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Abstract

Synthetic nanoparticles with surface bioconjugation are promising platforms for targeted therapy, but their simple
biological functionalization is still a challenging task against the complex intercellular environment. Once synthetic
nanoparticles enter the body, they are phagocytosed by immune cells by the immune system. Recently, the cell
membrane camouflage strategy has emerged as a novel therapeutic tactic to overcome these issues by utilizing the
fundamental properties of natural cells. Macrophage, a type of immune system cells, plays critical roles in various dis-
eases, including cancer, atherosclerosis, rheumatoid arthritis, infection and inflammation, due to the recognition and
engulfment function of removing substances and pathogens. Macrophage membranes inherit the surface protein
profiles and biointerfacing properties of source cells. Therefore, the macrophage membrane cloaking can protect
synthetic nanoparticles from phagocytosis by the immune cells. Meanwhile, the macrophage membrane can make
use of the natural correspondence to accurately recognize antigens and target inflamed tissue or tumor sites. In this
review, we have summarized the advances in the fabrication, characterization and homing capacity of macrophage
membrane cloaking nanoparticles in various diseases, including cancers, immune diseases, cardiovascular diseases,
central nervous system diseases, and microbial infections. Although macrophage membrane-camouflaged nanopar-
ticles are currently in the fetal stage of development, there is huge potential and challenge to explore the conversion
mode in the clinic.
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Introduction

Most therapeutics, including small molecules and biolog-
ical macromolecules used in the clinic of various diseases,
have to effectively work to act on targets to cells. How-
ever, the major problem in the treatment of many dis-
eases is to deliver therapeutics into the target site. These
therapeutics are characterized by limited effectiveness,
poor biodistribution, and lack of selectivity [1]. Studies
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Currently, an increasing number of nanocarriers have
been permitted by the Food and Drug Administration
(FDA) on the market, such as poly(D,L-lactic-co-glycolic
acid) (PLGA), liposomes, polylactic acid (PLA), polycap-
rolactone (PCL), iron oxide nanoparticles, nanocrystals
and albumin nanoparticles [2, 3].

The transportation of foreign substance nanoparticles
to lesions is still a challenge due to the reticuloendothe-
lial system (RES) and the mononuclear phagocytic sys-
tem (MPS) [4]. When nanoparticles enter the body, they
are first bound by proteins that make nanoparticles more
recognizable by phagocytic cells. Subsequently, they are
rapidly cleared by RES and MPS, which limits their deliv-
ery and distribution [5]. For nanoparticles to efficiently
enter lesion sites, they need to evade clearance by the
immune system. The most common method is to mod-
ify the surface of nanoparticles with polyethylene glycol
(PEG) [6]. The stability of PEG in vivo, the accelerated
blood clearance (ABC) effect and the difficulty of phago-
cytosis by target cells limit the application [7]. But simple
surface functionalization cannot accurately simulate the
complex interface in the body and cannot avoid foreign
body recognition and subsequent immune responses [8].
To solve this problem, methods based on active targeting
have been developed. The surface of the nanocarrier is
connected with affinity ligands such as antibodies, pep-
tides, aptamers or other small molecules to bind to tar-
get cells through ligand-receptor interactions and release
drugs in the target cells [9]. For example, nucleic acid
strands as known as aptamers, show relatively strong
binding affinity and target specificity, but easily degraded
and may cause immune response in body [10]. Protein-
based nanomedicine is used in tumor chemotherapy due
to their merits in bioavailability, biocompatibility, bio-
degradability, and low toxicity. Ding et al. have prepared
human serum albumin nanoparticles to deliver paclitaxel
(NPs-PTX) [11]. It shows that NPs-PTX enhance the
cytotoxicity in MCF-7 and A549 cells. Nevertheless, anti-
bodies conjugated nanoparticle encompass high produc-
tion costs and complex preparation process.

Recently, the cell membrane cloaking strategy has
emerged as an epidemic means in various diseases. Natu-
ral cell membranes have a variety of source cell-relevant
functions, such as ‘self” markers, biological targeting, and
correspondence with the immune system [12]. Cell mem-
brane-coated nanoparticles endow them with certain
biological functions, including long circulation, targeted
recognition, enhanced accumulation at disease sites and
deep tumor penetration. To date, this biomimetic strat-
egy has involved various kinds of cells, such as red blood
cell membranes [13], macrophage membranes [14], plate-
let membranes [15], mesenchymal stem cell membranes

Page 2 of 41

[16], and cancer cell membranes [17] and so on. Red
blood cells were the first cell types used in cell therapy.
CD47, a membrane protein widely expressed on the red
blood cells, prevents the clearance from the immune
system by delivering a “don’t eat me” signal [13]. This
approach significantly extends the circulation time of the
core nanoparticles, but do not specifically target inflamed
site or tumor. Platelet expressing P-selectin can bind
specifically to CD44 on the surface of cancer cells, thus
platelet membranes coated nanoparticles can target to
tumor tissues. Currently, numerous studies focus on the
application of platelet membrane biomimetic nanoparti-
cles in various diseases, including cancer, atherosclerosis,
and immune diseases [18]. However, it is the difficulty
to isolate and culture of platelet that limited its clinical
transformation. Similarly, the harsh culture conditions
of mesenchymal stem cells increase the cost of fabricat-
ing drug delivery systems. Cancer cell membranes can
only be applied to tumors [19]. Macrophages are immune
cells responsible for protecting the body against infec-
tions, clearing foreign invaders, repairing injured tissue,
and resisting pathogens. The membranes from mac-
rophages have cellular self-recognition mechanisms
to avoid phagocytosis by immune cells, and the ligands
inherited from the membrane can bind to receptors at
disease sites. Meanwhile, macrophage membrane-coated
nanoparticles can recognize and respond to pathogens
and immune signals, including bacterial toxins, viruses
and inflammatory cytokines. Furthermore, the strat-
egy can activate anticancer immunity. Taken together,
macrophage membrane cloaking is a biomimetic plat-
form with promising therapeutic potential. Macrophage
membrane cloaking nanoparticles have been applied in
tumors, immune diseases, anti-infection, neurological
diseases and cardiovascular diseases (Fig. 1).

Here, we summarize the synthesis and characteriza-
tion of macrophage membrane-coated nanoparticles
and their applications in different diseases. Meanwhile,
we conclude how the macrophage membrane functions
in various diseases. Finally, we put forward some chal-
lenges faced at present in their application in the clinic
or factory.

Macrophages and macrophage membranes

The initial response to an infection is mediated by the
innate immune system. The process recruits immune
cells, including macrophages, dendritic cells, neutrophils,
eosinophils, basophils, mast cells, and natural killer cells.
Immune cells can use their pattern recognition receptors
(PRRs), including Toll-like receptors (TLRs), RIG-I-like
receptors (RLRs) and NOD-like receptors (NLRs), to rec-
ognize microorganisms through structural patterns, which
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Fig. 1 Application of macrophage membrane-coated nanoparticles
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are expressed only on pathogens called pathogen-associ-
ated molecular patterns (PAMPs) [20]. Among the cellular
components of the innate immune system, macrophages
and neutrophils are the predominant cells responding to
pathogens in the body. Regrettably, neutrophils live just
48 h, but macrophages can live several months or more
[21]. Macrophages possess the capacity for active target-
ing, high immune compatibility and long circulation.
Macrophages are phagocytic cells with broad sources,
and they are effectors in the process of inflammation and
tissue repair. Tissue-resident macrophages can differen-
tiate from circulating monocytes, which develop from
hematopoietic stem cells in the bone marrow or dur-
ing embryonic development in the fetal liver, yolk sac, or
dorsal aorta [22]. They are highly specialized cells that

mediate tissue homeostasis in all organs, such as splenic
macrophages of the spleen, intraocular macrophages
of the eye, intestinal macrophages of the gut, osteoclast
macrophages of the bone, Kupffer macrophages of the
liver, alveolar macrophages of the lungs, Langerhans mac-
rophages of the skin, and microglial cells of the brain [23].
Macrophages are involved in innate immune responses to
protect the body by phagocytosing microorganisms and
apoptotic cells and presenting antigens [24, 25]. In the
early stages of inflammation, macrophages play an impor-
tant role by releasing cytokines and chemokines that in
turn recruit other immune cells to sites of inflammation to
start the adaptive response of the immune system.
Macrophages have two phenotypes, named the M1 and
M2 phenotypes. M2 is further classified into M2a, M2b,
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M2c and M2d. Previous studies have shown that lipopol-
ysaccharide (LPS), interferon-y (IFN-y) and transforming
factor-a (TNF-a) can induce monocytes to produce the
M1 phenotype, while interleukin-4 (IL-4), interleukin-10
(IL-10), interleukin-13 (IL-13) transforming factor-f
(TNE-P), bacterial infection, colony-stimulating factor
1 (CSF-1) and interleukin-21 (IL-21) are used to pro-
duce the M2 phenotype. M1 and M2 macrophages have
different functions. M1 macrophages mainly play a role
through innate and adaptive immune responses in Thl-
cell recruitment, pathogen resistance, and tumor control
[26]. They produce proinflammatory factors, includ-
ing IL-1, IL-6, TNF-a, NO and reactive oxygen species
(ROS), to promote T cells to produce Th1 cytokines [27].
Therefore, under certain conditions, M1 macrophages
exacerbate inflammatory processes, which are detrimen-
tal to healthy tissue. In contrast to M1 macrophages, M2
macrophages express opposite functions, responding to
parasites, tissue remodeling, angiogenesis, and allergic
diseases by downregulating IL-12 and IL-23 but upregu-
lating IL-10 and IL-1RA [28]. The M2 type promotes
the release of anti-inflammatory cytokines, wound heal-
ing, and the growth and metastasis of tumor cells in the
tumor microenvironment [29, 30]. In summary, M1 mac-
rophages kill pathogens by recruiting inflammatory cells
in the process of tissue inflammation. M2 macrophages
are used to inhibit the recruitment of inflammatory cells
to protect against excess proinflammatory cytokines and
promote angiogenesis and tissue repair. However, how
did this process develop?

