 1 h, and then cooled to room tem-
perature. 7 mmol NH4F and 1 mmol CsAc were poured 
into the flask and stirred for 1 h. Then this mixture was 
heated to 290  °C for 1.5  h and cooled to room tem-
perature subsequently. After washed with ethanol and 
cyclohexane for three times, the obtained CsLu2F7-OA 
were dispersed in 10 ml cyclohexane. 10 ml as-prepared 
CsLu2F7-OA solution in cyclohexane and 10 ml LA solu-
tion in water (0.1 M) were mixed and stirred for 4 h. Then 
this mixture was washed with ethanol for three times, the 
obtained CsLu2F7-LA were dispersed in 10 ml water.

Detection of ·OH in solution
4  ml solution contained RhB (5  ppm) with CsLu2F7-LA 
(500 ppm) or water (control group) were placed in centri-
fuge tubes. These tubes were irradiated with 0 Gy, 5 Gy, 
10  Gy, 15  Gy and 20  Gy of X-rays. Supernatants were 
collected after centrifugation. The ·OH yield was rep-
resented by the degradation rate of RhB (absorbance at 
554 nm).

Cells and animals
143B cells (human osteosarcoma cells) and HUEVC 
(human umbilical vein endothelial cell) cells were 
purchased from Shanghai Institute of Biochemistry 
and Cell Biology, Chinese Academy of Sciences. Kun-
ming mice and Balb/c nude mice were purchased from 
Shanghai SLAC Laboratory Animal Co. Ltd. All the 
experiments in vivo were approved by the animal eth-
ics committee of Shanghai Jiao Tong University, and the 
ethics number was 20210918-02.

Cell viability
143B cells or HUVEC cells (10,000 cells/well) were 
seeded in the 96-well plates and cultured at 37  °C for 
24  h. Next, the medium was replaced by the fresh 
DMEM medium containing LA and CsLu2F7-LA at dif-
ferent concentrations and cultured for another 24  h. 
100  μl culture media containing 10  μl CCK-8 solution 
was added and co-incubated with cells for 2  h. The 
absorbance was measured using a microplate reader at 
450 nm.

Cell apoptosis
143B cells (500,000 cells/well) were seeded in 6-well 
plates and cultured for 24 h. Then the cells were incu-
bated with DMEM medium and CsLu2F7-LA (50 ppm) 
respectively for another 24 h. The cells were irradiated 
with X-ray (0  Gy or 4  Gy). After 12  h, flow cytometer 
with Annexin V-FITC/PI double staining was used to 
evaluate cell apoptosis.

Detection of DNA DSBs
143B cells (50,000 cells/well) were seeded in confocal 
dishes (diameter: 20  mm) and cultured for 24  h. Then 
the cells were incubated with DMEM medium and 
CsLu2F7-LA (50  ppm) respectively for another 24  h. 
The cells were irradiated with X-ray (0  Gy or 4  Gy). 
After 1 h, the cells were fixed by 4% paraformaldehyde 
for 15  min and washed three times with PBS. 0.2% 
Triton X-100 was added to penetrate cells for 10  min. 
Next, the 1% BSA dissolved in PBS was used to block 
the cells for another 1  h at room temperature. After 
incubation with γ-H2AX antibody overnight at 4  °C, 
the cells were treated with Anti-Rabbit IgG (H + L), 
F(ab’)2 Fragment (Alexa Fluor®488 Conjugate) for 1  h 
and then stained with DAPI for 15 min. Lastly, the fluo-
rescence of γ-H2AX was observed by a confocal fluo-
rescence microscope.

Fluorescence imaging of live/dead cells and ROS
143B cells (50,000 cells/well) were seeded in confocal 
dishes (diameter: 20  mm) and cultured for 24  h. Then 
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the cells were incubated with DMEM medium and 
CsLu2F7-LA (50  ppm) respectively for another 24  h. 
The cells were irradiated with X-ray (4 Gy). After 24 h, 
the cells were incubated with calcein-AM and PI for 
0.5 h. For ROS detection, the cells were incubated with 
DCFH-DA for 0.5 h. After incubation, the fluorescence 
was observed by a confocal fluorescence microscope.

Fluorescence imaging of pH in vitro
143B cells (50,000 cells/well) were seeded in confocal 
dishes (diameter: 20  mm) and cultured for 24  h. Then 
the cells were incubated with DMEM medium and 
CsLu2F7-LA (50 ppm) respectively for another 24 h. After 
24 h, the cells were incubated with BCECF for 0.5 h. After 
incubation, the fluorescence was observed by a confocal 
fluorescence microscope.

