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Abstract 

Periodontal tissue is a highly dynamic and frequently stimulated area where homeostasis is easily destroyed, lead‑
ing to proinflammatory periodontal diseases. Bacteria–bacteria and cell–bacteria interactions play pivotal roles in 
periodontal homeostasis and disease progression. Several reviews have comprehensively summarized the roles of 
bacteria and stem cells in periodontal homeostasis. However, they did not describe the roles of extracellular vesicles 
(EVs) from bacteria and cells. As communication mediators evolutionarily conserved from bacteria to eukaryotic cells, 
EVs secreted by bacteria or cells can mediate interactions between bacteria and their hosts, thereby offering great 
promise for the maintenance of periodontal homeostasis. This review offers an overview of EV biogenesis, the effects 
of EVs on periodontal homeostasis, and recent advances in EV-based periodontal regenerative strategies. Specifi‑
cally, we document the pathogenic roles of bacteria-derived EVs (BEVs) in periodontal dyshomeostasis, focusing on 
plaque biofilm formation, immune evasion, inflammatory pathway activation and tissue destruction. Moreover, we 
summarize recent advancements in cell-derived EVs (CEVs) in periodontal homeostasis, emphasizing the multifunc‑
tional biological effects of CEVs on periodontal tissue regeneration. Finally, we discuss future challenges and practical 
perspectives for the clinical translation of EV-based therapies for periodontitis.
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Graphical Abstract

Introduction
An estimated 50% of the world’s adult population is 
affected by periodontitis in its mildest form, and the inci-
dence increases to more than 60% in people over 65 years 
old, which makes periodontitis a disease with the sixth 
highest prevalence [1, 2]. Initiated and propagated by 
dental plaque biofilms, periodontitis can lead to continu-
ous and irreversible destruction of periodontal tissue [3]. 
Left untreated, periodontitis can cause persistent alveo-
lar bone destruction that may lead to tooth loss in adults, 
significantly compromising mastication, speech, and self-
esteem [4]. Moreover, a significant body of evidence has 
indicated that periodontitis affects the overall health of 
patients by increasing the risk for cardiovascular disease, 
Alzheimer’s disease, and diabetes [2, 5]. Several strategies 
involving conventional anti-infection therapy (e.g., scal-
ing or root debridement) or guided tissue regeneration 
have been developed for periodontal bone repair. Unfor-
tunately, while these clinical therapies for periodontitis 
succeed in preventing the progression of disease, they fail 
to restore lost periodontal tissues stably [6].

Tooth-supporting tissues [i.e., alveolar bone, peri-
odontal ligaments (PDLs), cementum and, gingiva] are 
collectively known as the periodontium. To maintain 
the integrity of these tissues upon microbial stimula-
tion, the periodontium undergoes continual remodeling 
[7]. In a healthy periodontal milieu, typical interactions 
between host cells and microorganisms trigger a protec-
tive immune response, contributing to the maintenance 
of periodontal homeostasis. For example, commensal 
bacteria can activate Toll-like receptors (TLRs) on host 

gingival epithelial cells, leading to enhanced production 
of defensins or cytokines that help to maintain oral health 
[8]. However, in periodontal disease, enhanced interac-
tions of host cells with pathogens can cause persistent 
inflammation and ultimately lead to irreversible tissue 
destruction. When the epithelial barrier is breached, 
large volumes of invading bacteria can activate TLRs on 
periodontal immune and nonimmune cells, leading to the 
robust release of many proinflammatory cytokines (e.g., 
PGE2, interleukin (IL)-1β, IL-8, and IL-6) and other bio-
logical mediators [8, 9]. Furthermore, the influx of bac-
teria and uncontrolled proinflammatory cytokines can 
lead to high expression of Receptor Activator for Nuclear 
Factor-κB Ligand (RANKL) in PDL cells and osteoblasts, 
causing irreversible bone destruction [10]. These findings 
clearly demonstrate that cell–bacteria and cell‒cell inter-
actions are major drivers of periodontal homeostasis and 
play key roles in disease progression.

As communication mediators evolutionarily con-
served from bacteria to humans, extracellular vehicles 
(EVs) produced by eukaryotic host cells (CEVs) or bac-
teria (BEVs) play key roles in cell–bacteria, cell‒cell, and 
bacteria–bacteria interactions [11, 12]. EVs constitute a 
group of nanosized structures composed of a lipid mem-
brane comprising diverse proteins, nucleic acids, and 
lipids [12]. Once internalized by neighboring or distant 
cells, EVs can exert positive or negative effects, depend-
ing on their cargoes, quantity, or targeting efficiency [13–
15]. Several reviews presented excellent summaries of 
periodontitis pathogenesis years ago [16–18]. However, 
they did not describe the roles of EVs in the crosstalk 
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between bacteria and host cells, which is critical to peri-
odontal homeostasis. Therefore, a summary of the recent 
advances in uncovering the pathogenesis of periodontal 
disease from the perspective of EVs is urgently needed.

In addition to the roles they play in cellular communi-
cation, CEVs and BEVs can be modified and used as ther-
apeutic agents or diagnostic tools for various diseases 
[19, 20]. Owing to their low immunogenicity, high safety, 
and multifunctional bioactivities, EVs can be applied in 
tissue engineering fields and have therefore attracted 
considerable attention. An increasing number of stud-
ies have demonstrated that stem cell-derived EVs par-
ticipate in immunomodulation and show the potential to 
serve as alternatives to stem cell-based therapies [20–22]. 
Notably, the therapeutic potential of EVs derived from 
adipose-derived stem cells in periodontitis is being inves-
tigated (ClinicalTrials.gov identifier: NCT04270006). 
However, the translation of EVs from the laboratory to 
the clinic remains challenging; for example, techniques to 
isolate large amounts of EVs and treatments with delayed 
EV clearance in vivo are needed [23, 24]. Hence, increas-
ing tissue curative effects by combining EVs with mul-
tiphasic biomaterials is a very active area of research.