Studies have shown that there is a special recogni-
tion mechanism between macrophages and patho-
gens. This process is primarily initiated by PAMPs and
damage-associated molecular patterns (DAMPs) in
response to infection and injury [31, 32]. The migration
of macrophages depends on the expression of adhesive
molecules by chemical mediators on venous endothe-
lial surfaces. Cell adhesion molecules are cell surface
proteins that mediate cell-cell and/or cell-extracellular
matrix (ECM) interactions. These adhesion molecules
contain integrins, selectins, cadherins, immunoglobulin
superfamily and others. Macrophage membranes express
P-selectin glycoprotein ligand-1 (PSGL-1), L-selectin,
lymphocyte function-associated antigen 1 (LFA-1), integ-
rin, and very late antigen-4 (VLA-4), which result in their
cell adhesion with inflammatory cells and cancer cells. It
has been suggested that macrophage membrane-cloaking
nanoparticles can actively target tumors by binding with
integrin to vascular cell adhesion protein 1 (VCAM-1)
or LFA-1, which is highly expressed in active cell mem-
branes [33-36].

Therefore, using these properties of macrophages,
macrophage membrane cloaking nanoparticles can avoid
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clearance by the immune system and achieve tumor
as well as inflammatory tissue targeting capacity. This
strategy has shown great potential to overcome the bio-
compatibility, short cycle time, and immunogenicity of
traditional materials.

Fabrication of macrophage membrane biomimetic
nanoparticles

Multistep synthesis of cell nembrane cloaking
nanoparticles

Cell membrane-camouflaged nanoparticles are usually
composed of a thin layer of cell membrane encapsulat-
ing therapeutic nanoparticles, thus forming a “shell-core”
structure with nanoparticles as the core and the cell
membrane as the outer shell [37]. The synthesis of mac-
rophage membrane-coated nanoparticles usually involves
the following three steps [38—40]: (1) macrophage cell
membrane extraction, (2) fabrication of the core, and
(3) the formation of membrane-wrapped nanoparticles
(Fig. 2).

Source and isolation of macrophage membrane

Previous studies have shown two major classes of mac-
rophage membranes, primary macrophages isolated
from animals and macrophages cultured in plates. Cells
are composed of membranes, intracellular biomacro-
molecules, intracellular vesicles, and nuclei. Membrane
extraction needs to remove these intracellular compo-
nents while leaving the whole functional surface protein
of membranes. These proteins can transport molecules
in or out of the cells, correspond between the cell and
cell and are related to other processes [41, 42]. Proteins
on the cell membrane are important for biomimetic
therapy because they can endow bioinspired nanoparti-
cles with targeting ability and immune escape capacity.
Therefore, the isolation of the cell membrane needs to
be carried out moderately to reduce the denaturation of
membrane proteins [43]. Usually, this process requires a
mass of cells to be harvested from culture dishes such as
RAW?264.7, J774A.1, THP-1 and blood or tissues [44, 45].
The harvested cells can be subjected to hypotonic treat-
ment, freeze-thaw cycling and ultrasonic waves. After
discontinuous sucrose gradient centrifugation, the pellets
were collected. Then, the cell suspension was disrupted
by ultrasound with appropriate power and extrusion
through a porous polycarbonate membrane to obtain
the membrane vesicles required for the experiment.
Extracted macrophage membranes are stored together
with protease inhibitors at 4 °C to maintain the stability
of biological activity [46].
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Fig. 2 The development of macrophage membrane-coated nanoparticles with different methods

Inner core

The selection of the inner core depends on the intended
application, as they are the effective loads delivered
to targeted tissues [47]. They are particulate disper-
sions or solid particles with a particle size in the range
of 10-1000 nm [48]. In recent years, various types of
materials for cell membrane cloaking have been widely
explored and applied, including PLGA, liposomes,
SiO,, mesoporous silica, nanocapsules, gold, iron oxide,
upconversion nanoparticles (UCNPs) and metal-organic
frameworks (MOFs) (Table 1). The inner cores can be
classified as organic and inorganic nanoparticles in terms
of the properties of materials [49]. Organic particles
are formed by organic molecules through a self-assem-
bly process, including polymeric nanoparticles and lipid
nanoparticles [50]. They have simple design principles,
high biocompatibility and high drug-loading capacity.
However, the high cost of organic materials and manu-
facturing equipment, poor stability in vivo, difficulty
in controlling size, large differences between different
batches and residual organic solvents limit the applica-
tion of organic cores [50]. Inorganic cores include silica
nanoparticles [14], gold nanocage (AuNC) nanoparticles
[51], iron oxide nanoparticles [52], upconversion nano-
particles (UCNPs) [53], metal-organic frameworks
(MOFs) [54]. They have various advantages in terms of
controllable size, good stability, large specific surface area
for surface functionalization. Meanwhile, their unique
photothermal or electromagnetic properties give them
potential therapeutic and imaging functions. However,

Table 1 Types of core nanoparticles coated by macrophage

membrane
Materials Size (nm) Zeta References
potential
(mV)
PLGA 85.8 — 424 [102]
Gold nanocage ~100 ~—30 [162]
MOFs 37.8 233 [54]
Liposome 64.5 — 280 [35]
Bismuth selenide 1456 —278 [146]
MSNs 47.8 —75 [14]
UCNPs 88.6 -35 (147]
Human serum albumin 138.7 — 157 [80]
Chitosan 237.5 —-07 [148]
Fe;0, 80 / [38]
CuS 290 —106 (88]
Polydopamine 90 34 [66]
Solid lipid 109 —25 [127]

the low biodegradability and high toxicity in vivo of inor-
ganic vectors hinder their clinical transformation [55].

Preparation of macrophage membrane biomimetic
nanoparticles

The last and most important step is to coat the prepared
macrophage membrane on the synthetic nanoparticles.
Currently, there are four methods to prepare macrophage
membrane biomimetic nanoparticles: incubation,
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membrane extrusion, sonication or electroporation.
An incubation approach has been described in which
nanoparticles with an indicated concentration are incu-
bated with cells for several hours [56]. This method is
good for maintaining the stability of membrane proteins.
However, few macrophage-coated nanoparticles are col-
lected. For membrane extrusion, cell membrane vesicles
and nanoparticles are coextruded several times through
polycarbonate porous membranes of different pore sizes,
such as 200 nm, to develop the biomimetic nanoparti-
cles. In physical extrusion, the mechanical force prompts
them to form “shell-core” structures by disrupting the
membranes and reforming them [15, 57-60]. Although
this strategy does not require sophisticated equipment,
large-scale production and integrity of membrane pro-
teins have become major obstacles to clinical application.
In sonication-based methods, the cores are coincubated
with cell membrane vesicles and ultrasound at an appro-
priate parameter; this process is easy to achieve in the
clinic or factory and prepares good shape and size cell
membrane-coated nanoparticles [61, 62]. Recently, elec-
troporation has become a new approach to prepare mac-
rophage-coated nanoparticles. Cores and cell membrane
vesicles are infused into a microfluidic chip, and then,
electric pulses produce transient pores in the membranes
to promote NPs into membrane vesicles. This strategy
shows excellent advantages in maintaining the integrity
of the nanovesicles and a higher success of the CM-NPs
[63].

Characterization of macrophage membrane coated
nanoparticles

The macrophage membrane-coated nanoparticles were
further investigated to confirm that the macrophage
membrane successfully coated the surface of the NPs.
Physicochemical and biological properties, such as size,
zeta potential, and membrane protein composition, need
to be characterized, as does the function of macrophage-
coated nanoparticles (Fig. 3).
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Physicochemical properties

Successful wrapping can be validated by observing a
10-20 nm increase in particle size, which is equal to
the thickness of the membrane layer, and the charge of
membrane-coated nanoparticles should be close to the
potential of the macrophage membranes [64]. To prepare
membrane-coated nanoparticles, Wang et al. designed
the optimal ratio of microvesicles at different mass ratios
to screen uniform and stable sizes and zeta potentials by
dynamic light scattering (DLS) [65]. DLS is one of the
most accurate and economical methods to determine
the size distribution and zeta potential of nanoparticles.
Wei et al. reported that the mean size of membrane-
coated nanoparticles increased by 10-15 nm compared
with that of bare nanoparticles, and the zeta potential
of membrane-coated nanoparticles was close to that of
macrophage membranes (Fig. 3A) [66]. The naked nano-
particles can form a distinct “shell-core” structure after
coating by macrophage membranes. Scanning electron
microscopy (SEM) and transmission electron microscopy
(TEM) are mainly used to examine the structure and
morphology of the sample, such as size, shape, aggrega-
tion and surface morphology. SEM images revealed that
the bare core and macrophage-coated core exhibited a
spherical shape with a smooth surface (Fig. 3B). TEM
images showed a typical ‘core—shell’ structure and a sin-
gle dimer macrophage membrane layer (~10 nm) on the
core nanoparticles (Fig. 3C, D). Recently, immunogold
staining fluorescence and colocalization analysis have
been used to verify the success of the membrane coating
through a method of visual evidence. Immunogold stain-
ing showed that the specific markers were simultaneously
present on the surface of the core (Fig. 3E). Colocalization
assays showed the overlap of fluorescence of macrophage
membranes and core, indicating the success of mem-
brane coating (Fig. 3F). Infrared spectroscopy, nuclear
magnetic resonance spectroscopy and mass spectrom-
etry are also required to determine the successful prepa-
ration of drugs or nanoparticles. Finally, in vitro release
experiments are also required to measure the release rate
of the drug under different acidic environments.

(See figure on next page.)