Cell clone formation assay
143B cells were seeded in the 6-well plates at various 
densities of 500, 500, 1000, and 2000 cells/well for 24 h. 
Then the cells were incubated with DMEM medium 
and CsLu2F7-LA (50  ppm) for another 24  h and sub-
sequently irradiated with 0 Gy, 2 Gy, 4 Gy, 6 Gy X-rays. 
After being cultured with fresh medium for 10 days, the 
cells were fixed with absolute methyl alcohol and stained 
with hematoxylin and eosin. The number of colonies was 
counted by Image-J.

In vivo biocompatibility assay
The standard H&E staining and blood parameter 
were conducted to monitor the biocompatibility of 
CsLu2F7-LA. The Kunming mice (7 weeks, female) were 
injected with CsLu2F7-LA (0–80 mg/kg) through the tail 
vein. The main tissues (heart, liver, spleen, lung and kid-
ney) of Kunming mice were dissected for H&E staining 
at 30  days post-injection. The blood of Kunming mice 
was harvested for blood routine test and biochemical 
examination.

In vivo radiation therapy
To set up the xenograft tumor model, 143B cells (1 × 106 
cells) were injected subcutaneously into Balb/c nude 
mice (7 weeks, female). When the tumor volume reached 
about 100 cm3, the mice were divided four groups ran-
domly: (i) Control, (ii) CsLu2F7-LA, (iii) Control + X-ray, 
(iv) CsLu2F7-LA + X-ray. PBS (10 μL) and CsLu2F7-LA 
(1  mg, 10 μL) were injected into tumors directly. After 
24 h, the tumors of groups iii and iv were irradiated with 
X-rays (6  Gy). After 48  h, the H&E, TUNEL and Ki67 
staining of the tumor tissues were performed by com-
mercially available kits. The body weight and tumor vol-
ume of the mice were measured every 2 days.

Results and discussion
Synthesis and characterization of CsLu2F7‑LA
As shown in Fig. 1a, CsLu2F7-LA are synthesized by the 
pyrolysis [42, 43]. We first use LuCl3, OA and octadecene 
(ODE) to react at 150 ℃ to obtain the Lu precursor (lute-
cium oleate). Then this precursor is mixed with cesium 
acetate (CsAc) and ammonium fluoride (NH4F), and react 
at 290 ℃ to obtain CsLu2F7-OA. To obtain CsLu2F7-LA, 
the CsLu2F7-OA cyclohexane solution is mixed with 
LA water solution for 24  h, during this process LA will 
gradually replace OA. As shown in Fig.  2a, transmis-
sion electron microscopy (TEM) image shows that 
CsLu2F7-OA is monodispersed with a size of ~ 10  nm, 
while the hydrodynamic radius of CsLu2F7-OA (Addi-
tional file  1: Fig. S1) measured by dynamic light scat-
tering (DLS) is 12.7  nm. The Fourier tansform infrared 
(FTIR) spectra of CsLu2F7-OA (Additional file 1: Fig. S2) 
presents the strong absorption of methylene asymmetric 
carbon-hydrogen bonds (C-H) stretching and methylene 
symmetric C-H stretching, which come from OA mol-
ecules [44]. In contrast, CsLu2F7-LA has little absorption 
of C-H stretching, which proves the successful modifica-
tion of LA. After LA modification, CsLu2F7-LA present 
slight agglomeration (Fig.  2b), but still remain stable in 
deionized (DI) water, saline and dulbecco’s modified 
eagle medium (DMEM) (Additional file  1: Fig. S3). The 
high angle annular dark field-scanning transmission elec-
tron microscopy (HAADF-STEM) image (Fig.  2c) and 
elemental mapping (Fig. 2d–f) show the existence of Cs 
atoms, Lu atoms, and F atoms in CsLu2F7-LA. In addi-
tion, the data of energy disperse spectroscopy (EDS) 
and X-ray photoelectron spectroscopy (XPS) also show 
that CsLu2F7-LA contain Cs, Lu and F elements (Fig. 2g, 
h and Additional file  1: Fig. S4). Finally, X-Ray diffrac-
tion (XRD) pattern shows that the crystal structures of 
CsLu2F7-OA and CsLu2F7-LA are in accordance with 
standrad sample (Fig. 2i), indicating that the LA modifi-
cation does not change the crystal structure of CsLu2F7. 
The yield of ·OH in solutions is detected by the degra-
dation of Rhodamine B (RhB). As shown in Additional 
file  1: Fig. S5, CsLu2F7-LA can induce more ·OH than 
control group (DI water), presenting that CsLu2F7-LA 
can deposit more X-rays.