Compared with previously published reviews [22], our 
manuscript focuses on the roles of EVs from bacteria and 
cells in periodontal homeostasis, and both the therapeu-
tic and pathogenic roles of EVs in bacteria–bacteria and 
cell–bacteria interactions are summarized. Our review 
begins with a brief overview of the biology of cellular and 
bacterial EVs. Then, the roles of CEVs and BEVs in perio-
dontal homeostasis will be discussed. In this section, the 
pathogenic roles of BEVs in bacteria–bacteria and cell–
bacteria interactions will be presented, focusing on their 
effects on plaque biofilm formation, immune evasion, 
immune activation, and tissue destruction. Afterward, 
the multifunctional biological effects of CEVs in peri-
odontal homeostasis and periodontal tissue regeneration 
will be summarized, emphasizing the multifunctional 
biological effects of CEVs on periodontal tissue regenera-
tion. Finally, the remaining challenges in EV-based thera-
peutic applications and some insightful perspectives on 
the modification and application of EVs to reconstruct 
the periodontium will be briefly introduced, which will 
benefit the development of EV-based therapies for peri-
odontal regeneration in the future.

Biogenesis of CEVs and BEVs
CEV biogenesis
Although CEVs share similar physical characteristics, 
they are highly heterogeneous membrane-bound vesi-
cles that vary in biogenesis, size, and biological responses 
[25]. Following the nomenclature of the International 
Society for Extracellular Vesicles, we use the term CEVs 

for all membrane-bound vesicles generated by cells. 
According to the most up-to-date biogenesis studies on 
CEVs, the three main types are exosomes (40–160 nm), 
microvesicles (50–1,000 nm), and apoptotic bodies (50–
5,000 nm). Exosomes are sequentially formed from early 
sorting endosomes, late sorting endosomes, and multive-
sicular endosomes (MVEs) containing intraluminal vesi-
cles (ILVs). In the final step, MVEs fuse with the plasma 
membrane and release ILVs as exosomes [26]. Microvesi-
cles are produced by direct outward budding and fission 
of the plasma membrane surface [27]. Apoptotic bodies 
are produced during cellular apoptosis (Fig. 1).

BEV biogenesis
Similar to eukaryotic cells, lipid membrane vesicles 
(20–400 nm) can also be secreted by both Gram-positive 
and Gram-negative bacteria. Vesicles generated by bac-
teria can be classically categorized into three types on 
the basis of their structure and composition. (1) Outer 
membrane vesicles (OMVs) are generated by blebbing of 
the outer membrane in Gram-negative bacteria. OMVs 
mainly comprise an asymmetrical lipid bilayer with an 
outer leaflet carrying many lipopolysaccharides (LPSs). 
Due to barriers created by peptidoglycans and the inner 
membrane, OMVs cannot access cytoplasmic contents 
and are therefore enriched with only outer membrane 
proteins and do not carry nucleic acids or cytosolic 
proteins [27, 28]. (2) Outer-inner membrane vesicles 
(OIMVs) are formed when autolysins or endolysins 
degrade the peptidoglycan layer of Gram-negative bac-
teria, allowing the inner membrane to protrude into the 
periplasmic space, which enables cytoplasmic contents 
to enter forming vesicles. Unlike OMVs, OIMVs contain 
two bilayers of membranes: one derived from the inner 
membrane and the other derived from the outer mem-
brane. Among BEVs, they are the sole carriers of DNA 
from Gram-negative bacteria [29]. (3) Cytoplasmic mem-
brane vesicles (CMVs) are generated by Gram-positive 
bacteria, which lack an outer membrane. Hence, CMVs 
contain cytoplasmic contents (Fig. 2) [29, 30]. In this arti-
cle, the term BEVs refers to any type of vesicle released by 
Gram-positive or Gram-negative bacteria.

Pathogenic roles of EVs in periodontal homeostasis
Pathogenic roles of CEVs in periodontal homeostasis
The pathogenic roles of CEVs have been documented in 
a number of diseases, including Parkinson’s disease and 
Alzheimer’s disease [31, 32]. However, the detrimen-
tal effects of CEVs on periodontal homeostasis have not 
been well recognized, and most studies published thus 
far have concentrated on their therapeutic applications 
in periodontitis [33]. The maintenance of periodontal 
homeostasis relies on the host response to the invaded 
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periodontopathogens [34], wherein CEVs play key roles 
in the development of the host response. Periodontitis 
shares common characteristics, including an inflamma-
tory response, aberrant angiogenesis, and tissue destruc-
tion. Recently, emerging evidence has indicated that 
CEVs released by host cells can play negative roles in the 
host immune response and cause aberrant angiogen-
esis and tissue destruction. For example, CEVs released 
from inflamed periodontal ligament stem cells (PDLSCs) 
have been reported to enhance Th17-cell activation while 
inhibiting regulatory T-cell (Treg) activation by target-
ing Sirtuin-1, leading to a Th17-cell/Treg imbalance and 
a proinflammatory response [35–37]. Moreover, CEVs 
from LPS-pretreated periodontal ligament fibroblasts 
(PDLFs) have been found to upregulate the expression 
of tumor necrosis factor (TNF)-α and IL-6 in osteoblasts 
[38]. In addition to the host immune response, aberrant 
angiogenesis is a feature of periodontitis, which is closely 
associated with progressive inflammation. By activat-
ing miR-17-5p/VEGFA signaling pathways, CEVs from 
inflamed PDLSCs significantly promoted tube forma-
tion in a cell model of human umbilical vein endothelial 
cells (HUVECs) [39], indicating that they may contribute 

to anomalous vascularization in periodontitis. With the 
progression of inflammation, tissue destruction is inevi-
table, and there have been reports of EVs being involved 
in tissue degradation. For example, EVs released from 
PDLFs pretreated with LPS have been found to inhibit 
osteogenesis [38]. Furthermore, EVs released from 
biofilm-stimulated gingival epithelial cells significantly 
upregulated MMP-1 and MMP-3 expression in human 
gingival fibroblasts (HGFs). Upregulated MMP-1 and 
MMP-3 in HGFs promoted a tissue-destructive pheno-
type and reduced extracellular matrix (ECM) production, 
leading to increased tissue degradation [40].

In summary, CEVs play essential roles in modulating 
the host immune response and related tissue destruction. 
Despite these findings, the harmful effects of host cell-
derived EVs on periodontitis-induced bone resorption 
are still unknown. Therefore, the pathogenic role of CEVs 
in periodontitis is largely unclear, and more research is 
required to investigate the roles of CEVs in periodontitis 
pathogenesis.