Fig. 3 Characterization of cell-membrane coated nanoparticles. A Hydrodynamic diameter and zeta potential of PLGA NPs, M-vesicles and

PLGA@M after formulation in water. Adapted with permission from [102], copyright © 2022 BioMed Central Ltd unless otherwise stated. Typical SEM
(B) and TEM (C, D) image of core nanoparticles before and after cell-membrane coating. B Adapted with permission from [68], Copyright ©2022
Elsevier BV. C Adapted with permission from [94], Copyright © 2022 National Academy of Science. D Adapted with permission from [33], copyright
© 2020 American Chemical Society. E Immunogold TEM images of membrane and membrane coated NPs samples probed for a4 (red arrows)

and vascular cell adhesion molecule-1 (yellow arrows). Adapted with permission from [72], copyright © 2022 BioMed Central Ltd unless otherwise
stated. F Co-localization of membranes (red) and core (green) by CLSM. Adapted with permission from [131], copyright © 2022 Elsevier BV. G
Representative SDS-PAGE result showing the membrane proteins analysis of PLGA cores (lane 1), AM membranes (lane 2), AM vesicles (lane 3), TN@
AM NPs (lane 4), and AM cell lysate (lane 5). Lane M: marker. Adapted with permission from [36], ©2021 The Authors. Advanced Science. H Western
blotting analysis demonstrating the retention of characteristic membrane proteins. Adapted with permission from [33], copyright © 1999-2022
John Wiley & Sons, Inc. 1 The a4 and B1 integrins in RAW264.7 cells measured by FACS analysis. Adapted with permission from [35], copyright © 2016
American Chemical Society
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Biological function properties determine whether the encapsulated nanoparticles can

Particle size, zeta potential, electron microscopy and
others confirmed the success of the membrane coating.
However, the integrity of the membrane components
and the retention of membrane protein activity directly

perform their specific functions. Therefore, to detect
the retention of membrane activity, we can examine its
protein profile as well as the concentration of charac-
teristic proteins. Western blotting and sodium dodecyl
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polyacrylamide gel electrophoresis (SDS-PAGE) were
used to analyze the protein environment of the biomi-
metic nanoparticles. SDS-PAGE was used to verify the
successful migration of overall proteins on the cell mem-
brane and compare the difference in membrane proteins
present on the cell membrane of source cells, extracted
membrane and cell membrane-camouflaged nano-
particles (Fig. 3G). Furthermore, western blotting was
validated against key membrane proteins with specific
protein markers (Fig. 3H). As shown in Table 2, integrin
a4 and integrin Pl are usually detected in macrophage
membranes because they can actively bind to vascu-
lar cell adhesion molecule-1 of cancer cells or inflamed
endothelium. CD63 and TSG101 are usually detected in
M-exo and macrophage-derived microvesicles. In addi-
tion, flow cytometry and qPCR can also verify membrane
proteins and mRNAs. For example, Rao et al. made use of
flow cytometry and qPCR to verify the success of geneti-
cally modified cell membranes (Fig. 31I).

Application of macrophage membrane biomimetic
nanoparticles

Macrophage membranes inherit the function of the
natural membranes so that endow the nanomateri-
als with immune evasion, enhanced compatibility, abil-
ity to target inflammation and tumors. Recently, this
biomimetic strategy has been employed successfully in
the treatment of various of diseases including cancers,
infection diseases, cardiovascular diseases, CNS diseases,
immune disease, and other inflammatory. The mac-
rophage membranes coated nanoparticles have a capac-
ity to target tumors and inflamed tissues by the surface
receptors such as integrins, MAC-1 and CSF1R. Table 3
has summarized the biomedical applications of mac-
rophage membranes coated nanosystems.

Target delivery in cancer therapy

Considering the role of macrophages in the tumor
microenvironment, macrophages can target tumors and
phagocytose cancer cells. Macrophage membranes bioin-
spired nanocarriers have exhibited many advantages such
as prolonged circulation and specific target tumor tissue.
Currently, macrophage membrane-coated nanoparticles
have shown unique essential therapeutic effects in can-
cers, including breast, skin, lung, colon and others.

Breast cancer

Breast cancer has already become a worldwide public
health problem for women. Macrophages are the main
cellular components of the breast tumor microenviron-
ment and play an important role in the development
and metastasis of tumors. Zhang et al. have developed
natural macrophage membrane-coated paclitaxel-loaded
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nanoparticles (cskc-PPiP/PTX@Ma) to exhibit an
enhanced therapeutic effect for the treatment of primary
breast cancer [67]. Cskc-PPiP/PTX@Ma showed higher
accumulation at the tumor site because the macrophage
membrane with its associated membrane protein served
as a concealing cloak against RES clearance and a tumor-
homing navigator. For the treatment of breast cancer
metastasis, Sun et al. created a polymer of PLGA that
was used to encapsulate saikosaponin D to formulate bio-
mimetic polymer nanoparticles coated by macrophage
membranes hybridized with T7 peptide (SCMNPs)
[68]. The T7 peptide is a targeting ligand for transfer-
rin receptors that are overexpressed in tumor cells. The
in vitro cellular uptake and in vivo biodistribution stud-
ies showed that SCMNPs could specifically target tumor
cells and exhibited an immune escape effect on RES.
In vivo antitumor performance demonstrated that SCM-
NPs significantly inhibited tumor growth compared with
the control groups. Pretreated macrophage membranes
are also used for the encapsulation strategy. For example,
Cao’s group synthesized macrophage membrane-coated
emtansine liposomes (MEL) to target metastatic foci in
the lung [35]. The macrophage membranes were isolated
from RAW?264.7 cells with high expression of a4 and B1
integrins, which can specifically bind to VCAM-1 on
cancer cells. An in vitro cell uptake study showed a 2.0-
fold higher internalization into 4T1 cells by FACS than
into emtansine liposomes but a lower internalization into
RAW264.7 cells. The in vivo pharmacokinetic study dis-
played the intensity of fluorescence signals of MEL was
much higher than emtansine liposome at 1.0 and 4.0 h
after administration. Meanwhile, the in vivo distribution
of MEL showed a higher fluorescence signal in the lung
than in other organs owing to the high expression of a4
and B1 integrins on the macrophage membranes.

A previous study confirmed that M1 macrophages
had the natural ability to migrate into tumor tissues
and secrete proinflammatory factors [69]. Furthermore,
Zheng et al. found that exosomes secreted from the mac-
rophage RAW264.7 by LPS can induce neuroprotective
function after ischemic stroke by enhancing the anti-
inflammatory M2 phenotype polarization of microglia
[70]. Wang et al. used M1 exosomes loaded with pacli-
taxel (PTX-M1-Exos) to enhance the antitumor activity
of breast cancer [71]. The results show that M1 exosomes
produced proinflammatory cytokines and enhanced the
antitumor efficiency. After loading the chemotherapeutic
agent paclitaxel, PTX-M1-Exos exhibited a higher antitu-
mor effect than M1-Exos alone.

Currently, some investigators transfer their attention
to macrophage hybrid membrane biomimetic nanopar-
ticles. For example, Gong et al. developed macrophage-
4T1 hybrid membrane-camouflaged PLGA loaded with
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Membrane source

Specific marker Ligands

Function

Refs.

Macrophage membrane Integrin a4f31

MAC-1
CD47

CCR2

CD36
TNFR2
CD66a

CcD126
CcD119
CD135

CD309

CD44

CSF1R

TLR2/4
F4/80

CD206
CD11a/b/c
CD14

CD130
CD120a/b

CcDes

Exosomes derived from
macrophages

Arginase-1
cD1e3
[@bF]

LAMP2
ALIX
TSG101
CD63
Calnexin
CD81
Flotillin-1

VCAM-1

VCAM-1

SIRP-a receptor

CcCL2

Receptor for oxL.DL
TNF

Spike protein receptor

|L-6 receptor

IFN-y receptor

Tyrosine kinase 3 receptor

VEGF receptor

Extracellular matrix com-
ponents and messenger

molecules
CSF1

LPS receptor
EGF receptor

Mannose receptors
ICAMs

LPS receptor

IL6/IL6R complex
TNF-a/B

Arginine
Bacterial; LPS

Lectin -1/3 receptor

Lectin receptor

Cell adhesion molecule: actively bind to
VCAM-1 on cancer cell

Bind to flamed HUVECs or tumor tissue

Prevent the undesirable phagocytosis
by inhibiting binding to receptor SIRP-a
pathway

Promote the recruitment of monocytes to
“home”the inflammatory lesion

Target oxLDL

Adsorb cytokines

Target and bind to the Spike protein of
coronavirus

Adsorb cytokines

Adsorb cytokines

Directly bind extracellular ligands and
transduce regulatory signals

Bind to VEGF and induce cell proliferation
and migration

Promote tumor progression and metas-
tasis

Activates the downstream signaling
pathway responsible for the polariza-
tion of TAMs to the immunosuppressive
phenotype

Recognize LPS of Gram-negative bacteria
and activates NF-kB

Macrophage markers in mature mice and
cell-to-cell interactions

M2 marker

Mediate cell adhesion

Recognize LPS of Gram-negative bacteria
and activates NF-kB

Signal-transducing molecule

Adsorb cytokines and activate mac-
rophage

Macrophage marker

M2 marker
M2 marker; participation in immunization

Anti-inflammation marker; cell adhesion;
cell motility; tumor metastasis

Cell adhesion; tumor metastasis
Involved in exosome biogenesis
Exosome marker

Exosome specific marker
Endoplasmic reticulum marker
Exosome marker

Involved in exosome biogenesis

[
1
1
[
[

[

[

[11

[

[
[
[

[

[

[

[

[
[
[

[
[

[

[

[

[

[
[
[
[
3
[
[

33,35,40,53,66,110, 111
4,115,132, 149,155, 165,
8

1
6]
132,139,168
111,114,115, 165]

112, 165]

112]
2,162]
36, 102]

36,94, 102, 162]
36,94, 102]
68, 88]

68]

68, 139]

94,97, 166]
75,127,140, 166]

75,116, 140, 166]
75,84,127,166]
94]

94]
94]

40]

137]
16, 137]
65,150, 173]

173]

71, 173}

65,

71,116,131, 136, 150]
6]

65,150, 171]

84,171]

4,131,136,171,173]
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the FGL1/LAG3 blockade molecule siFGL1 and the
immune-metabolic adjuvant metformin [72]. The hybrid
membrane made use of the homologous targeting capac-
ity of cancer cells and the ability of immune escape of
macrophages to realize precise targeting. All studies
showed that macrophage membranes and macrophage-
derived membrane-coated nanoparticles have great
potential in the treatment of primary and metastatic
tumors.

