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Abstract 

....With the development of nanomedical technology, the application of various novel nanomaterials in the biomedi-
cal field has been greatly developed in recent years. MXenes, which are new inorganic nanomaterials with ultrathin 
atomic thickness, consist of layered transition metal carbides and nitrides or carbonitrides and have the general 
structural formula Mn+1XnTx (n = 1–3). Based on the unique structural features of MXenes, such as ultrathin atomic 
thickness and high specific surface area, and their excellent physicochemical properties, such as high photothermal 
conversion efficiency and antibacterial properties, MXenes have been widely applied in the biomedical field. This 
review systematically summarizes the application of MXene-based materials in biomedicine. The first section is a brief 
summary of their synthesis methods and surface modification strategies, which is followed by a focused overview 
and analysis of MXenes applications in biosensors, diagnosis, therapy, antibacterial agents, and implants, among other 
areas. We also review two popular research areas: wearable devices and immunotherapy. Finally, the difficulties and 
research progress in the clinical translation of MXene-based materials in biomedical applications are briefly discussed.
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Introduction
With the development of biomedicine and nanobiotech-
nology, diverse novel inorganic nanosystems have been 
generated, which enable multiple theranostic modalities, 
such as synergistic therapy and multimodal imaging, to 
be offered as potential alternatives in combating various 
diseases, especially cancer. Recently, a variety of two-
dimensional (2D) nanomaterials, which are a subtype of 
nanomaterials with ultrathin layer-structured topology, 
have attracted great interest, including graphene and its 
derivatives, transition metal dichalcogenides (TMDCs), 
transition metal oxides transition metal oxides (TMOs), 
and transition metal carbides (MXenes). Due to their 
excellent multifaceted characteristics, such as high spe-
cific surface area, unique physicochemical properties, 
controllable electronic and mechanical properties, and 
tunable lateral size, novel two-dimensional nanomaterials 
are used in numerous applications and fields of research, 
such as biomedicine, energy storage, device fabrication 
and generation, and electronics [1–4].

MXenes are a new group of 2D inorganic materials 
with ultrathin atomic thicknesses that are composed of 
layered transition metal carbides and either nitrides or 
carbonitrides [5–7]. They share the simple structural 
formula Mn+1Xn Tx(n = 1–3), where M is an early transi-
tion metal (e.g., Ti, Nb, Cr, Ta, V, Sc, or Mo); X is carbon, 
nitrogen, or both [8–11]; and Tx represents the surface 
terminations (e.g., O, OH, F, and/or Cl) [12, 13], which 
form laminated structures with anisotropic properties 
(Fig. 1). The coordination ranges of these surface termi-
nations can determine the surface properties of MXenes, 
of which the high coordination activities enable further 
surface functionalization of MXenes. MAX phases are 
layered hexagonal (space group P63/mmc) stucture, 
where near-close-packed M-layers are interleaved with 
pure A-group element layers and X-atoms fill the octahe-
dral sites between the M-layers [14]. In MAX phases, the 
M-X bond possesses both metallic properties and cova-
lent bonding, whereas the M-A bond is metallic. Thus, 
the M-A bond is weaker than the M-X bond and more 
chemically active [15]. Therefore, the Mn+1Xn structure 
can be obtained by selectively etching the A-layers from 
the precursor ternary-layered carbides of MAX phases, 
where A represents a group of 12–16 elements of the 
periodic table. Recently, another emerging family of 2D 
materials, 2D transition metal borides, has also attracted 
a great deal of attention and was named ’MBenes’ in its 
early stages of discovery due to its perceived similarity to 
earlier MXenes [16, 17].

In 2011, Gogotsi et  al. [14] produced multilayered 
Ti3C2Tx by etching Ti3AlC2 with hydrofluoric acid (HF) 

acid at room temperature, which was the first MXene. 
Since then, approximately 250 MXenes with various 
metal elements, C/N pairs, and surface terminations 
have been theoretically predicted in silico, while only 
approximately thirty species of MXenes have been suc-
cessfully synthesized via experimental methods [19]. 
After the first observation, Rasoo et  al. discovered in 
2016 that 2D Ti3C2Tx can be used as antibacterial mate-
rials [20].