CsLu2F7‑LA impede the glycolysis in vitro
After the synthesis and characterization of CsLu2F7-LA, 
we clarify if they could disturb the glycolysis through 
blocking MCT. As shown in Fig.  3a, CsLu2F7-LA pre-
sent little cytotoxicity to human umbilical vein endothe-
lial cell (HUVEC) even at the concentration of 100 ppm 
(Lu atoms). While as shown in Fig.  3b, the same dos-
age of CsLu2F7-LA makes obvious damage to 143B 
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cells (human osteosarcoma cell). LA is a kind of mol-
ecule that exists in the human body, and present lit-
tle cytotoxicity to 143B cells (Fig.  3c). In addition, it is 
worth noting that there are few free ions release from 
CsLu2F7-LA (Additional file  1: Fig. S6). Hence, we sup-
pose that the cytotoxicity of CsLu2F7-LA to 143B cells 
can be attributed to the blocking of MCT. To verify this 
hypothesis, we detected the pH of 143B cells by 2’,7’-bis-
(2-carboxyethyl)-5-(and-6)-carboxyfluorescein (BCECF) 
staining. If CsLu2F7-LA block MCT, LA will accumulate 
in cells and the pH will decrease. As shown in Fig. 3d, e 

the fluorescence of BCECF of CsLu2F7-LA group is lower 
than that of control group, indicating CsLu2F7-LA can 
decrease the pH of 143B cells. Additionally, as shown in 
Fig. 3f, the decreased content of adenosine triphosphate 
(ATP) of CsLu2F7-LA group further prove that the accu-
mulation of LA will impede the process of glycolysis. The 
cytophagy of CsLu2F7-LA is detected by confocal micros-
copy. CsLu2F7-LA are decorated with fluorescein isothio-
cyanate (FITC) through electrostatic adsorption. After 
co-culture for 4  h, the fluorescence of FITC is found in 
143B cells, indicating that CsLu2F7-LA can enter into 

Fig. 2  Characterization of nanomaterials. a TEM image of CsLu2F7-OA. b TEM image of CsLu2F7-LA. c HAADF image of CsLu2F7-LA. d Cs, e Lu and f F 
Elements mapping of CsLu2F7-LA. g EDS spectrum of CsLu2F7-LA. h XPS spectrum of CsLu2F7-LA. i XRD pattern of CsLu2F7-OA and CsLu2F7-LA
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cells (Additional file 1: Fig. S7). All these data show that 
CsLu2F7-LA can impede glycolysis through blocking 
MCT.

CsLu2F7‑LA enhance the effect of RT in vitro
Having proved that CsLu2F7-LA can slow down gly-
colysis, in this section, we explore the enhancement of 
CsLu2F7-LA to RT in  vitro. Cell colony formation assay 
indicates that single CsLu2F7-LA can decrease the pro-
liferation of cancer cells because of the deceleration of 
metabolism as mentioned above (Fig. 4a, b). Meanwhile, 
CsLu2F7-LA can also enhance the proliferative dam-
age of RT with the increase of radiation dose (Fig. 4a, b). 
The staining of prodium iodide (PI) show that the com-
bination of CsLu2F7-LA and X-ray can induce the most 
cell death (Fig.  4c, d). Apoptotic analysis measured by 
flow cytometry presents similar results (Figure S8). The 
enhancement of RT can be attributed to two reasons. 
For one thing, CsLu2F7-LA containing high-Z atoms, 
which can deposit more X-rays and increase the yield of 
ROS compared with other groups (Fig. 4e). For another, 
CsLu2F7-LA can decelerate glycolysis of cancer cells, 
leading to decreased repairment of DNA damage. Then 
it is not surprising that the combination of CsLu2F7-LA 

and X-ray can induce the most DNA DSBs (Fig.  4f and 
Additional file 1: Fig. S9), which will induce serious pro-
liferative injury and cell death. Hence, these data prove 
that CsLu2F7-LA can enhance the effect of RT in vitro.

CsLu2F7‑LA enhance the effect of RT in vivo
Encouraged by the experiments in  vitro, we then verify 
the performance of CsLu2F7-LA in vivo. Firstly, the bio-
logical compatibility of CsLu2F7-LA is evaluated based on 
Kunming mice. As shown in Additional file 1: Fig. S10a, 
the body weights have no obvious differnces among the 
groups injected with different dosage (0  mg/kg, 20  mg/
kg, 40  mg/kg and 80  mg/kg) of CsLu2F7-LA. The blood 
biochemical indexes including alanine transaminase 
(ALT), aspartate transaminase (AST), alkaline phos-
phatase (ALP), urea and creatinine (CRE) of different 
dosage of CsLu2F7-LA also exhibit few differences (Addi-
tional file  1: Fig. S10b–f). Additionally, H&E staining 
of major organs (heart, liver, spleen, lung, and kidney) 
of each group present no pathological and anomalous 
regions (Additional file: Fig. S11). Hence, CsLu2F7-LA 
present favorable biological compatibility to normal tis-
sues even at a dosage of 80 mg/kg.