Phototherapy is emerging as a new therapeutic strat-
egy for the treatment of cancer because of its nonin-
vasiveness, high selectivity and low systemic toxicity,
such as the well-known photothermal therapy (PTT)
and photodynamic therapy (PDT) [73]. For PTT, Xuan
et al. designed macrophage cell membrane-coated gold
nanoshells (MPCM-AuNSs) that exhibited good colloi-
dal stability and maintained the original NIR adsorption
of AuNSs [74]. The formulation showed higher accumu-
lation at the tumor site. By incubating FITC-dextran-
loaded bare AuNSs and MPCM-AuNSs with 4T1 mouse
breast cancer cells, 83.18% of the MPCM-AuNSs were
internalized into 4T1 cells, whereas only 42.15% of the
AuNSs were internalized. The pharmacokinetic studies
showed that MPCM-AuNSs had significantly enhanced
blood retention time compared to the bare AuNSs. Upon
NIR laser irradiation, local heat generated by the MPCM-
AuNSs achieves high efficiency in suppressing tumor
growth and selectively ablating cancerous cells within
the illuminated zone. For PDT, Chen et al. reported
tumor-associated macrophage membranes (TAMM:s)
coated with UCNPs (NPR@TAMM) for the treatment
of cancer and improving immunotherapy [75]. TAMMs
were derived from purified primary TAMs, which highly
expressed specific protein markers, including CSFIR,
CD206, F4/80, and CD11b. The membranes had the abil-
ity to deplete the CSF1 secreted by the tumor cells in the
TME, resulting in blockade of the interaction between
TAMs and cancer cells. After irradiation with a 980 nm
laser for 5 min, NPR@TAMMs inhibited cell prolifera-
tion in 4T1 cells with an IC50 value of 59.7 pg/mL, which
was significantly lower than that for NPR (301.5 pg/
mL) or NPR@MMs (129.2 pg/mL). The TAMM coating
strategy allowed the core nanoparticle to be a passive
and active target to the tumor while avoiding oxidation
and invasion by the immune system. Based on the great
effects of chemotherapy, PTT and PDT, researchers have
combined all three. Poudel et al. established a nanoplat-
form (PTX@CuS@MMNPs) containing three therapies
to kill tumor cells [33]. CuS was used as a nanocarrier for
chemotherapeutic drugs, PTT and PDT. Cellular inter-
nalization was improved by membrane encapsulation.
In vivo tumor accumulation, tumor inhibition rate, and
apoptotic marker expression were significantly improved.
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The above examples demonstrate that macrophage
membrane macrophages and macrophage-derived mem-
brane-coated phototherapeutic agents have the ability to
target tumors, escape immune responses and treat breast
cancer. Combined with phototherapy, these synergistic
systems achieve a high-precision treatment of tumors
and an excellent treatment efficiency.

Skin cancer

Skin cancer is a malignant tumor due to subcutaneous
tissue lesions. Macrophages play a crucial role in the
development and migration of skin cancer. Studies have
shown that macrophages in squamous cell carcinoma
(SCC) can indirectly inhibit T-cell activity by expressing
arginase-1, which breaks down L-arginine [76, 77]. Chen
et al. reported macrophage membrane-coated nanoparti-
cles to increase the circulation time and targeting ability
in a model of SSC-7 tumor-bearing mice [54]. Addition-
ally, macrophages can secrete periostin and thus promote
the metastasis of melanoma [78]. Melanoma is a kind
of aggressive skin cancer that originates from melano-
cytes. The current limited available treatment options
for melanoma are due to its high metastasis rate. Parodi
et al. have shown that leukocyte membrane biomimetic
nanoparticles enhance circulation time and tumoritropic
accumulation in mice with murine B16 melanoma [79].
Furthermore, Cao et al. developed albumin nanoparti-
cles coated with macrophage membranes loaded with
paclitaxel to treat melanoma [80]. Albumin nanoparti-
cles can accumulate in the tumor site, and macrophage
membranes can reduce the clearance of albumin by RES
and enhance the target capacity to tumor. Melanoma is
an aggressive tumor. Even though it works well on pri-
mary tumors, there is no better treatment for cancer
cells in the circulation. Cancer cells form circulating
tumor cells (CTCs) by binding to immune cells, including
macrophages and platelets, thus avoiding the clearance
of the immune system and low efficiency of metastasis.
Rao et al. developed hybrid nanovesicles (hNVs), includ-
ing M1 macrophage membranes, platelet membranes
and cancer cell membranes, that overexpressed high-
affinity SIRPa variants by loading a stimulator of inter-
feron genes (STING) agonist for the treatment of B16F10
tumors and 4T1 tumors (Fig. 4A, B) [81]. The hybrid
nanovesicles increased the affinity for CD47 because
they overexpressed SIRPa and promoted the M2-to-M1
repolarization of macrophages. Notably, researchers have
used six nanovesicles, including liposomes, red blood
cells, platelets, M1 macrophages, engineered cancer cells
and hNVs, for comparison. The in vivo pharmacokinetic
study and fluorescence imaging showed that M1-NVs
exhibited a longer blood retention time and more sig-
nificant accumulation at the tumor site in the B16F10
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Fig. 4 A Schematic showing the hNVs consist of engineered SaV-C-NVs, M1-NVs, and P-NVs. B Schematic showing the hNVs efficiently interact with
CTCs in the blood, accumulate in the post-surgical tumor bed, repolarize TAMs towards M1 phenotype, and block the CD47-SIRPa‘don’t eat me’
pathway, thus promoting macrophage phagocytosis of cancer cells, as well as boosting antitumor T cell immunity. Average C tumor growth kinetics
in 4T1 tumor groups. D Metastasis rates after indicated treatments. Average E tumor growth kinetics in B16F 10 tumor groups. F Numbers of lung
metastatic foci after different treatments. Adapted with permission from [81], copyright © 2022 Springer Nature Limited

mouse melanoma model. The mRNA levels of M2 mac-
rophages after treatment with M1-NVs demonstrated a
lower level of M2 markers and a higher level of M1 mark-
ers. As a result, M1-NV treatment induced a significant
increase in tumor-infiltrating T cells, especially CD8" T
cells, effectively improving the antitumor effects. Accord-
ing to B16F10 mouse melanoma models, hNVs signifi-
cantly suppressed local recurrence and distant metastasis
of tumors (Fig. 4C, D). Due to the suppression of tumor
recurrence, the survival rate of the mouse groups treated
with hNVs increased to 66% in 60 days. Additionally,
hNVs demonstrated a higher inhibition of 4T1 tumors
in a poorly immunogenic triple-negative breast cancer
model (Fig. 4E, F). Remarkably, the platelet-derived N'Vs
suggested the damaged tissue targeting capability and
effective binding of pNVs with CTCs.

The most critical aspect of the capture for CTCs is
that the researchers have combined the advantages of
the three cells. Platelet and macrophage membranes
evade recognition by the immune system, thus allowing

high-affinity cancer cell membrane variants to target
tumors more precisely.

Lung cancer

Lung cancer is characterized by the uncontrolled prolif-
eration of cancer cells in the lung. Meanwhile, the lung
is the most common site of metastasis and tumor recur-
rence, which is the leading cause of cancer-related death.
Non-small cell lung cancer accounts for>80% of lung
cancer cases and currently has an overall 5 year survival
rate of only 15%. Evangelopoulos et al. have made use
of electroporation to load doxorubicin into J774.1 mac-
rophages; thereby, the system can deliver the drug into
the pulmonary environment or lungs by its tropism for
neoplastic and release drug through efflux bump [82].
In the LL/2 mouse model, this system has demonstrated
favorable suppression of tumor growth in the lungs.
Notably, the cell viability of macrophages is inactive, and
previous work showed that electroporated cells main-
tain the expression of adhesion-based transmembrane
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proteins. With the application of electroporation, they
have developed a low-cost and high-efficiency solution
to generate effective pulmonary drug delivery vehicles.
The aforementioned macrophage membranes are not
focused on the phenotype of macrophages. According
to a report, non-small cell lung cancer overexpresses the
sigma receptor, which is a membrane-bound protein [83].
Based on this finding, Kim et al. prepared PTX-loaded
exosomes modified with aminoethylanisamide-poly-
ethylene glycol (AA-PEG) to target pulmonary metasta-
ses [84]. Exosomes are harvested from the supernatants
of RAW?264.7 cells and primary bone marrow-derived
macrophages to enhance the blood circulation time and
tumor accumulation rate. In vivo therapeutic efficacy was
greater than that of nonvectorized exosome-PTX and
Taxol. Choi et al. used mouse peritoneal macrophages
induced by 3% Brewer thioglycollate medium as a bio-
carrier [85]. They provided liposome-loaded doxoru-
bicin and the imaging agent iron oxide, which can reach
the tumor site in vivo, maintain continuous and durable
action in tumor death and exhibit imaging capacity.

Others

Apart from the above types of cancer, macrophage
membrane-mimetic nanoparticles are also being applied
to other cancers. For example, Fang et al. prepared
artificially assembled macrophages with drug-loaded
liposomes for colorectal cancer [86]. Integrin o4, integ-
rin 1 and C-C chemokine receptor 2 (CCR2) help them
target tumors and evade the mononuclear phagocyte sys-
tem. He et al. designed polyelectrolyte multilayer (PEM)
capsules coated with gold nanoparticles and THP-1-cell
membranes on the two sides to be used as photoac-
tive cancer cell detectors to kill HeLa cells by PTT [62].
Upon illumination with NIR light, the gold shell could be
heated to evaporate water violently and melt the capsule
and cellular walls. In vitro experiments of biofunctional-
ized Janus capsules indicated that they can successfully
kill cancer cells with a laser power density of 23.6 mW/
um® Qiang et al. designed reduced graphene oxide-
loaded doxorubicin, followed by internalization of mac-
rophages to work on RM-1 mouse prostate cancer [87].
Ji et al. created hybrid membranes, including H22 cells,
HepG2 cells and RAW264.7 cells, to target hepatocellular
carcinoma [88].