MXenes, which are novel 2D nanomaterials, have 
inherited many advantages of common 2D nanomateri-
als, such as extreme thinness, large specific surface area, 
high surface-to-volume ratio, and mechanical tough-
ness. Additionally, abundant surface-terminating func-
tional groups (e.g., hydroxyl (–OH), fluorine (–F), and 
oxygen (–O)) are present on their surfaces, which pro-
vide many active sites. This structure endows MXenes 
with hydrophilicity, provides abundant reactive sites for 
drug loading and enables flexible surface modification, 
functionalization, and scalable processability. Compared 
to conventional photosensitizers (PSs), MXene-based 
materials have strong absorption in both the first and 
second NIR biowindows and high light-to-heat con-
version efficiency, thereby enabling their application in 
both photodynamic therapy (PDT) and photothermal 
therapy (PTT). Moreover, due to its excellent structural, 
biocompatible and electrical properties, MXene has 
attracted much attention in the development of biosen-
sors. MXenes are highly desirable for application in vari-
ous types of advanced biosensors, including fluorescent/
optical, electrochemical and biocompatible field-effect 
transistor biosensors. And their properties are enhanced, 
by modifying the surface to augment MXenes character-
istics or by combining them with other nanomaterials 
[21, 22]. Furthermore, studies have also demonstrated 
that several MXenes are biocompatible and nontoxic to 
living organisms, thereby opening new doors for appli-
cations in implants [23, 24]. In conclusion, with various 
surface modifications and functionalizations, MXene-
based materials have great potential for various biomedi-
cal applications.

In this review, we aim to systematically summarize 
recent advances in MXene-based materials in biomedical 
applications. We review and discuss MXenes synthetic 
methods and surface chemistry, along with functionali-
zation strategies. Afterward, we provide a detailed intro-
duction to the biomedical applications of MXenes in 
various areas, including biosensors, diagnosis, implanta-
tion, antibacterial materials, and immunotherapy, among 
others. At the end of the review, we discuss the current 
challenges and future prospects of MXene-based materi-
als in biomedical applications.
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Preparation of MXenes
Preparation methods for MXenes, which are a new fam-
ily of 2D nanomaterials, have been extensively developed 
since the first discovery (Ti3C2Tx) in 2011 by selective 
etching of the MAX precursor (Ti3AlC2) [14]. Generally, 
MXenes are obtained by eliminating the A-layers from 
their layered precursor MAX phases via selective etching. 
Recently, with further research on synthetic methods of 
MXenes, many methods have been developed, which can 
be divided into two main routes: a top-down approach 
that is based on direct exfoliation of multilayer bulk 
crystals and a bottom-up approach in which 2D ordered 
structures are grown from molecules/atoms. Moreover, 

to improve the properties of MXenes and endow them 
with new functionalities to meet the requirements of fur-
ther biomedical applications, various surface modifica-
tions and functionalizations have been developed.

Top‑down approach
The top-down method is based on the direct exfolia-
tion of bulk parent materials while retaining the original 
integrity. To remove van der Waals interactions between 
the stacked layers of the bulk parent materials, various 
driving forces are employed, including mechanical and 
chemical exfoliations.

Fig. 1  a Elements in the Periodic table that are known to form Mn+1AXn phases. b Structure of MAX phases and the corresponding MXenes. c (i) 
SEM images of Nb2AlC ceramic bulk (MAX phase). (ii) SEM image of multilayer Nb2CTx. (iii) Dark-field TEM image of single-layer Nb2CTx. Reproduced 
with permission from Ref. [18], © John Wiley and Sons 2017
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Based on precursors
Based on the types of precursors, the preparation meth-
ods of MXenes can generally be divided into MAX-phase 
and non-MAX-phase methods. Eliminating the A-layers 
from the precursor MAX phases via selective etching is a 
typical method for producing MXenes. The typical prep-
aration process is selective etching of the A-layer using 
an etchant at a suitable concentration for a specified time 
period, centrifugation or filtration to separate solid par-
ticles, and finally, sonication to obtain isolated sheets or 
monolayers. A typical example is the synthesis of the first 
Ti3C2Tx by Naguib et  al. by selectively etching Ti3AlC2 
with HF solution at room temperature (Fig. 2) [14].

In recent years, MXene synthesis from non-MAX 
phase precursors was also reported to produce MXenes. 