Pathogenic roles of BEVs in periodontal homeostasis
Compared with CEVs, BEVs have been widely recognized 
as carriers of the bacterial virulence repertoire, which 

Fig. 1  Biogenesis of extracellular vesicles (EVs) in eukaryotic host cells. Three types of extracellular vesicles have been characterized to date and 
are shown: apoptotic bodies (50–5000 nm) produced by apoptotic cells, microvesicles (50–1000 nm) formed through outward budding and 
fission of the plasma membrane, and exosomes (40–160 nm) released from eukaryotic cells via the fusion of multivesicular bodies with the plasma 
membrane. ILVs intraluminal vesicles, MVBs multivesicular bodies. Created with BioRender.com
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plays a role in the pathogenesis of various diseases [41–
43]. Indeed, an increasing body of evidence has indicated 
that BEVs generated by periodontopathogens initiate 
and accelerate the progression of periodontal disease by 
delivering a large number of virulence factors, including 
LPS, lipids, and outer membrane proteins, to host cells 
[27]. By interacting with other bacteria and host cells, 
BEVs not only promote the survival and evasion of peri-
odontopathogens, but also exacerbate inflammation and 
cause periodontal destruction [44].

Enrichment of virulence factors
Since BEVs are mainly derived from the membrane of 
bacteria, their structures are composed of phospho-
lipid-rich membranes that can carry large amounts of 
bacteria-derived virulence factors. These virulence fac-
tors include membrane-associated molecules (e.g., LPS 
and gingipain), cytosolic proteins (e.g., peptidyl arginine 
deiminase), and nucleic acids (e.g., RNA and DNA) [45, 
46]. BEVs enhanced the pathogenic effects of their par-
ent bacterial cells by carrying highly concentrated viru-
lence factors [47, 48]. Compared with the effect of parent 

Porphyromonas gingivalis cells, BEVs released from P. 
gingivalis showed much higher invasive activity [49] and 
resulted in higher expression of cytokines, including IFN-
β, IL-12p70, IL-6, IL-10, and TNF-α, in macrophages. 
Moreover, BEVs activated inflammasome formation 
through caspase-11 and led to macrophage pyroptosis, 
but their parent bacteria could not exert similar effects 
[50]. The enhanced pathogenic effects of P. gingivalis 
BEVs are not entirely due to the asymmetric bilayer with 
LPS exposed on the outer leaflet, since they were also 
effective in increasing IL-1β secretion and activating the 
formation of inflammasomes in monocytes, which can-
not be attributed to LPS alone [51]. In addition to P. gingi-
valis BEVs, compared to their parent bacterial cells, BEVs 
from Tannerella forsythia induced higher expression 
levels of monocyte chemoattractant protein-1 (MCP-1), 
IL-8 and IL-6 in PDLSCs and led to higher TNF-α and 
IL-8 expression in macrophages [52].

In summary, periodontopathogens can exert more dev-
astating effects during periodontitis progression when 
virulence factors are enriched in BEVs. However, many 
important but unanswered questions about the increased 

Fig. 2  Formation of distinct bacterial membrane vesicles. Three major types of vesicles are generated by bacteria: OMVs, OIMVs, and CMVs. OMVs 
are produced by the blebbing of the outer membranes by living gram-negative bacteria. They do not access cytoplasmic components. OIMVs are 
generated by membrane fragments of dying and bursting bacteria and contain cytoplasmic components due to endolysin-induced peptidoglycan 
degradation. CMVs are generated by gram-positive bacteria, which lack an outer membrane. OMVs outer membrane vesicles, OIMVs outer-inner 
membrane vesicles, CMVs cytoplasmic membrane vesicles. Created with BioRender.com
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pathogenic effects of BEVs remain. For example, why 
do BEVs generated by periodontopathogens present 
enriched virulence factors, and what are the mecha-
nisms that lead to this enrichment? Further investigation 
is urgently needed to discover the underlying mecha-
nisms of BEV-mediated enrichment of virulence fac-
tors. The answers may contribute to our understanding 
of bacteria-driven diseases, including but not limited to 
periodontitis.

Plaque biofilm formation
Although the etiology of periodontitis is still unknown, 
the formation of plaque biofilms is considered to play 
central roles in initiating and accelerating the develop-
ment of periodontitis [53]. The plaque biofilm-encap-
sulated ECM protects bacteria from various external 
stimuli and countering mechanisms in host cells that 
disperse and eradicate bacteria. Increasing evidence has 
indicated that BEVs participate in plaque biofilm forma-
tion by promoting bacteria–bacteria interactions, aiding 
in bacterial adhesion to host epithelial cells, and pro-
moting the transport of nonmotile bacteria [54]. Due 
to the BEV-packed gingipains or adhesin enrichment, 
P. gingivalis BEVs significantly increased the coaggrega-
tion of other bacteria (e.g., Staphylococcus aureus and 
other Streptococcus spp.) on the tooth surface and in gin-
gival crevices [55]. In addition, P. gingivalis BEVs facili-
tated the attachment and invasion of other bacteria (e.g., 
T. forsythia) on host epithelial cells [56]. Furthermore, P. 
gingivalis BEVs enabled the coaggregation of nonmotile 
bacteria with motile bacteria (e.g., Treponema denticola 
and Lachnoanaerobaculum saburreum), which led to the 
movement of nonmotile bacteria with motile bacteria to 
form polymicrobial biofilms [57]. The aforementioned 
studies support the findings that BEVs from periodon-
topathogens contribute to bacterial aggregation and 
plaque biofilm formation.