Overall, the aforementioned studies indicate the
potency of macrophage membrane-cloaking nanoparti-
cles in the treatment of cancers. Macrophage membrane
coating does not influence the function of the core but
endows the core with targeting and immune evasion.
Additionally, macrophage membrane camouflage nano-
particles can steadily improve the solubility and tar-
get capability of drugs. This strategy can also utilize the
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membrane protein to overcome the challenge faced by
nanoparticles during systemic circulation. Macrophage
membrane- or membrane-derived exosomes can be
edited and modified. Notably, macrophages play impor-
tant roles in tumor metastasis. A previous study showed
that tumor macrophages promote epithelial-mesenchy-
mal plasticity to fit the shear stress in blood vessels [89].
Based on this mechanism, macrophages have a potent
ability to kill CTCs, such as leukemia, multiple myeloma
and malignant lymphoma. Taking into account the role of
macrophages, macrophages have natural superiority in
cancer treatment.

Anti-microbe

Pathogenic microorganisms refer to microorganisms, or
pathogens, that can invade the human body and cause
infections or even infectious diseases. Among the path-
ogens, bacteria, viruses and parasites are harmful. The
membranes from immune cells, including macrophages,
have a mass of bacterial-specific cellular receptors that
allow the nanoparticles to attract and neutralize the
membrane active toxins. This phenomenon is called the
‘nanosponge effect’ due to its high affinity for toxins and
cytokines [90].

Antibacterial

With the discovery of penicillin, antibacterial agents
have been emerging as a new therapeutic strategy. How-
ever, the emergence of bacterial resistance to antibacte-
rial agents has increased the use of antibiotics in clinical
treatments for infection, mainly because of three bio-
logical properties: cell envelope blockages, biofilm
protection, and macrophage shelter [91, 92]. Indeed,
macrophages can specifically recognize and neutral-
ize bacteria through the connection between PRRs on
the macrophage membrane and PAMPs of bacteria. For
example, in sepsis, endotoxin, referred to as lipopolysac-
charide (LPS), is released from the bacteria and is rec-
ognized as a PAMP by macrophages [93]. Subsequently,
macrophages can bind and neutralize endotoxins and
cytokines. Soracha et al. prepared a PLGA core coated
with a macrophage membrane (M®-NPs) for the treat-
ment of sepsis [94]. M®-NPs could bind to endotoxins
and cytokines, inhibiting their ability to enhance down-
stream inflammatory cascades. In a mouse Escherichia
coli bacteremia model, treatment with M®-NPs sig-
nificantly reduced proinflammatory cytokine levels and
inhibited bacterial dissemination. In another study, schol-
ars found that macrophage-derived biomimetic nanopar-
ticles (leukosomes) could be used for the treatment of an
LPS-induced murine model of sepsis [95]. In vitro studies
elucidated that leukosomes induce an anti-inflammatory
response in endothelial cells through the interaction of
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leukosomes with macrophages. The interaction could
trigger a decrease in proinflammatory genes (IL-6, IL-1b,
TNF-a) and an increase in anti-inflammatory genes (IL-
10, TGE-B).

Interestingly, when macrophages were cultured with
specific bacteria, the expression of recognition recep-
tors, such as TLR2, TLR4 and TLR6, increased. Toll-
like receptors function as PRRs to produce an immune
response. Wei et al. reported a nanotoxoid formulation
for use as a vaccine against gram-negative bacterial infec-
tions by a multiantigenic formulation [96]. This formu-
lation was first performed on PLGA core-coated J774
macrophage cell membranes with a weight ratio of 1:1,
followed by sonication. Then, they collected P. aeruginosa
secretions (PaS) from the bacterial culture supernatant
and incubated them with macrophage membrane-coated
nanoparticles for 15 min to obtain the final macrophage
nanotoxoids (M®-toxoids). M®-toxoids endowed the
nanoparticles with multiantigenic characteristics to clear
bacteria. Likewise, on account of this phenomenon, this
group used a pretreated macrophage membrane to coat
a gold-silver nanocage (Sa-M-GSNCs) to more pre-
cisely target bacterial cell surfaces [97]. GSNC has been
approved as an effective antibacterial agent because of
its photothermal effect. Both in vitro and in vivo live
bacterial infection of cells and mice showed that Sa-M-
GCNCs had a better therapeutic effect. Li et al. regarded
the use of bacterially pretreated macrophage membranes
as highly impractical for intracellular bacterial infections
[98]. They designed a self-assembled micelle composed
of antimicrobial triclosan and ciprofloxacin coated with
macrophage membranes (Me-ANPs) to target infected
macrophage cells where bacteria hide. Both in vitro and
in vivo showed efficiency in killing S. aureus. Me-ANPs
eradicated the infection in a mouse peritoneal infection
model and mouse organ infection model.

Antiviral

A virus is a much smaller microbe than fungi and bac-
teria that relies on the metabolic system of host cells for
reproduction. Infected cells often die because the virus
blocks their normal physiological functions, subse-
quently resulting in the release of new viruses to infect
other cells. The mechanism of action of antiviral infec-
tion drugs is mostly to interfere with the replication
of the virus [99]. However, when antiviral drugs enter
the body, in addition to being able to attack viruses and
infected cells, they can also produce certain toxicity to
normal cells in the human body [100]. The antiretrovi-
ral delivery system is an effective measure among anti-
viral drugs currently on the market. However, there are
still three problems: weak antiviral effects, serious side
effects, and rapid drug resistance.
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Dou et al. developed a nanoparticle-loaded indinavir
(NP-IDV) formulation packaged into carrier bone mar-
row-derived macrophages (BMDMs) for human immu-
nodeficiency virus type 1 (HIV-1) [56]. Macrophage
membrane protein endowed NP-IDV with the ability
to target sites, promoting sustained “local” drug release
for periods of approximately 2 weeks, avoiding the
destruction of the immune system in the HIV-1 mouse
model and increasing the therapeutic effects. In addi-
tion, they used IDV-NP-BMM to target HIV-1 enceph-
alitis (HIVE) rodent model [101]. The results showed
continuous IDV release for 14 days and a reduction
in HIV-1 replication in HIVE brain regions. Similarly,
severe COVID-19 was highly associated with cytokine
storm syndrome (CSS). Tan et al. designed macrophage
membrane-coated PLGA NPs loaded with lopinavir
(PLGA-LPV@M) [102]. The receptors of IL-1f and
IL-6 on the macrophage membrane neutralize proin-
flammatory cytokines to suppress macrophages and
neutrophils. Moreover, macrophages expressed angi-
otensin-converting enzyme 2 (ACE II), which could
help PLGA-LPV@M target SARS-CoV-2 by the affin-
ity between ACE II and the spike protein on SARS-
CoV-2. Owing to the synergistic effects, PLGA-LPV@M
exhibited a significant effect in the mouse model of
coronavirus infection. Li’s group reported that alveolar
macrophages (AMs) were the first line of defense for
the host immune system against SARS-CoV-2 infec-
tion [36]. Therefore, an AM membrane was used to
coat PLGA nanoparticles embedding photothermal
material (TN@AM NPs) to enhance antiviral efficiency
(Fig. 5A). In a surrogate mouse model of COVID-19,
TN@AM NP treatment decreased the lung virus bur-
den compared to the untreated group (Fig. 5B). Anti-
cytokine ability analysis demonstrated that the TN@
AM NP group significantly decreased the expression of
various proinflammatory cytokines (Fig. 5C). Further-
more, lung histopathological alteration analysis showed
that TN@AM NPs significantly reduced lung damage
compared to the other NPs.

Anti-parasite

Macrophages also play an important role in parasite
infection, participating in parasite-host immune interac-
tions [103]. A study confirmed that parasites can induce
M1-type polarization of macrophages. M1 macrophages
clear parasites by producing TNF-a, IL-12 and iNOS.
M2 macrophages can metabolize L-arginine into pro-
line and polyamine to promote parasite survival through
Argl, which is related to the inflammatory process and
regression of tissue repair [104]. Leishmania donovani,
an intracellular parasite, adheres to macrophages and
enters into macrophage cells along with phagocytosis
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activity to induce transformation to the M2. Ampho-
tericin B has been encapsulated into macrophage nanog-
ghosts to Leishmania-infected macrophages [105]. It
has been shown that an increased concentration at the
infected site and the production of protective cytokines

and ROS-RNS with lower collateral toxicity to healthy
cells compared to the free amphotericin B group.

Taken together, these results showed the ability of mac-
rophage membrane-coated nanoparticles to regulate the
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inflammatory response in target cells, acting as a bioac-
tive nanotherapeutic.

Cardiovascular diseases

Atherosclerosis (AS) is a chronic inflammatory vascu-
lar disease caused by the accumulation of many lipids
around the arterial wall. As an oxidized form of low-
density lipoprotein (Ox-LDL) in the intimal layer, the
local endothelial wall produces excessive ROS and subse-
quently secretes a series of adhesion molecules to recruit
immune cells [106]. Subsequently, local inflammation
leads to fatal cardiovascular events and stroke by steno-
sis of the arterial lumen and rupture of unstable plaques
[107]. Integrin a4 and B1 are major leukocyte receptors
on the macrophage membrane that recruit macrophages
to atherosclerotic plaques by recognizing VCAM-1 on
the surface of vascular endothelial cells [108, 109].

Fe;O, has been used as a typical magnetic resonance
imaging (MRI) agent. Huang et al. confirmed that Fe;O,
nanoparticles coated with a RAW264.7 membrane
(Fe;O,@M) could effectively target the early process of
AS [110]. Compared with the conventional MR agent,
Fe;O,@Ms had more safety for research objects in vivo
or in vitro and were more effective in imaging than
Fe;0,@PEG. The molecular mechanism study showed
that integrin a4 and P1 overexpression on macrophages
specifically recognized VCAM-1 on endothelial cells.
Wang et al. fabricated a macrophage membrane coating
on the surface of rapamycin-loaded PLGA (MM/RAP-
NPs) to target atherosclerotic lesions [111]. The release
kinetics showed that 38.51% and 35.62% of rapamycin
were released from RAPNPs and MM/RAPNPs after 72 h
of incubation, respectively. MM/RAPNPs approved sus-
tained drug release. Cell phagocytosis assays were per-
formed to evaluate immune evasion. Both CLSM images
and FACS analysis showed that macrophage membrane-
coated DID-labeled NPs (MM/DIDNPs) could signifi-
cantly inhibit internalization by macrophages. Similarly,
an overexpression VCAM-1 model of HUVECs activated
by TNF-a demonstrated a higher internalization com-
pared with DIDNPs. Rapamycin is practically insoluble in
water, resulting in low bioavailability. The in vivo thera-
peutic efficacy of MM/RAPNPs showed the lowest ath-
erosclerotic lesions in 6.59% compared with 18.3% of free
RAP and 14.43% of RAPNPs. ORO and toluidine blue
further verified the therapeutic efficacy of MM/RAPNPs.
Overall, MM/RAPNPs can effectively attenuate the pro-
gression of AS.