For instance, the synthesis of Mo2CTx, which was the 
first Mo-based MXene, from a non-MAX phase precur-
sor by selectively etching Ga layers from Mo2Ga2C with a 
50% concentrated HF solution was reported [25]. In con-
trast to any known MAX phase, two A-layers of Ga are 
stacked between the Mo2C layers. Comparing the X-ray 
diffraction patterns of Mo2Ga2C and Mo2CTx before and 
after the etching treatment (Fig. 2b), there is a significant 
reduction in the peak intensity of the impurity phase 
(Mo3Ga) from Mo2Ga2C, which indicates that this phase 
was largely dissolved during the etching process. A TEM 
image that was captured after HF etching (Fig. 2c) shows 
clear delamination, thereby indicating that the A-layer 
was removed. YCx that is derived from the non-MAX 
phase precursor YAl3C3 is another example, where the 

Fig. 2  a Schematic diagram of the preparation process of Ti3AlC2. Reproduced with permission from Ref. [14], © American Chemical Society 2017. 
b Symmetric 2θ X-ray diffractograms of Mo2Ga2C film before and after HF etching. Reproduced with permission from Ref. [25], © Elsevier 2015. c A 
higher magnification TEM micrograph of a Mo2Ga2C thin film after etching in 50% HF (aq). Reproduced with permission from Ref. [25], © Elsevier 
2015. d SEM images of the 2D Zr3Al3C5 after HF treatment. Reproduced with permission from Ref. [26], © Elsevier 2020. e X-ray diffractograms of 
YAl3C3 before and after HF treatment. Reproduced with permission from Ref. [26], © Elsevier 2020
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Al-C layers need to be etched instead of pure Al layers 
in the typical method [26]. An SEM image of YAl3C3 that 
was captured after HF treatment shows an obvious grain 
with an accordion morphology (Fig.  2d), which is simi-
lar to the morphology of the previous MXene that was 
synthesized based on the MAX phase. Comparing the 
X-ray diffraction patterns of YAl3C3 before and after HF 
treatment (Fig. 2e), the significant reduction of the corre-
sponding Al signal after etching indicates the removal of 
the Al layer from the original crystal structure.

Based on delamination intercalants
In general, the synthesized MXenes are multilayered and 
require further processing to obtain monolayer MXenes. 
Currently, the methods of delamination of multilayer 
MXenes are divided into two types: mechanical exfo-
liation and delamination by intercalation. The interac-
tion between the multilayered MXenes that is produced 
by etching is so sticky (the interlayer interaction is 
approximately 2–sixfold stronger than that of graphite 
or bulk MoS2 [27]) that it is not efficient enough to pro-
duce single-stack MXenes by simple mechanical exfo-
liation [28]. In addition, prolonged sonication may have 
a negative effect on lamellar structures, decrease the 
size of MXene sheets and even increase the defect rate 
of MXenes [29, 30]. Therefore, the use of intercalants is 
suggested to decrease the interlayer spacing and weaken 
the interactions between MXene layers, thereby subse-
quently increasing the yield of delamination [29, 31]. The 
intercalators that are widely used for the intercalation of 
MXenes can be commonly classified into two main types: 
organic intercalants and ionic aqueous solution intercal-
ants. The organic intercalants include polar organic mol-
ecules (e.g., DMSO [32], isopropylamine [32, 33], urea, 
and hydrazine) and large organic base molecules (e.g., 
TBAOH [34, 35], TPAOH [36], n-butyllithium [37], and 
choline hydroxide). The ionic aqueous solution intercal-
ants include metal hydroxides or halide salts in aqueous 
solutions, which are suitable for the delamination of large 
MXenes [38].

Based on etchants
In terms of etchant composition, we can classify the 
preparation methods into HF-etching and non-HF-etch-
ing approaches.

HF etching  The MXene synthesis methods of the first 
type involve the application of aqueous HF acid at a suit-
able concentration within a specified time period, which 
are typically used to produce multilayered MXenes that 
are stabilized through hydrogen bonding and van der 
Waals interactions. In this process, layered MAX phase 
powders are stirred with aqueous HF acid at room tem-

perature. As a result, the A-layers of the MAX phase can 
be selectively and easily removed, and M–A bonds are 
replaced by weak interactions of Tx terminations such as 
hydroxyl (–OH), fluorine (–F), and oxygen on the surfaces 
of multilayered MXenes. Then, multilayered MXenes are 
easily delaminated and intercalated through delamination 
intercalant intercalators or sonication treatment to fabri-
cate single-layer MXenes.