Immune evasion
BEVs facilitate bacterial survival by invading the host, 
triggering the host response during periodontitis in 
numerous ways. First, BEVs can serve as decoys, protect-
ing invading pathogens from bactericidal factors such 
as complement system compounds. For example, BEVs 
from either A. actinomycetemcomitans or P. gingivalis 
suppressed the activity of bactericidal factors in human 
serum, and BEVs released from A. actinomycetemcomi-
tans, a complement immune system target, consumed 
complement components in an LPS-dependent man-
ner, thereby shielding the orgnism from the bactericidal 
activity of complement factors [58, 59]. Second, BEVs can 
inhibit the functions of immune cells, thereby facilitating 

bacterial evasion of host immune defense. For exam-
ple, BEVs released from P. gingivalis degraded the LPS-
detecting CD14 receptor on human macrophage-like 
cells, reducing proinflammatory signaling in a gingipain-
dependent manner [60]. Moreover, gingipains in P. gingi-
valis BEVs recognized Toll-like Receptor 4 and activated 
the PI3K/AKT/mTOR pathway in monocytes to induce 
selective TNF deficiency, hampering immune cell rec-
ognition of microbes (Fig.  3A) [61]. Third, in addition 
to evading innate immune cells (e.g., macrophages and 
monocytes), BEVs can facilitate periodontopathogen eva-
sion of adaptive immune cells, such as T cells. Notably, 
small RNAs (similar in size to miRNAs) carried by BEVs 
released from periodontopathogens (e.g., A. actinomycet-
emcomitans or P. gingivalis) suppressed the production of 
certain cytokines, including IL-13 and IL-5, by Jurkat T 
cells, suggesting that signaling molecules carried by BEVs 
mediate immune evasion via bacteria-to-human interac-
tions [62]. In summary, these findings suggest that BEVs 
aid in periodontopathogen evasion of the host immune 
system by serving as decoys to reduce bactericidal factor 
effectiveness and inhibiting the function of immune cells, 
thus favoring the survival of periodontopathogens.

Activation of inflammatory responses
Initiated by plaque biofilm bacteria, periodontitis is 
characterized by persistent tissue-destroying inflamma-
tion [63–65]. Since they can be enriched with virulence 
factors, BEVs can activate and amplify the host immune 
response in a manner similar to their parent bacteria. 
As the first line of defense against infection, the oral 
mucosal epithelium can be activated by BEVs to trigger 
innate immune signalling in multiple ways (Fig. 3B) [66]. 
The surface-exposed LPS or porins/lipoproteins on the 
outer leaflets of OMVs bind to epithelial cell pathogen 
recognition receptors (PRRs), including TLRs, and acti-
vate downstream proinflammatory signaling pathways 
[67]. For example, BEVs released from Filifactor alocis, a 
newly discovered periodontopathogen, activated TLR2 in 
human oral epithelial cells and enabled at least a 1.5-fold 
increase in the expression of proinflammatory cytokines, 
including IL-6, IL-8, G-CSF, GM-CSF, and chemokine 
(C-X-C motif ) ligand-1 (CXCL-1) [68, 69]. When BEVs 
enter epithelial cells, virulence factors (e.g., peptidogly-
can) carried by BEVs can activate an intracellular PRR, 
nucleotide-binding oligomerization domain-containing 
protein 1 (NOD1), leading to innate immune responses in 
epithelial cells [70]. For example, peptidoglycan delivered 
into host cells by BEVs activated NF-κB responses via a 
NOD-dependent mechanism and resulted in increased 
induction of innate immune signaling [71].
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When BEVs pass the oral epithelial barrier (i.e., the gin-
gival epithelium) and enter the underlying submucosal 
tissues, they interact directly with host immune cells, 
such as dendritic cells, monocytes and macrophages [72], 
leading to the activation of innate or adaptive immune 
responses [73, 74]. Similar to those on epithelial cells, the 
PRRs on host immune cells, including TLRs and NOD-
like receptors, recognize BEV-carried danger-associated 
molecular patterns (e.g., LPS, peptidoglycans, proteins 
and nucleic acids) to trigger a cascade of inflammatory 
responses [71, 75, 76]. For example, BEVs produced from 
the periodontopathogenic “red complex”, consisting of P. 
gingivalis, T. forsythia and T. denticola, bound to PRRs on 
macrophages and monocytes, thereby leading to exces-
sive activation of NF-κB and increased TNF-α, IL-1β, and 
IL-8 production [77]. Moreover, the BEVs produced by 
different parent bacterial cells in “red complexes” stimu-
lated PRRs to different degrees. Compared with those 
released from either T. denticola or T. forsythia, BEVs 
released from P. gingivalis induced stronger TLR2- and 
TLR4-specific responses and more moderate responses 
in cells expressing NOD2, NOD1, TLR8, TLR7, and 
TLR4, confirming the dominant roles of P. gingivalis 

and related BEVs in the pathogenesis of periodontitis. 
In contrast, BEVs released from T. denticola or T. for-
sythia induced only weak responses [77]. When entering 
immune cells, the BEVs released from A. actinomycetem-
comitans promoted the induction of cytoplasmic pepti-
doglycan sensor activity and led to NOD1-dependent 
NF-κB activation in monocytes, which significantly 
increased the production of chemokine (C–C motif ) 
ligand (CCL)-5, CXCL-10, IL-6 and macrophage inflam-
matory protein (MIP)-1α [78]. These findings strongly 
suggest that BEVs are important pathogenic factors of 
bacteria, and the roles of BEVs in the development of 
periodontitis may differ from each other. Moreover, the 
ways that BEVs activate PRPs in immune cells deter-
mine downstream immune response signaling. However, 
most of these findings were based on studies performed 
in  vitro, and further investigations under in  vivo condi-
tions are still needed.

Destruction of periodontal tissues
In addition to their activating effects on inflammation, 
periodontopathogens can produce various virulence fac-
tors that are involved in periodontal tissue destruction. 