Fig. 3  Experiments in vitro. a 143B cells viability of different concentrations of LA (n = 6, mean ± SD). b HUVEC cells viability of different 
concentrations of CsLu2F7-LA (n = 6, mean ± SD). c 143B cells viability of different concentrations of CsLu2F7-LA (n = 6, mean ± SD). d 143B cell 
pH staining of control group and CsLu2F7-LA group. Scale bar: 50 μm. e Relative intensity of BCECF in control group and CsLu2F7-LA group (n = 3, 
mean ± SD). f Relative content of ATP in control group and CsLu2F7-LA group (n = 3, mean ± SD). Two asterisks indicate P < 0.01, three asterisks 
indicate P < 0.001, and four asterisks indicate P < 0.0001 according to Student’s two-tailed t-test
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Next, the curative effect of the combination of 
CsLu2F7-LA and X-ray is characterized. As shown in 
Fig.  5a, this experiment is based on 143B tumor-bearing 
mice. These mice are divided into four groups includ-
ing Control group, CsLu2F7-LA group, Control + X-ray 
group and CsLu2F7-LA group. During the observation 
period the body weights of each group exhibit few differ-
ences (Fig.  5b). The data of curative effect (Fig.  5c) show 
that single CsLu2F7-LA and single X-ray can both limit the 

progression of tumor compared with Control group, and 
the combination of CsLu2F7-LA and X-ray present the best 
tumor suppression effect. Hematoxylin and eosin (H&E) 
staining, Ki67 staining, and terminal-deoxynucleoitidyl 
transferase mediated nick end labeling (TUNEL) stain-
ing of tumor sections also show that the combination of 
CsLu2F7-LA and X-ray can induce the most apoptosis and 
necrosis (Fig. 5d). All these data prove that CsLu2F7-LA can 
enhance the effect of RT in vivo.

Fig. 4  Experiments in vitro. a Survival fraction of cell colony formation assay (n = 3, mean ± SD, single asterisk indicates P < 0.05 according to 
Student’s two-tailed t-test). b Photographs of cell colony formation assay. c Relative intensity of PI in each group (n = 3, mean ± SD, two asterisks 
indicate P < 0.01 according to Student’s two-tailed t-test). d Calcein-AM and PI staining of each group. e The yield of ·OH of each group measured by 
2,7-Dichlorodi-hydrofluorescein diacetate (DCFH-DA) staining. f Cell γ-H2AX staining of each group. Scale bar: 100 μm
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Conclusions
In summary, we synthesize CsLu2F7-LA for increas-
ing the curative effect of RT. The contained Lu and Cs 
atoms can deposit much more X-rays in the process 
of RT to generate higher amount of ·OH. Meanwhile, 
CsLu2F7-LA can target MCT and hinder the transpor-
tation of LA, which lead to decreased glycolysis and 
DNA damage repair. As a result, the cancer cells will 

suffer from serious DNA DSBs and the curative effect of 
RT will be enhanced. All the experiments in vitro and 
in vivo prove the favorable performance of CsLu2F7-LA 
as radiosensitizers by disturbing glycolysis. RT is suit-
able for weak and elderly cancer patients because of 
the short treatment process and little invasive damage. 
However, radiation resistance is a bottleneck prob-
lem that limits the effect of RT. Generally, the specific 

Fig. 5  Experiments in vivo. a Illustration of the experimental design. b The weights of tumor-bearing mice of each group (6 Gy, n = 5, mean ± SD). 
c Relative tumor volume of each group (6 Gy, n = 5, mean ± SD, triple asterisks indicate P < 0.001 according to Student’s two tailed t-test). d H&E 
staining, Ki67 staining and TUNEL staining of tumor sections. Scale bar: 100 μm
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metabolism of cancer cells supports themselves with 
proliferation and treatment resistance [45, 46]. In this 
research, we disturb glycolysis through LA accumula-
tion to increase the effect of RT. More metabolic tar-
gets such as glutamine metabolism, pentose phosphate 
pathway, and tricarboxylic acid cycle can be explored in 
the future.
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CsLu2F7-LA. Scale bar: 100 μm.
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