According to several studies in recent years, various 
etching parameters, such as temperature, etching time 
and HF etchant concentration, play a determinant role in 
the quality of the prepared MXene nanosheets [39–41]. 
Gogotsi et  al. demonstrated that an excessively high 
concentration of HF etchant generates more defects in 
Ti3C2Tx MXenes but an excessively low concentration 
cannot form accordion-like structures (Fig.  3) [39, 40]. 
Mn+1XnTx recrystallizes or decomposes at high tempera-
tures [41]. To obtain favorable nanosheets, various types 
of Mn+1AlXn require different etching parameters [39, 
42]. Moreover, different wet techniques can create differ-
ent surface properties, thereby resulting in the generation 
of MXenes with various characteristics.

Since Ti3SiC2 has remarkable tolerance to bases and 
strong acids (including HF), Ti3C2Tx cannot be produced 
by etching Ti3SiC2 in HF or other etchants [43]. Gogotsi 
et al. recently developed a new method for the large-scale 
synthesis of Ti3C2 via oxidant-assisted selective etching 
of silicon from Ti3SiC2, which greatly widens the range of 
precursors for MXene synthesis [44]. It was shown that 
various HF oxidants (e.g., HF/H2O2, HF/(NH4)2S2O8, HF/
KMnO4, HF/FeCl3, and HF/HNO3) can be employed to 
etch Si layers from Ti3SiC2 to produce Ti3C2Tx (Fig.  3), 
which has the same structure as Ti3C2Tx that was derived 
from Ti3AlC2, as confirmed by microscopy.

Non‑HF‑etching  Although HF is widely and effectively 
utilized for MXene synthesis, it is highly corrosive and 
harmful to humans and the environment [15]. A trace 
amount of remaining HF during the etching process could 
induce cell death, thereby harming the health of biologi-
cal organisms. Therefore, studies have increasingly started 
to explore the preparation of MXenes by non-HF etching 
methods.

One approach is to use the HF that is formed in  situ 
through the reaction of acids with fluorides (usually 
HCl/LiF and HCl/NaF) to selectively etch the A-layer. 
Although the properties of MXenes that are synthesized 
by this method are similar to those of MXenes that are 
prepared using HF, the synthesis process is less hazard-
ous, and the in situ HF etching method avoids the toxic-
ity of MXenes during the synthesis process. Ghidiu et al. 
used a mixture solution of HCl and LiF in which Ti3AlC2 
powders were selectively etched at 40  °C for 45  h to 
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prepare Ti3C2Tx, which was a safer and faster route for 
fabricating MXenes at high yield [45]. As observed by 
transmission electron microscopy (TEM) of Ti3C2Tx, the 
synthesized Ti3C2Tx had fewer defects.

MXenes can also be obtained by another safe and 
effective method with weakly acidic and environmen-
tally friendly bifluoride etchants, such as KHF2, NaHF2 
and NH4HF2. Yu et  al. successfully synthesized Ti3C2Tx 
MXenes with large interplanar spacing by etching 
Ti3AlC2 with bifluoride (NaHF2, KHF2, and NH4HF2) 
in a single-stage process [46]. During the etching pro-
cess, NH4+ Na+, or K+ ions enter the interlayer space of 
MXenes, further enlarging the interplanar spacing and 
promoting the delamination efficiency. Natu et  al. also 
experimentally demonstrated that Ti3C2Tx flakes rich in 
fluorine terminations can be obtained by etching with 
NH4HF2 in an organic polar solvent [47].

Compared to Mn+1AlCn, Al atoms are more strongly 
bonded in Mn+1AlNn; thus, more energy is required for 
their removal. Mn+1AlNn is less stable and might dissolve 
in HF solutions [48]. For these reasons, it is difficult to 
eliminate the A-layer from nitride-based MAX phases. 
The third approach is to use molten fluorides with the 
assistance of high-temperature heating. Under these con-
ditions, the free F− is active enough to etch the A-layer 
from the MAX phase. In 2016, Urbankowski et al. heated 
Ti4AlN3 in a eutectic fluoride salt mixture (59 wt% KF, 29 
wt% LiF and 12 wt% NaF) under an argon (Ar) atmos-
phere at 550 °C for 30 min and obtained the first nitride-
based MXene (Ti4N3Tx) [49]. In 2020, Kamysbayev et al. 
synthesized bromide-terminated MXenes by etching the 
MAX phase in molten CdBr2. In contrast to the strong 
Ti-F and Ti–O bonds that are produced by etching with 

conventional methods (e.g., HF), which have difficulty 
performing post-synthesis covalent surface modifications 
of MXenes, they demonstrated that the labile surface 
bonds of Cl- and Br-terminated MXenes render them 
more readily available as versatile synthons for further 
chemical transformations [8].