Fig. 3  Role of extracellular vesicles (EVs) and bacterial extracellular vesicles (BEVs) in the pathogenesis of periodontitis. A The effects of BEVs on 
immune invasion. BEVs can serve as decoys that disrupt the complement system, thereby protecting periodontopathogens from complement 
bactericidal effects. Moreover, BEVs can suppress microbial recognition by macrophages/monocytes by interacting with host cell membrane 
receptors. B BEVs released from periodontopathogens can bind to the pathogen recognition receptors (PRRs) of host cells, including TLR2, TLR4, 
and NOD1, triggering the activation of downstream proinflammatory signalling pathways. C BEVs released from periodontopathogens cause 
periodontal tissue destruction. BEVs can deliver virulence factors, including gingipain and cytolethal distending toxin (CDT), to oral epithelial cells, 
causing cell dysfunction and detachment. Additionally, BEVs can inhibit the osteogenesis of bone marrow stromal cells (BMSCs) and induce the 
osteoclastogenesis of osteoclast precursors, leading to bone tissue destruction. BEVs bacterial extracellular vesicles, PRR pathogen recognition 
receptor, TLR2 Toll-like receptor 2, TLR4 Toll-like receptor 4, NOD1 nucleotide-binding oligomerization domain-containing protein 1, CDT cytolethal 
distending toxin, BMSCs bone marrow stromal cells. Created with BioRender.com
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As mentioned in the previous section, BEVs released 
from periodontopathogens can serve as vehicles for high 
concentrations of toxins, including gingipains and cyto-
lethal distending toxin (CDT), causing dysfunction and 
detachment of host oral cells [79]. For example, P. gingi-
valis BEV-associated gingipains could compromise the 
function of epithelial cells by degrading integrin-related 
molecules and transferrin receptors [80, 81]. Moreo-
ver, the BEV-encapsulated gingipains could disrupt the 
fibronectin-integrin interactions in HGFs, leading to the 
formation of periodontal pockets [82]. CDT is associated 
with cell cycle arrest and apoptosis. The BEV-mediated 
release of CDT killed HGFs, possibly damaging the sul-
cular/junctional epithelium [83]. Apart from negatively 
affecting soft tissue, BEVs can transfer toxic components 
to osteoblasts and osteoclasts, leading to periodontal 
bone dyshomeostasis. By activating the TLR2 down-
stream signaling of the ERK and JNK pathways, BEVs 
released from F. alocis inhibited osteogenic differen-
tiation and increased the RANKL/OPG ratio in bone 
marrow stromal cells (BMSCs) to promote osteoclast dif-
ferentiation, resulting in increased bone resorption [84, 
85] (Fig. 3C). Furthermore, increasing evidence has indi-
cated that BEVs lead to periodontal bone loss indirectly 
by inducing hyperactivation of the immune response. 
BEVs released by F. nucleatum could induce M0-like 
macrophage switching to M1 macrophages, significantly 
increasing the production of proinflammatory cytokines. 
Moreover, in  vivo studies have indicated that F. nuclea-
tum BEVs increased osteoclast numbers and aggravated 
alveolar bone loss in a mouse model of periodontitis [86]. 
Overall, BEVs can transport virulence factors to host 
cells, impairing oral epithelial barrier structure and accel-
erating periodontal bone loss, thereby resulting in peri-
odontal tissue destruction.

Development of systemic disease
Due to protection conferred by vesicle membrane struc-
tures, BEVs can diffuse into the bloodstream, enter host 
cells, and transfer toxic components to distant organs. 
Therefore, BEVs secreted by periodontopathogens not 
only contribute to the development of periodontitis but 
also play relevant roles in the progression of a variety of 
systemic diseases, including Alzheimer’s disease, dia-
betes, and cardiovascular disease, which may explain to 
some extent the involvement of periodontitis in other 
systemic diseases [87, 88].

Mounting evidence has indicated that P. gingivalis 
BEVs are risk factors for cardiovascular diseases such 
as atherosclerosis, wherein endothelial dysfunction, 
endothelial permeability, and calcium deposits  play key 
roles during atherosclerosis development. Compared 

with parent bacteria, nanosized OMVs could easily 
migrate in the blood vessels where the parent bacteria 
cannot reach, causing vascular damage and contributing 
to the atherosclerosis process [89]. P. gingivalis BEVs have 
been reported to aggravate endothelial dysfunction by 
activating Rho kinase-induced ERK1/2 and p38 MAPK 
pathways [90]. Researchers have found that P. gingivalis 
BEVs decreased the expression of the endothelial adhe-
sion molecule PECAM-1 (CD31), leading to enhanced 
endothelial permeability in vitro and in vivo [91, 92]. Fur-
thermore, BEVs secreted from P. gingivalis activated the 
ERK1/2-RUNX2 pathway to induce calcification of vas-
cular smooth muscle cells, thereby accelerating the devel-
opment of atherosclerosis [93].

Alzheimer’s disease, an inflammatory neurodegen-
erative condition, is characterized by myeloid plaques 
and neurofibrillary tangles. Accumulative evidence has 
shown that periodontitis is closely linked to Alzheimer’s 
disease, suggesting that periodontitis may play a role in 
the progression of Alzheimer’s disease via the transfer of 
periodontopathogenic BEVs [94]. For the first time, Han 
et  al. demonstrated that BEVs from A. actinomycetem-
comitans crossed the blood‒brain barrier and reached 
the brains of mice. By delivering extracellular RNA car-
goes, BEVs significantly increased the expression of 
TNF-α [95]. The BEV-mediated integrity loss and perme-
ability of the human blood‒brain barrier have also been 
reported by other researchers [96]. Furthermore, the Han 
et  al. group found that BEVs released from A. actino-
mycetemcomitans could be taken up by brain immune 
cells, such as macrophages and microglial cells. In vitro 
experiments have shown that the extracellular RNA car-
goes carried by BEVs enhanced the expression of IL-6 in 
microglial cells by activating NF-κB pathways [95, 97].

The metabolic disorder diabetes mellitus is char-
acterized by elevated blood glucose. BEVs released 
from P. gingivalis can be delivered to the liver, where 
they accumulate, significantly reducing the synthe-
sis  of  hepatic  glycogen, attenuating insulin sensitivity, 
and resulting in high blood glucose levels. Mechanisti-
cally, gingipains in  P. gingivalis OMVs could negatively 
regulate Akt/GSK-3β pathway activation, thereby atten-
uating insulin sensitivity and glycogen synthesis in liver 
cells [98].