Based on the excessive ROS in the local inflamma-
tory site, researchers have developed a delivery system
including ROS-responsive NPs coated with macrophage
membranes for AS [112]. For example, amphiphilic oxi-
dation-sensitive chitosan oligosaccharide (Oxi-COS) was
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chosen as a ROS-responsive material to load atorvasta-
tin (AT-NPs). AT-NPs possessed a drug encapsulation
efficiency of 48.3% and a drug loading content of 5.1%.
After coating the macrophage membrane by coextrusion
and bath sonication, a spherical core—shell structure was
observed. From the TEM image and DLS, a single layer of
cell membrane wrapped the Oxi-COSNPs, and the diam-
eter of the nanoparticles increased from ~ 204 to 227 nm.
Considering the key role of foam cells in AS, research-
ers selected LPS-induced inflammation in macrophages
and oxLDL-treated macrophages as in vitro models to
evaluate the therapeutic efficacy of MM-AT-NPs. The
results revealed the ROS responsiveness of AT-NPs and
MM-AT-NPs in vitro, as well as their attenuation. After
incubation with macrophages, MM-AT-NPs provided a
potential targeted capacity to inflammatory macrophage
cells and foam cells, except for the remaining mac-
rophage cells. For the in vivo targeting capability of MM-
NPs and NPs/Mas to atheromatous plaques, cyanine
7.5 NHS ester was employed to prepare Cy7.5-labeled
formulations. The aortic tissues from MM-Cy7.5-NPs
had stronger fluorescence due to their inherent immune
propensity for inflammation. Next, they examined the
therapeutic effect through a model of female ApoE~'~
mice. There was an obvious improvement in plaque area
with the treatment of MM-AT-NPs in comparison with
AT-NPs, which decreased to ~ 8% of the total aorta tissue
area. Interestingly, Ahn et al. designed a formulation by
encapsulating Ce6 within the triple-helix structure of Glu
in aqueous solution [113]. Then, macrophages derived
from foam cells internalized the Glu/Ce6 nanocomplexes
and delivered nanocomplexes to treat atherogenesis.
With laser irradiation, the Glu/Ce6 nanocomplexes sig-
nificantly damaged the foam cell membranes and gen-
erated ROS to reduce ICD. In another article, boronic
ester-modified dextran was used to load rapamycin
(MM/RNPs) [114]. The average hydrodynamic diameter
of MM/RNPs was 164.7 nm. The cumulative release of
rapamycin with or without H,0O, was lower than that
of RNPs due to the coating membrane. However, MM/
RNPs still have ROS responsiveness to H,O,. An in vitro
uptake assay demonstrated that MM/RNPs could effec-
tively escape from macrophages and inflamed endothelial
cells. Zebrafish were used as an animal model to confirm
the in vivo biocompatibility of MM/PCD NPs. Various
concentrations of MM/PCD NPs and time points were
applied to embryos from zebrafish, and the live zebrafish
suggested good biocompatibility. These results showed a
potential candidate for anti-AS applications.

Although the natural macrophage membrane has many
specific membrane recognition proteins, researchers can
still modify the expression of membrane proteins to suit
their own needs for treatment. Li’s team reported a bionic
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nanoparticle with overexpressed CD47 and integrin a4
and B1 [115]. Firstly, they used endothelin-1 to enhance
the expression of integrin a4/pl. Second, the function-
alized CDA47 plasmid was transferred into macrophages
to upregulate CD47. The modified macrophage mem-
brane vesicles were mixed with PLGA NPs loaded with
colchicine (MMM/COL NPs), sonicated and extruded.
DLS analysis showed that the diameter of MMM/COL
NPs increased from ~180.76 to 202.02 nm, which is the
thickness of the macrophage membrane shell. The fluo-
rescence of macrophage cells treated with MMM/COL
NPs was lower than that of cells treated with DID NPs or
MM/COL NPs, suggesting that the overexpressed CD47
and integrin a4 and 1 were functional. Additionally, the
MMM/COL NP group had significantly enhanced fluo-
rescence of inflamed HUVECs. Furthermore, an in vivo
targeting study showed the best accumulation of MMM/
Dil NPs in atherosclerotic lesions and the best targetabil-
ity to atherosclerotic plaques.

As recently reported, exosomes isolated from mac-
rophages have been applied in AS. Wu et al. confirmed
and clarified that M2 exosomes had a lower level of
proinflammatory factors but anti-inflammatory fac-
tors, including IL-10, IL-1Ra, and TGF-P [116]. Hexyl
5-aminolevulinate hydrochloride (HAL) enhanced the
anti-inflammatory effect by driving the intrinsic bio-
synthesis and metabolism of heme, which induced the
production of anti-inflammatory carbon monoxide and
bilirubin. Next, HAL was taken into M2 Exos via elec-
troporation (HAL@M?2 Exos) to treat AS (Fig. 6A, B).
DLS analysis revealed HAL@M2 Exos with a diameter
of 180 nm and excellent stability after 1 week in PBS.
A series of experiments were conducted to determine
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the mechanism. The expression of adhesion molecules,
including E-selectin, VCAM1, ICAM1, CD44, VLA4
and LFA1, on inflammatory endothelial cells was meas-
ured. The recognition mechanism led to the excellent
transmigration and accumulation of M2 Exos at the
inflammation site. The in vivo therapeutic effect of
HAL@M2 Exo was evaluated in ApoE™'~ mice fed a
cholesterol-rich diet. From the fluorescence imaging
originating from endogenously biosynthesized proto-
porphyrin IX (PpIX) in the aortas of mice, the HAL@
M2 EXO group exhibited the highest PpIX fluorescence
signal (Fig. 6C). Oil Red O (ORO) staining of entire aor-
tas indicated that HAL@M2 Exo observably reduced
aortic lesions and aortic valve lesions by 75.2% and
73.9%, respectively, compared with PBS alone (Fig. 6D,
E). The H&E staining results showed that the HAL@M2
EXO group had diminished aortic values. Finally, the
expression of ABCA-1 and SR-B1 receptors in aortas
showed a greatly upregulated tendency, which further
confirmed that HAL@M2 EXOs could relieve chronic
inflammation-induced AS in vivo.

Neurological disease

Neuroinflammation is an inflammatory response within
the central nervous system and the main hallmark of
common neurodegenerative diseases, including Alz-
heimer’s disease (AD), Parkinson’s disease (PD), and
amyotrophic lateral sclerosis (ALS). The main cause of
pathogenesis is that hyperactivated microglia release pro-
inflammatory cytokines, which induce neuronal death
and accelerate neurodegeneration [117]. However, it
is extremely difficult to deliver drugs to microglia. The
main obstacle is the blood-brain barrier (BBB), which is
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difficult for drugs to cross due to its unique and compact
physiological structure. It refers to the barrier between
blood plasma and brain cells formed by the walls of brain
capillaries and glial cells and the barrier between plasma
and cerebrospinal fluid formed by the choroid plexus,
which can prevent certain substances from the blood
from entering the brain tissue [118-120]. Macrophages
are naturally capable of crossing the BBB, which can trav-
erse the endothelial wall due to increased margination
and extravasation [121].

PD is a neurological disorder. This disease is attributed
to the selective loss of neurons in the substantia nigra and
is associated with brain inflammation, microglial acti-
vation and secretory neurotoxin activities such as ROS
[122]. Batrakova et al. have developed a BMM system
to deliver catalase to an animal model of PD. Catalase
was packaged into a cationic block copolymer, polyeth-
yleneimine-poly(ethylene glycol) (PEI-PEG). It has been
shown that the nanoparticle could retain catalytic activ-
ity and be released in its active form after 24 h. In vitro
experiments have indicated potent antioxidant effects for
ROS produced by microglia activated with either N-a-
syn or TNF-a. Additionally, an in vivo assay showed that
BMM could increase the delivery of labeled enzymes
into tissues, including a twofold increase in the number
of enzymes in the brains of MPTP-treated mice. Further-
more, this team has explored the pharmacokinetics and
biodistribution of BMM-incorporated nanozymes. After
coating with a macrophage cell membrane, the BMM-
nanozyme processed longer blood circulation than bare
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nanozyme and more precisely targeted diseased sites in
models of PD [123, 124]. A previous study proved that
exosomes function as source membranes and cross bio-
logical barriers, including the BBB. Haney et al. devel-
oped an exosome-based delivery system to treat PD by
loading catalase [125, 126]. These findings indicated that
exosomes loaded with catalase efficiently accumulated
in neurons and microglial cells in the brain and pro-
duced a potent neuroprotective effect. They internalized
nanozymes into BMMs to attract neurons and endothe-
lial cells by endocytosis-independent mechanisms. The
results showed that nanozyme trafficking in and between
cells could facilitate a neuroprotective response and pro-
vide insights.

New therapeutic targets have been developed for AD,
including neuronal mitochondrial dysfunction and aggre-
gation of beta-amyloids. Han et al. designed a system in
which macrophage membrane-coated solid lipid nano-
particles attached rabies virus glycoprotein (RVG29) and
triphenylphosphine cation (TPP) molecules to deliver
genistein (GS) (RVG/TPP-MASLNs-GS) to neuronal
mitochondria (Fig. 7A) [127]. RVG29 helped the system
cross the BBB and target neurons, and TPP further deliv-
ered the system to mitochondria via its positive charge.
Physical parameters displayed a diameter of 100 nm
and a “shell-core” structure. In vivo imaging verified the
high brain accumulation of DIR-labeled RVG-MASLNs
(Fig. 7B). An in vitro antioxidative stress assay was per-
formed to confirm the protective effect of RVG-MASLN.
H&E staining of the hippocampal region of AD mice was

| GS Loaded SLNs
©)

MASLNs-GS

APP/PS1 GS

G O
U
=

Normal

r

(A) (B)
"
{ W =) #ﬁ )

@ ¢ @ 2. o <
®e MA membranes J: ®e @ oo, v o o
oo ¢ T ee @ = oo :

L J @
L4 4. ¢ DSPE-PEGNM-TPPGR‘ 4. 71%

RVG/TPP-MASLNs-GS

TPP-MASLNs RVG-MASLNs

RVG/TPP-MASLNs

Low High
RVG-MASLNs-GS  TPP-MASLNs-GS  RVG/TPP-MASLNs-GS

formulations determined by VIS Lumina Il. C Representative swimming path tracings of different groups. Adapted with permission from [127],
copyright © 1999-2022 John Wiley & Sons, Inc.