Studies [28, 50, 51] have shown that the etchant is an 
important factor in determining the surface termina-
tion of MXenes. For example, fluorine-containing etch-
ants can increase the abundance of F on the surface of 
MXenes, thereby leading to decreases in the abundances 
of other functional groups, such as oxy groups and 
hydroxyl groups. Thus, MXenes that are prepared using 
fluorine-containing etchants usually require further 
modification before biomedical application. To facilitate 
the preparation of MXenes for biomedical applications, 
etching with fluorine-free etchants can be performed 
to produce controllable functional surface termination 
of MXenes. Recently, many HF-free methods have been 
applied to produce MXenes. In 2017, fluorine-free syn-
thesis of MXenes was reported by Urbankowski et  al. 
[50]. In this study, V2NTx and Mo2NTx were converted 
from V2CTx and Mo2CTx via ammonification at 600 °C, 
in which the C atoms were replaced by N atoms. The pro-
duced Mo2N retained the structure of the MXenes, while 
V2CTx transformed into a mixed layered structure of 
cubic VN and trigonal V2NTx. In 2018, Li et al. reported 
the synthesis of Ti3C2Tx by 27.5  M NaOH at 270  °C, 
thereby providing an alkali‐etching strategy for synthesiz-
ing new MXenes. In 2019, Hao et al. synthesized Ti2CTx 
by E-etching with a composite electrode, which provided 
a universal strategy for synthesizing MXenes based on a 
thermal-assisted electrochemical etching route [51].

Fig. 3  SEM images of MAX and MXene powders. SEM images of multilayer Ti3C2Tx powders synthesized by etching with 30 wt% (a), 10 wt% (b) and 
5 wt% HF (c) [39]. d SEM images of Ti3AlC2(MAX) powder [39]. SEM images of Ti3C2Tx powders synthesized with ammonium hydrogen fluoride (e) 
and 10 M LiF in 9 M HCl (f). Reproduced with permission from Ref. [39], © American Chemical Society 2017. g SEM images of Ti3C2Txgenerated by 
(HF/H2O2)-treated Ti3SiC2 [44]. h A cross-sectional SEM image of Ti3C2Tx films made by vacuum-assisted filtration of a colloidal solution of Ti3C2Tx in 
TMAOH. Reproduced with permission from Ref. [44], © John Wiley and Sons 2018
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MQDs
Compared to 2D MXenes, MXene-derived quantum dots 
(MQDs) exhibit superior properties, including easier 
functionalization, more attractive electronic and mag-
netic properties, and excellent photoluminescence (PL) 
properties because of their higher surface area (namely, 
lateral size of usually < 10 nm) and forceful quantum con-
finement effect while inheriting the advantages of 2D 
MXenes [52]. Currently, hydrothermal methods are con-
sidered to be the most common method for the prepa-
ration of MQDs. Apart from hydrothermal/solvothermal 
methods, other synthesis methods for MQDs have also 
been extensively developed recently, including micro-
wave-assisted synthesis [53], reflux [54], ultrasonic [55, 
56], intercalation and combined methods [57]. In 2017, 
Huang et  al. reported the preparation of the first Ti3C2 
MQDs by a facile hydrothermal method, which was of 
great significance for broadening the application areas 
of MXenes [58]. In a recent report, an in  situ strategy 
employing a temporally and spatially shaped femtosec-
ond laser (TSBL) is used to photochemically synthesize 
MQDs [59]. The temporal shaping of the unique TSBL 
enables effective control of the multilevel photoexfo-
liation of MXenes and water photoionization–enhanced 
light absorption for creating MQDs. Of course, in addi-
tion to top-down methods using bulk materials as pre-
cursors, MQDs can also be synthesized from small 
organic and inorganic molecular precursors via bottom-
up methods [60].

Bottom‑up approach
MXenes can also be synthesized through crystal growth 
using small organic and inorganic molecules as precur-
sors. Instead of top-down approaches, which lack size 
distribution controllability and reproducibility, bottom-
up synthesis approaches have the advantages of enabling 
precise manipulation of the size distribution, geometric 
morphology and surface termination of MXenes [61–64]. 
Meanwhile, due to their relatively simple implemen-
tation, bottom-up approaches are expected to greatly 
improve the yield of MXenes in the future. However, 
compared to top-down fabrication methods, few studies 
have been conducted on bottom-up synthesis methods of 
MXenes, which is perhaps due to the complex structures 
of MXenes and multicomponent atom layers.