In summary, these studies reveal a novel mechanism 
through which systemic diseases and periodontitis are 
closely related, implying that BEVs play vital roles in the 
association between systemic disease and periodontitis. 
However, clinical evidence and more detailed mecha-
nistic studies are still required to test and validate these 
findings.
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CEV‑based therapeutic applications in periodontal 
regeneration
Periodontitis is characterized by continual and irrevers-
ible destruction of tissues supporting the tooth. Regener-
ating the lost periodontium, including the PDLs, alveolar 
bone, and cementum is the ultimate goal of periodontal 
treatment [3, 99]. Due to their regenerative capability and 
immunomodulatory effects, stem cell-based strategies 
are among the most promising regenerative therapies for 
periodontal regeneration [3, 100, 101]. However, stem 
cell-based therapies are limited due to great challenges, 
including the high cost of cell expansion, uncontrolled 
cell proliferation, the potential for tumorigenesis, and 
immunogenicity [102, 103]. Moreover, maintaining cell 
viability and controlling cell differentiation following cell 
transplantation in situ have yet to be achieved due to the 
complex periodontal microenvironment [104]. Mount-
ing evidence has indicated that the therapeutic effects of 
stem cells are mainly derived from the release of CEVs 
[105, 106], and that  CEVs can recapitulate the thera-
peutic effects of their parent cells [107, 108]. Therefore, 
stem cell-derived EV therapies are potential substitutes 
for stem cell-based therapies [109, 110]. Compared with 
those of their parent stem cells or other biomolecules, 
CEV-based regenerative therapies offer the following key 
advantages: (1) CEV-based strategies pose fewer risks, 
including unwanted transformation and immunogenic-
ity [111]; (2) CEVs exert multifunctional effects to target 
diverse therapeutic mechanisms due to their cargoes, 
including abundant proteins, nucleic acids, and lipids 
(Table 1). Herein, we summarize the multifunctional bio-
logical effects of dental stem cell-derived CEVs on peri-
odontal regeneration.

Anti‑inflammatory effects
The resolution of inflammation is a prerequisite for peri-
odontal tissue regeneration [112]. CEVs released from 
various types of oral stem cells have shown anti-inflam-
matory abilities, contributing to effective periodontitis 
treatment (Fig.  4). For example, CEVs released by stem 
cells from human exfoliated deciduous teeth (SHED-
EVs) repressed IL-6 and TNF-α gene expression in bone 
marrow mesenchymal stem cells (BMMSCs) and pre-
vented alveolar bone loss in mouse models of periodon-
titis [110]. In a similar study based on a murine model of 
periodontitis, CEVs released from PDLSCs decreased the 
production of IL-18, TNF-α, and IL-1β to alleviate bone 
loss in periodontitis. Mechanistically, PDLSC-derived 
CEVs expressed a stable level of miR-590-3p, which can 
suppress TLR4 downstream signaling pathways, thereby 
inhibiting macrophage pyroptosis [113]. In addition, 
CEVs released from dental pulp stem cells (DPSC-EVs) 
induced macrophage polarization to an anti-inflam-
matory phenotype. The immunomodulatory effects of 
DPSC-EVs were mainly the result of miR-125-3p and 
miR-1246 carried by DPSC-EVs. By incorporating chi-
tosan, these DPSC-EVs accelerated the healing of the 
damaged periodontal epithelium and alveolar bone [114, 
115].

Since CEV-encapsulated bioactive molecules, includ-
ing nucleotides, proteins, or lipids manifest the biological 
effects of CEVs, strategies to change the content com-
positions of CEVs may significantly enhance the anti-
inflammatory functions of CEVs. To this end, Nakao et al. 
reported that TNF-α pretreatment increased not only the 
amount of CEVs secreted from gingival tissue-derived 
MSCs (GMSCs) but also the immunomodulatory effects 

Table 1  CEV-based therapeutic applications in periodontal regeneration

CEV origin CEV cargos Involved pathway Administration methods Functional effects Refs

PDLSC miR-590-3p miR-590-3p/TLR4 Local injection Inhibit macrophage pyroptosis [113]

DPSC miR-1246 NF-κB p65, p38 MAPK Chitosan hydrogel Promote anti-inflammatory 
macrophage phenotype

[114]

TNF-α treated GMSC CD73, miR-1260b miR-1260b/Wnt5a/RANKL, JNK Local injection Promote macrophages toward 
M2 polarization, inhibit osteoclas‑
togenesis

[116]

MSC CD73 AKT, ERK Collagen sponge Promote PDL cell migration and 
proliferation

[118]

SCAP Cdc42 – Local injection Promote angiogenesis [119]

SHED Wnt3a, BMP2 AMPK, Wnt/β-catenin, BMP/Smad β-TCP, Local injection Promote osteogenesis and angio‑
genesis, repress inflammatory 
cytokines expression

[110]
[120]
[121]

PDLSC Wnt – β-TCP, Matrigel Promote osteogenesis [123]

LPS-Preconditioned DFC Wnt3a, BMP2 RANKL/ OPG Gelatin/laponite hydrogel Promote PDLC proliferation, 
migration, and osteogenic dif‑
ferentiation, inhibit osteoclast 
formation

[127]
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of GMSC-EVs by inducing a higher anti-inflammatory 
M2 macrophage polarization rate. Mechanistically, highly 
expressed exosomal CD73 in TNF-α-pretreated GMSC-
EVs is responsible for enhanced M2 polarization [116]. In 
another report, cyclic stretch force enhanced the inhibi-
tory effects of PDL-derived CEVs on IL-1β production in 
LPS-stimulated macrophages by suppressing the nuclear 
translocation of NF-κB and the binding of NF-κB-p65 to 
DNA [117]. These findings suggest that preconditioning 
parent cells with periodontitis-related stimuli, including 
mechanical stress and inflammatory factors, is an effec-
tive way to enhance the anti-inflammatory effects of 
CEVs, providing an easy-to-use and effective strategy for 
CEV modification.