Wu et al. Journal of Nanobiotechnology (2022) 20:542

further verified. Finally, the swimming path tracing of AD
mice showed a more significant learning ability Fig. 7C.
In conclusion, RVG-MASLN-GS exhibited excellent
effects on relieving AD symptoms in vitro and in vivo.
Spinal cord injury (SCI) is also a common neurological
disease, including primary injury and secondary injury
[128]. Primary injury refers to injury caused by an exter-
nal force acting directly or indirectly on the spinal cord.
Secondary injury refers to spinal cord edema caused by
an external force, hematoma formed by hemorrhage of
small blood vessels in the spinal canal, compression frac-
ture, and broken intervertebral disc tissue [129]. Second-
ary injury is the main obstacle to motor function recovery
after spinal cord injury. Macrophages are characterized
by chemotaxis to inflammatory sites, penetrating blood
vessels, and targeting the damaged central nervous sys-
tem through the interaction of adhesion factors and inte-
grins [130]. Xia’s group encapsulated nerve growth factor
(NGF) into the macrophage membrane (NGF-NVs) to
treat SCI [131]. Cell viability assays showed that NGF-
NVs were effectively taken up by PC12 cells and inhibited
neuronal apoptosis. Furthermore, they found that NGF-
NVs sharply increased the survival of neurons by acti-
vating the PI3K/AKT signaling pathway and had a good
effect on SCIL In another article, researchers developed
the use of membranes from different macrophage sub-
types to coat liposomes loaded with minocycline [132].
All experiments showed that the formulation decreased
cellular uptake by macrophages, prolonged drug circula-
tion time and actively targeted the trauma site of SCIL.
Regarding neuronal survival in ischemic stroke, reper-
fusion injury is still a major obstacle. Compared with glial
cells and vascular cells, neurons are the most vulnerable
cells because of the rapid loss of normal function under
ischemic conditions. Li et al. developed a macrophage-
disguised honeycomb manganese dioxide (MnO,) nano-
sphere loaded with fingolimod (Ma@(MnO,+FTY)
[133]. On the one hand, Ma@(MnO,+FTY) crosses
the BBB, and MnO, nanospheres can reduce oxidative
stress and promote the transition of M1 microglia to
M2 by consuming excess hydrogen peroxide (H,0,). On
the other hand, consuming ROS led to the inhibition of
the NF-kB signaling pathway in microglia to mitigate
the proinflammatory response. Fingolimod can activate
the signal transducer and activator of the transcrip-
tion-3 (STAT3) pathway. The results indicated that Ma@
(MnO, +FTY) successfully protected neurons and pro-
vided new possibilities for the treatment of brain disease.
Pang et al. used primary M1 macrophages as a carrier
combined with PLGA nanoparticles to deliver doxo-
rubicin (DOX@M1-NPs) to glioma tumors [134]. The
results of the in vivo endothelial barrier model revealed
that DOX@M1-NPs significantly boosted transcytosis
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across the endothelial barrier and uptake by U87 cells.
In vivo imaging experiments verified that M1-NPs exhib-
ited significant superiority in brain U87 tumors. The
in vivo antiglioma effect showed that DOX@M1-NPs
markedly prolonged mouse survival by 38.5 days.

Immune diseases

Macrophage membrane-camouflaged nanoparticles are
used for the treatment of immune diseases. Rheuma-
toid arthritis (RA) is an autoimmune disease that leads
to joint inflammation, resulting in functional disabilities.
The pathology of RA mainly involves the proliferation of
synovial lining cells, the infiltration of a large number of
inflammatory cells in the interstitium, the neovasculari-
zation of microvessels, the formation of pannus, and the
destruction of cartilage and bone tissue. Evidence has
shown that macrophages adhere to the synovium or the
pannus of inflamed vascular tissue via specific ligands. In
this case, macrophage membranes or macrophage exo-
some membranes can take the burden of biomimetic
nanoparticles to decrease inflammatory cytokines [65,
135-137].

The current treatment of autoimmune disease pre-
sents systemic side effects. Flavia et al. developed com-
posite platforms made of porous silicon (Psi) coated with
KG-1 macrophage cell membranes (TCPSi@KG-1) for
RA [138]. They analyzed the size, surface morphology,
and stability in different biological buffers of TCPSi@
KG-1, followed by the biological evaluation of cytocom-
patibility and immunological profile. As a result, TCPSi@
KG-1 greatly enhanced the stability of the hydropho-
bic particles in plasma and simulated synovial fluid. The
cytocompatibility of TCPSi@KG-1 in different cell lines,
including target organs, blood vessels, kidneys and livers,
reached 48 h at concentrations ranging from 0.5 to 50 pg/
mL. In addition, the immunological profile investigated
in KG-1 macrophages showed that the nanoplatforms
decreased the immunostimulatory potential and avoided
the activation of the immune system. Li et al. made use
of macrophage-derived microvesicles by stimulating
cytochalasin B to coat PLGA nanoparticles loaded with
tacrolimus (T-MNPs) (Fig. 8A) [139]. The in vitro bind-
ing of T-MNPs to inflamed HUVECs was significantly
stronger than that of erythrocyte membrane-coated nan-
oparticles (RNPs). The results showed that macrophage
membrane-coated nanoparticles significantly enhanced
in vivo targeting in mice with collagen-induced arthritis
compared with DIR, bare NPs and RNP. The in vivo tissue
distribution further clarified the better targeting capacity
of the MNPs to the paws than the others. Proteomic anal-
ysis has revealed the targeting mechanism, suggesting
that MAC-1 and CD44 contribute to the prominent tar-
geting of MNPs. Therefore, in vivo immunofluorescence
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adhesion. B Representative images of different nanoparticles accumulation in arthritic paws or nonarthritic (NA) paws; n= 3. C Arthritis index in
different groups over 14 days of treatment. Adapted with permission from [139], copyright © 2022 American Chemical Society

Days post arthritis induction

revealed higher levels of P-selectin and ICAM-1 expres-
sion in the arthritic paw (Fig. 8B). The inflamed endothe-
lium in RA highly expresses P-selectin and ICAM-1,
which can be recognized by CD44 and MAC-1. The
in vivo drug release of T-MNPs demonstrated sustained
release and long retention. The expression of proinflam-
matory cytokines provided that T-MNPs could remark-
ably reduce their production. The therapeutic effect of
RA showed that T-MNPs significantly suppressed RA
and maintained a stable period (Fig. 8C). H&E staining of
joint tissues further confirmed this effect.

More recently, Li’s team reported that macrophage-
derived microvesicle membranes coated nanoparticles to
treat RA [65, 137]. One used M2-type exosomes to load
plasmids encoding IL-10 cytokine and betamethasone
sodium phosphate, and another used exosome mem-
branes to coat zeolitic imidazolate framework-8 (ZIF-
8)-loaded dexamethasone sodium phosphate. All studies
have indicated that the macrophage biomimetic platform

could be applied to RA and is a promising potent for
other immune diseases.

Other diseases

Macrophages are the cells of the immune system. They
can phagocytose foreign materials from bacteria and
debris to dead cells. A large number of leukocytes
migrate to the inflamed lesion to regulate inflammatory
processes. Macrophage membranes and macrophage-
derived microvesicles are used to deliver the drug to the
lesions.

Tang et al generated dexamethasone-loaded mac-
rophage-derived microvesicles (MV-DXs) for the treat-
ment of renal inflammation and renal fibrosis [140]. The
high expression of integrin a; , (LFA-1) and «,f; (VAL-
4) caused them to adhere to the inflamed kidney. Fur-
thermore, MV-DEX significantly decreased renal injury
in murine models of LPS- or ADR-induced nephropa-
thy compared with free DEX. Meanwhile, MV-DEX
sharply reduced the side effect of DEX due to the precise
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targetability. Ulcerative colitis (UC) is characterized by
relapsing inflammation in the colon. Sun et al. devel-
oped a macrophage membrane-coated ROS-sensitive
B-cyclodextrin loaded with rosiglitazone (RMN NPs) to
treat UC [39]. Owing to the inflammatory homing effects,
the macrophage membrane assisted RMN NPs in inflam-
matory colonic tissues to suppress inflammation. Based
on the overproduction of ROS and upregulation of trans-
membrane glycoprotein CD98 in UC, Ma et al. devel-
oped a macrophage membrane to coat a pH-responsive
MOF carrier loaded with carbon nanodots and CD98
CRISPR/Cas9 plasmid (CCZM) [141]. The results of cel-
lular uptake in RAW264.7 cells showed that macrophage
membrane-coated nanoparticles had a 2.5-fold higher
fluorescence intensity than nanoparticles without mem-
brane decoration. Regarding the in vivo inflammation
targeting ability of the macrophage membrane, CCZM
demonstrated significantly stronger fluorescence in the
inflammatory colon. The combined effect of nanozymes
and the CRISPR/Cas9 system significantly alleviated UC
inflammation and provided a promising approach for
the personalized treatment of inflammation. Zhang et al.
reported a biomimetic nanoparticle with a ‘lure and kill’
mechanism that was made by embedding with a mac-
rophage membrane doped with a PLGA core loaded with
melittin and MJ-33 for pancreatitis (M®-NP) [142]. In
pancreatitis models, M®-NP effectively inhibited PLA2
activity and PLA2-induced pancreatic injury. In allergic
asthma (AA), the adoptive transfer of M2 macrophages
could aggravate pathologies of allergic airway inflamma-
tion. Pei et al. explored the exosome membrane of M2
macrophages coated PLGA@Dnmt3aos™t silencer o treat
AA [143]. Dnmt3aoss™t silencer j 5 small interfering RNA
(siRNA) that is easily degraded. Therefore, they estab-
lished PLGA NPs to obtain a nanocomplex with siRNA
and exosome decoration to improve the biodistribution,
stability, efficacy and biocompatibility of NPs. The encap-
sulation efficiency of Dnmt3aoss™at silencer jnto PLGA was
determined to be 70.70+1.82%. The release kinetics of
the Dnmt3aos™t slencer showed a sustained release pro-
file of more than 50% of the cumulative release rate at
24 h. Teo et al. designed macrophage membrane-coated
NPs originating from M0, M1 and M2 macrophage mem-
branes for the treatment of osteoarthritis [144]. Interest-
ingly, M2 macrophage membrane-coated NPs showed
superior efficacy in sponging proinflammatory cytokines
and relieving osteoarthritis.