In 2015, Ren et al. reported the fabrication of high-qual-
ity, excellent-stability and defect-free ultrathin α-Mo2CTx 
crystals by chemical vapor deposition (CVD) [61]. They 
synthesized 2D ultrathin α-Mo2CTx crystals with lateral 
sizes of over 100 μm on a Cu/Mo foil under a methane 
atmosphere at temperatures above 1085 °C, where meth-
ane acted as the carbon source. Recently, non-laminated 
stacked Mo2N sheets have also be achieved on Cu/Mo 

substrates by using CVD with NH3 as the nitrogen source 
under the temperature of 1080  °C [62]. In 2020, Turker 
et al. performed a detailed study on the effects of reaction 
temperature, reaction time, copper layer thickness and 
other factors during the CVD reaction, and finally, they 
found that the Mo2C crystals that formed on the gra-
phene surface were thinner and had fewer defects than 
those that formed on the copper surface [63].

In addition to CVD, pulsed laser deposition (PLD) 
and salt template methods have also been developed 
for the preparation of MXenes. The face centered cubic 
structured Mo2C thin film were obtained by PLD using 
a methane plasma as the carbon source and a pulsed 
laser to ablate a Mo metal target, which was heated to 
a growth temperature of 700  °C on a sapphire substrate 
[64]. Firstly, 2D hexagonal MoO3-coated NaCl (2D 
h-MoO3@NaCl) was obtained by annealing the Mo pre-
cursor@NaCl powders in Ar atmosphere at 280 °C. Then, 
the 2D h-MoO3@NaCl powder was slowly ammoniated 
in a NH3 atmosphere at 650  °C to prepare 2D MoN@
NaCl powders. Finally, the 2D MoN@NaCl powders were 
washed in deionised water and further filtered to remove 
the salts [65].

Therefore, although the current research on bottom-up 
synthesis methods for A is relatively difficult, it is promis-
ing, and more attention should be given to these strate-
gies. A summary of MXenes synthesis methods is shown 
in Table 1.

Surface modification and functionalization
The large surface area and abundant functional groups 
of MXenes provide the basis for the surface modifica-
tion of MXenes. Although the excellent physicochemical 
properties of MXenes have given MXenes the potential 
to be used in several fields of application, even with more 
in-depth research on MXene-based materials, these 
properties still cannot meet the requirements of vari-
ous applications. There are still some defects of MXenes 
in  vivo, including poor water dispersibility, slow deg-
radation and toxicity [70]. Therefore, surface modifica-
tion and functionalization are needed to enhance the 
properties of MXene-based materials and impart new 
functions to these materials. At present, research on 
the surface modification of MXenes is focused on two 
strategies: the first is a polymer-based surface chemis-
try strategy, which is based on noncovalent or covalent 
interactions to immobilize selected molecules or poly-
mers on the MXene surface. It was shown that the syn-
thesized MXene nanosheets were less stable in biological 
media and were prone to aggregation and precipitation. 
To improve the stability of MXene nanosheets in physi-
ological environments, researchers modified the surfaces 
of Ta4C3Tx nanosheets with soybean phospholipids (SPs) 
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to reduce the zeta potential of the Ta4C3Tx nanosheets 
(Fig. 4a), which effectively improved the colloidal stability 
of the Ta4C3 nanosheets in physiological environments 
[71]. In addition, the modification of Ti3C2Tx by aryl 
diazo grafting with derivatives that contain sulfonyl or 
carboxyl betaine side groups has promoted the develop-
ment of MXene-based functional enzymes and affinity-
based electrochemical biosensors [72].

The other strategy is based on the surface chemistry 
of inorganic nanoparticles, which combines inorganic 
nanomaterials with MXenes with multifunctionalities to 
further broaden their potential applications. For instance, 
AuNPs/Ti3C2Tx nanocomposite prepared by immobiliz-
ing Au nanoparticles on the surfaces of Ti3C2Tx (Fig. 4b) 
had the combined advantages of a large specific surface 
area and excellent electrical conductivity, and was suc-
cessfully used to develop an ultrasensitive electrochemi-
cal biosensor for the detection of miRNA-155 (Fig.  4c) 
[73]. Similarly, combining Au, Fe3O4 and MXenes, the 
prepared Au/Fe3O4/MXene composites showed less tox-
icity than the pure MXenes in in vitro and in vivo experi-
ments, thereby promoting the application of MXenes in 
Photothermal therapy [74].