Regulation of cell proliferation, migration, osteogenesis, 
and angiogenesis
The proliferation, migration, and differentiation of 
endogenous stem/progenitor cells at an injury site, as 
well as angiogenesis, are indispensable steps in periodon-
tal regeneration (Fig. 4). Chew et al. reported that MSC-
derived CEVs promoted periodontal tissue regeneration 
by increasing cellular proliferation and migration. In vitro 
studies indicated that MSC-EVs activated prosurvival 
AKT and ERK signaling in PDL cells by presenting exoso-
mal CD73 proteins [118]. In addition to MSC-EVs, CEVs 
derived from stem cells in apical papilla (SCAP-EVs) 

promoted the migration of HUVECs by transferring 
cell division cycle 42 (Cdc42) to these cells. As a result, 
SCAP-EVs accelerated palatal gingiva regeneration by 
promoting angiogenesis [119]. SHED-EVs have also been 
reported to promote the proliferation and migration of 
HUVECs and BMSCs and to enhance the angiogene-
sis-related differentiation of HUVECs and osteogene-
sis-related differentiation of BMSCs [120]. Additional 
mechanistic investigations suggested that the bioactivi-
ties of SHED-EVs were mainly due to the encapsulated 
Wnt3a and BMP2. By increasing nuclear β-catenin pro-
tein abundance and upregulating Smad1/5/8 phospho-
rylation, SHED-EVs activated Wnt/β-catenin and BMP/
Smad signaling in stem cells respectively, and signifi-
cantly promoted the osteogenic differentiation of BMSCs 
[120, 121]. In addition to engagement with osteogenic 
differentiation, miR-26a in SHED-EVs could promote 
angiogenesis via the TGF-β/SMAD2/3 pathway [122]. 
The combination of SHED-EVs with a β-TCP scaffold 
induced both neovascularization and new bone forma-
tion, thus promoting alveolar bone regeneration in a rat 
model of periodontal defects [120]. The biological effects 
of PDLSC-EVs (PDLSC-EVs) have been extensively inves-
tigated. In a rat model of periodontitis, PDLSC-EVs 
restored the osteogenic differentiation ability of PDLSCs 
in inflamed periodontal tissue by activating the Wnt sign-
aling pathway, thereby accelerating bone healing [123]. 

Fig. 4  The bioactive effects of CEVs and their cargoes on anti-inflammatory responses, angiogenesis, cell migration and proliferation, and 
osteogenesis. Functional nucleic acid and protein cargoes carried by CEVs are classified into four panels on the basis of their effects. Created with 
BioRender.com
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By carrying miR-1246, CEVs induced angiogenesis by 
activating Smad 1/5/8 signaling [124].

The pro-osteogenic or pro-angiogenic effects of MSC-
EVs can be enhanced via modification of their parent cells 
before CEV isolation. These modifications mainly include 
gene modifications, mechanical stimulation, and inflam-
mation preconditioning. For example, Xu et  al. recently 
showed that CEVs secreted by P2X7 receptor-encoding 
gene-modified PDLSCs rescued inflammation-impaired 
osteogenesis of PDLSCs. Gene modification could 
increase the abundance of miR-6747-5p, miR-6515-5p, 
and miR-3679-5p in CEVs, which could bind to the 
GREB-1 protein in different ways [125]. Lv et  al. found 
that CEVs derived from osteocytes exposed to mechani-
cal strain induced significantly increased proliferation of 
PDLSCs through the activation of miR-185b-5p/PTEN/
AKT pathways and promoted osteogenic differentiation 
mediated via BMP/Runx2 in an inflammatory environ-
ment [126]. CEVs released from LPS-pretreated dental 
folic cells (DFCs) facilitated the migration, proliferation, 
and osteogenic differentiation of inflamed PDLSCs, 
accelerating periodontal regeneration in an inflamma-
tory microenvironment [127]. Our group indicated that 
CEVs secreted by dental pulp stem cells compromised 
by periodontitis significantly enhanced angiogenesis via 
miR-378a they carried. Angiogenesis-related microR-
NAs (miRNAs) carried by CEVs could an silence Sufu 
expression in endothelial cells and activate Hedgehog/
Gli1 signaling to stimulate endothelial cell proliferation, 
migration, and tube formation [128, 129].

Collectively, these studies highlight the multiplica-
tivity of CEVs in regulating the behaviors of stem cells. 
Moreover, the bioactive effects of CEVs, such as pro-
osteogenic and pro-angiogenetic effects of CEVs, can 
be modified and enhanced by preconditioning paren-
tal cells. Given that tissue regeneration is a complex 
and cascading process requiring coordinated control 
of multiple factors (e.g., cell migration, differentiation, 
and angiogenesis), CEVs represent promising agents for 
regenerative medicine, including but not limited to peri-
odontal regeneration.

The prospects for BEV‑based therapeutic 
applications in periodontal regeneration
Although the pathogenic roles of BEVs in periodontitis 
have been widely studied and recognized, the potential 
applications of periodontopathogen-derived BEVs are 
still in their infancy. Compared with stem cell-derived 
EVs, BEVs show unique advantages  such as cost-effec-
tive production. Large-scale isolation and purification 
of CEVs require extensive labor and time costs, which 
has hindered their clinical translation. In contrast, 
BEVs can be easily produced in cost-effective ways via 

large-scale cultivation of bacteria [130]. Specifically, 
bioreactors and hypervesiculating mutant strains have 
been successfully developed to increase the produc-
tion of BEVs [131, 132]. To achieve widespread clinical 
use in periodontitis, a nonlife-threatening disease with 
a high prevalence, the treatment must be both cost-
effective and scientifically sound [6]. From this point of 
view, the low cost and large-scale production of BEVs 
make BEV-based therapies more promising for peri-
odontitis treatment.

As a bacteria-driven disease, periodontitis can be 
treated by abrogating the survival of periodontopatho-
gens and preventing the formation of plaque biofilms. 
Due to the impermeability of the host cell membrane to 
antibiotics, working concentrations of antibiotics fail to 
kill intracellular bacteria [133, 134]. Notably, the peri-
odontopathogens P. gingivalis and A. actinomycetem-
comitans were grown intracellularly in human buccal 
epithelial cells [135], and antibiotics alone did not elim-
inate them [136]. Due to their high permeability with 
respect to host cells, BEVs can kill intracellular patho-
gens more effectively than antibiotics [137]. Compared 
with soluble antibiotics, such as gentamicin, BEVs have 
more killing power by delivering autolysin and pepti-
doglycan hydrolases [138, 139]. In addition, BEVs can 
be employed for antibiotic drug delivery to enhance the 
uptake of antibiotics, leading to superior antibacterial 
efficiency of conventional antibiotics [137]. Therefore, 
we suggest that BEVs be employed for antibiotic drug 
delivery or as potential antibacterial substances for 
effectively  killing intracellular periodontopathogens. 
Moreover, BEVs can prevent the formation of plaque 
biofilms by inhibiting bacterial adhesion to host cells, 
further alleviating antibiotic resistance development 
[140]. Specifically, adhesins in BEVs inherited from 
their parent bacteria can inhibit bacterial adhesion 
to host cells. For instance, BEV-coated nanoparticles 
derived from Helicobacter pylori effectively inhibited 
H. pylori adhesion to gastric epithelial cell tissues in a 
dose-dependent fashion [141].