In conclusion, macrophage membrane-mimetic nano-
particles can effectively target inflamed tissue and miti-
gate the inflammatory response by utilizing the natural
inflammatory targeting effect of macrophage mem-
branes. Meanwhile, the anti-inflammatory type of M2
macrophages exhibited a superior anti-inflammatory
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effect. This lays the foundation for the clinical application
of cell membrane-mimetic nanoparticles loaded with
clinical applications.

Relevance to clinical studies

Over the past years, the development and application of
macrophage-coated nanoparticles have been an increas-
ing number of relevant patents published. As shown in
Table 4, these patents of drug delivery were initially per-
formed by using macrophages to directly carry cargoes.
Subsequently, macrophage membranes were used to
wrap various nanomaterials with more diversified thera-
peutic actions. Then, modified macrophage membranes
were used as the envelope material. These patents show
that macrophage membrane bionic nanoparticles can
combine with other therapy, offering a potential novel
platform for disease treatment. And the mimetic plat-
form was progressing in a more efficient and intelligent
direction in the past years.

Summary and future challenges
Cell membrane cloaking is a potential platform for drug
delivery and therapy strategies. As a type of immune
monocyte cell, macrophages are key factors in the physi-
ological functions and pathology of various diseases.
Macrophage membrane-coated nanoparticles enhance
the retention of the loaded drug. Moreover, macrophage
membrane-coated nanoparticles can target inflamed sites
or tumor sites and neutralize endotoxins, thus achieving
safe and efficient therapeutic effects. This paper reviews
the preparation, characterization, application and clini-
cal challenges of macrophage membrane-coated core
nanoparticles. The mimetic strategy has been studied in
the treatment of cancer, immune disease, atherosclero-
sis, infection, and inflammatory disease. The above dis-
cussion also proves that macrophages are potential cell
membrane donors. It is expected that macrophage mem-
brane cloaking will be translated into clinical trials and
act as an important part in the field of biomedicine.
However, there are many challenges faced in clinical
translation. Firstly, how to obtain macrophage mem-
branes on a large scale under the premise of ensuring
the biological function of membrane proteins. Sec-
ondly, among the currently known coating methods,
including ultrasound, coextrusion and electropora-
tion, the membrane can be successfully coated on the
surface of nanoparticles, but it is difficult to ensure
the coating efficiency in large-scale processing. To
ensure consistent physical and chemical parameters,
the preparation and processing methods of different
nanoparticles are also different. Therefore, it is neces-
sary to further optimize membrane-coated nanopar-
ticle technology and develop a simple, efficient and
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Table 4 Patents of macrophage membrane coating technology
Patent number Patent title Assignee Filing year
CN201711173732.0 Preparation and application of biomimetic drug delivery ~ Southwest University, Chongging, China 2017
system of cell membrane targeting atherosclerotic
lesions
CN201811572702.1 Macrophage vesicle entrapped nano-drug preparation Fudan University, Shanghai, China 2018
and application thereof in treating arthritis
CN201811572702.1 Macrophage vesicle entrapped nano-drug preparation Fudan University, Shanghai, China 2018
and application thereof in treating arthritis
CN201811022034.5 Preparation and application of cytomembrane biomi- China Pharmaceutical University, Jiangsu, China 2018

CN201910888938.4

CN201911242023.2

CN201910806494.5

CN201910964752.2

CN201910610087.7

CN202010033464.8

CN202010405924.5

CN202010510913.3

CN202010555452.1

CN202011226922.6

CN202011212257.5

CN202011638846.X

CN202010975805.3

CN202110800585.5

CN202110628432.7

CN202110478192.7

CN202110969245.5

CN202111171093.0

metic lipoprotein targeted nanometer drug delivery
system

Preparation method for lysosomal membrane coated
nanoparticle

Preparation method and application of macrophage
membrane bionic bismuth selenide nanoparticles

Anti-breast cancer nano-drug and preparation method
thereof

Bionic nano-drug for preventing and treating aortic dis-
section and preparation method thereof

Oxygen self-supply type targeted nano photodynamic
therapy system

Targeted delivery system based on functionalized mac-
rophages/monocytes, and construction and application
of targeted delivery system

Preparation method of double-membrane-coated bionic
nano diagnosis and treatment probe

Multi-targeting fusion cell membrane modified bionic
nano delivery system as well as preparation method and
application thereof

Bionic nano material for sonodynamic/gas synergistic
anti-tumor treatment and preparation method of bionic
nano material

Cantharidin-loaded macrophage membrane encapsu-
lated metal organic framework nanoparticle and prepara-
tion method thereof

Alveolar macrophage-like multifunctional nanoparticle
loaded with aggregation-induced emission photother-
mal material and preparation method and use of alveolar
macrophage-like multifunctional nanoparticle

Bionic nano-drug targeting myocardial infarction locality
and preparation method thereof

Synthesis method of bionic macrophage membrane
nano drug-loaded particles and application of bionic
macrophage membrane nano drug-loaded particles in
new coronavirus pneumonia

Bionic nano hydrogel coated with a macrophage mem-
brane and loaded with manganese dioxide MnO2 and
cis-platinum Pt as well as preparation and application
thereof

Bionic nano-drug co-loaded with JTC801 and DNA meth-
ylated transferase inhibitor and preparation method and
application thereof

Choroidal neovascularization targeting nanoparticle
coated with macrophage membrane and prepara-
tion method of choroidal neovascularization targeting
nanoparticle

Gene editing prodrug system for treating colitis and
application of gene editing prodrug system

Nano-drug for inhibiting injured vascular intimal hyper-
plasia and application of nano-drug

Beijing University of Chemical Technology, Beijing, China
Zhengzhou University, Henan, China

Suxin, Jilin, China

Fudan University, Shanghai, China

Shanghai Jiaotong University School of Medicine, Shang-
hai, China

Xidian University,
Shanxi, China

Nankai University, Tianjin, China

Shanghai Ninth People’s Hospital, Shanghai Jiao Tong
University School of Medicine, Shanghai, China

Mengchao Hepatobiliary Hospital of Fujian Medical
University, Fujian, China

Dalian University of Technology, Liaoning, China

The Fifth Affiliated Hospital, sun yat-sen University,
Guangdong, China

Shanghai Chest Hospital, Shanghai, China
Affiliated Fifth Hospital of Zhongshan University, Guang-

dong, China

Donghua University, Shanghai, China

Zhengzhou University, Henan, China

Chen Zhao, Shanghai, China

Zhejiang University, Zhejiang, China

Chongging University, Chongging, China

2019

2019

2019

2019

2019

2020

2020

2020

2020

2020

2020

2020

2020

2021

2021

2021

2021

2021




Wu et al. Journal of Nanobiotechnology (2022) 20:542 Page 36 of 41
Table 4 (continued)
Patent number Patent title Assignee Filing year
CN202111065311.2  Macrophage membrane coated arginine deiminase/ Chongging Medical University, Chongging, China 2021
catalase/IR780 nanoparticle, preparation method and
application
CN202111275670.0 Bionic nano bait, and preparation method thereof and Shandong University; Suzhou Research Institute, Shan- 2021
application of bionic nano bait in sepsis treatment dong University, Shandong, China
CN202111491404.1 - Hunan University of Chinese Medicine, Hunan, China 2021
CN202111286130.2 - Air Force Medical University, Shanxi, China 2021
CN202110117736.7 - Academy of Military Sciences, Beijing, China 2021
CN202210044973.X  Gold/manganese bionic nano material as well as prepa- ~ Stomatological Hospital of Southern Medical University, 2022
ration method and application thereof in preparation of ~ Guangdong, China
tumor diagnosis and treatment drugs
(CN202210564556.8 - Zhejiang University, Zhejiang, China 2022
CN202210575019.3 - Union Hospital Tongji Medical college Huazhong Univer- 2022
sity of Science and Technology, Hubei, China
CN202210038633.6 Cell membrane coated nano bait for removing pro- Suzhou University, Jiangsu, China 2022

CN202210104890.5

inflammatory factors and inhibiting T cell activation and
preparation method and application thereof

Nanometer delivery system capable of promoting per-
meation, relieving tumor hypoxia and targeting tumor
cells as well as preparation method and application of

nanometer delivery system
CN202210038633.6 -

First Auxiliary Hospital of Chinese People Liberation Navy 2022
Military University, Shanghai, China
Suzhou University, Jiangsu, China 2022

large-scale preparation of new technology. Moreover,
ultralong-term stability studies should be conducted
under different storage conditions to ensure the efficacy
and stability of the product. To our knowledge, mac-
rophage membrane-encapsulated nanoparticles can be
used in a variety of diseases to enhance therapeutic effi-
cacy in vivo and in vitro. However, the biosafety of cell
membranes should be carefully studied before apply-
ing in clinical trials. Firstly, immunogenicity between
immune cell membrane donors and acceptors may lead
to serious safety concerns. Secondly, certain specific
modifications of cell membranes may also lead to some
unexpected side effects. Thirdly, issues about pharma-
cokinetics, safety, and interaction with materials in
the body should be addressed to improve the clinical
translation of macrophage membrane cloaking. More
importantly, there is no formal regulatory standard for
bionic products, so more attention should be given to
the safety and effectiveness of bionic nanoparticles in
humans. Therefore, in future studies, these limitations
must be overcome before such methods can be used as
standards for clinical treatment.
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