With bioengineering or detoxification, OMVs can 
also be used as biological carriers for vaccines. It has 
been reported that P. gingivalis OMVs retain the immu-
nodominant determinant of P. gingivalis, as demon-
strated by the increased production of salivary IgA, 
serum IgG and IgA in mice following intranasal admin-
istration [142]. The mucosal immune response elicited 
by P. gingivalis OMVs could further enhance the clear-
ance of P. gingivalis in an oral infection model [143]. 
The strong immunogenicity of P. gingivalis OMVs is 
mainly derived from LPS and A-LPS-modified proteins 
in OMVs, and absorption of serum with LPS results 
in a dramatic reduction in immmunoreactivity [144]. 
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Despite these progresses, the application of OMVs as 
vaccination is still in its infancy and extensive work 
is required to decrease their side effects.

Challenges and future directions
The lack of standard and cost-effective methods for 
separating and purifying EVs represents a major bar-
rier to EV-based therapies. Methods currently used to 
separate and purify EVs include ultracentrifugation, 
precipitation, ultrafiltration, chromatography, and 
immunoaffinity capture. Among these methods, sepa-
rating EVs by ultracentrifugation is the gold standard 
method. However, from a clinical-scale manufacturing 
perspective, ultracentrifugation is not ideal because 
of its low productivity and purity outputs [24]. Tan-
gential-flow filtration (TFF), a method for concentrat-
ing EVs from a medium based on size, is a promising 
method. Compared with ultracentrifugation, TFF con-
centrates up to 100-fold more EVs while enhancing the 
removal of unwanted albumin [145, 146]. Among the 
reported methods for EV purification, immunoaffinity 
capture might be the most promising method since it 
is based on antibody-coupled magnetic beads and can 
yield highly purified EVs [147]. Due to the heteroge-
neity of EVs, the surface protein composition of EVs 
with various origins can be quite different [148–150]. 
Among the reported surface markers, transmembrane 
proteins such as CD9, CD63, and CD81 have been 
widely utilized for immunoaffinity-based EV extraction 
[151]. Future EV manufacturing methods require both 

high yield and high purity, and a combined separation/
purification approach may be better than single-step 
procedures. Therefore, among these methods, com-
binations of TFF and immunoaffinity capture or other 
steps for high purification represent the best methods 
to produce clinical-grade EVs.

The rapid clearance of EVs following systemic admin-
istration is also a challenge for EV-based regenerative 
strategies and cannot be ignored. After systemic admin-
istration, EVs can be cleared rapidly in the body, and 
most EVs cannot reach target sites to exert their bioactive 
effects [152]. Prolonging the retention of EVs in a desired 
area by immobilizing  EVs  within biomaterials may 
enhance EV therapeutic efficacy. Specifically, anchoring 
EVs in biomaterials can extend their bioactivity follow-
ing administration, control their release, and potentially 
improve therapeutic efficacy [153–155]. More impor-
tantly, given the complexity of periodontal regeneration, 
which includes the oriented insertion of newly formed 
periodontal ligaments in bone and cementum, EVs alone 
cannot coordinate the signaling regulation needed during 
the aligned formation of the bone–ligament–cementum 
complex. However, well-designed multiphasic scaffolds 
with precise compartments for tissue regeneration and 
integration are promising for mediating spatiotemporal 
events during periodontal regeneration [156, 157]. There-
fore, we believe that advanced multiphasic biomaterial 
scaffolds combined with spatiotemporally released bioac-
tive EVs represent a potential application for periodontal 
regeneration.

Fig. 5  The roles of cell-derived extracellular vesicles (CEVs) and bacteria-derived extracellular vesicles (BEVs) in periodontal homeostasis. BEVs 
released from periodontopathogens contain virulence factors resulting in immune evasion, inflammation activation and tissue destruction. BEVs 
can also be used as biological carrier for vaccines and antibiotic drugs. CEVs released from cells contain bioactive cargos which can exert multiple 
biological effects, such as anti-inflammation, pro-migration & proliferation, pro-angiogenesis, and pro-osteogenesis. However, CEVs could also exert 
pathogenic effects under certain conditions. Created with BioRender.com
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In most studies, the pathogenic roles of EVs in peri-
odontitis are recognized based on in  vitro cell culture 
systems. Therefore, in  vivo experiments are urgently 
required to provide strong evidence of their effects. 
Moreover, most studies use bulk separation of hetero-
geneous EVs obtained from culture medium or clinical 
samples to analyze the biological effects of EVs; however, 
effects due to the heterogeneity of the biology, structure, 
and function of single vesicles are generally not consid-
ered in these studies. Recent technological advances with 
in vivo imaging and single-vesicle analysis have enabled 
researchers to overcome these two main limitations and 
provide us with novel tools to study the roles of EVs in 
periodontal homeostasis at the single-vesicle level [148, 
158]. Advancing our knowledge regarding the role of 
EVs in periodontal homeostasis based on these advanced 
approaches can shed new light on treatment options for 
periodontal disease.

Conclusion and perspective
Overall, since EVs secreted by bacteria or cells play key 
roles in the interaction between the bacteria and host, 
the role of EVs in maintaining periodontal homeostasis 
is unquestionable. In this article, we thoroughly reviewed 
the pathogenic and therapeutic roles of BEVs and CEVs 
in periodontal homeostasis. By delivering different viru-
lence factors, BEVs released from periodontal patho-
gens are envisaged as important missing pieces needed 
to reveal the imbalance in periodontal homeostasis and 
factors in periodontal disease progression. The multi-
functional bioactivities of CEVs provide novel avenues 
by which to regain the loss of periodontal homeostasis 
and promote periodontal regeneration (Fig.  5). Despite 
great progress, the clinical translation of EVs is still in 
its infancy due to longstanding challenges, such as a lack 
of cost-effective production and rapid clearance in vivo. 
With the development of advanced biomaterials, the 
combination of EVs and multiphasic scaffolds holds great 
promise for periodontal regeneration.
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