In addition, in a recent study, Wan et al. made full use 
of the abundant surface functional groups on MXene 
surfaces and used sequential bridging of hydrogen and 
covalent bonding agents to achieve effective densification 
and removal of voids in MXene films, thereby leading to 
highly compact MXene films. The mechanical strength 
and toughness, electrical conductivity and electromag-
netic interference shielding ability of the obtained MXene 
films have been greatly improved [12].

In conclusion, the rapid development of MXene syn-
thesis methods will also promote more and broader 
applications of MXenes in the biomedical field.

Biomedical applications
Due to the fascinating physicochemical properties of 
MXenes, MXenes and their composites have been devel-
oped for various biomedical applications, including bio-
sensing, bioimaging, therapeutic diagnostics, implants 
and antibacterial agents.

Biosensors
In comparison with conventional metal nanoparticle-
based biosensors, new nanomaterials, including carbon 
nanotubes and graphene, have shown various advan-
tages in biosensing. As novel nanomaterials, MXenes 
have attracted much attention in biosensor development 
due to their outstanding structural properties, excellent 
biocompatibility and superior electrical properties. As 
high-performance receptors, they have high selectivity, 
a low limit of detection (LOD), high sensitivity, a short 

response time, and a wide linear range, which are the 
main performance parameters. Of course, they should 
also have a low production cost to facilitate commercial 
scale-up production. The applications of MXenes in bio-
sensors are divided into three main categories: electro-
chemical biosensors, fluorescent/optical biosensors and 
biocompatible field-effect transistors. The MXenes appli-
cations in biosensors is summarized in Table 2.

Electrochemical biosensors
Electrochemical biosensors rely on biological recognition 
elements and offer lower detection limits and high sen-
sitivity and selectivity toward target analytes. The basic 
principle of biosensors of this kind is that the recognition 
between immobilized biomolecules and target analytes 
leads to changes in the electrical properties of the sens-
ing material or solution, such as its conductance, poten-
tial, electric current, and ionic strength, which can be 
detected by amperometry, potentiometry, voltammetry, 
and impedance techniques [75, 76].

To date, MXenes that are composed of various ele-
ments have been successfully synthesized, but only the 
application of Ti3C2 has been reported for electrochemi-
cal biosensing.

Redox proteins/enzyme‑based electrochemical biosen‑
sors  Enzymes, which were the first biological recog-
nition elements to be applied in the field of biosensors, 
can effectively and selectively react with target analytes, 
thereby ultimately triggering an electrochemical response. 
By immobilizing enzymes on MXenes to develop biosen-
sors, the enzymes can provide selectivity to the biosen-
sors, while the MXenes act as transducers to take full 
advantage of their electrical conductivity, large surface 
area and high biocompatibility.

The large surface area of MXenes with unique lami-
nar morphology can provide large-area immobili-
zation of enzymes. Lee et  al. prepared enzymatic 
beta-hydroxybutyrate biosensors for amperometric sens-
ing using β-hydroxybutyrate dehydrogenase-modified 
Ti3C2Tx-type MXene nanosheets, which were success-
fully applied to the determination of β-hydroxybutyrate 
in (spiked) real serum samples [77]. The laminar decon-
struction of Ti3C2Tx facilitated the immobilization and 
encapsulation of the enzyme, thereby providing a suitable 
microenvironment for β-hydroxybutyrate dehydrogenase 
(β-HBD) to retain bioactivity and stability for a long time. 
The prepared biosensors displayed a low detection limit 
of 44.5  μM, a sensitivity of 0.480 μA·mM−1·cm−2 and 
a wide linear range of 360  μM—17.91  mM for β-HBA 
(Fig. 5a and b).

The surfaces of MXenes have abundant functional 
groups. Most of the MXenes that have been developed 
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for electrochemical biosensors are prepared by etching 
with aqueous hydrofluoric solution, thereby generat-
ing more hydroxyl surface terminations. Therefore, the 
MXene surfaces are hydrophilic, which facilitates uni-
form dispersion in aqueous media and provides a good 
microenvironment for enzyme immobilization. The 
MXene-based tyrosinase biosensors that were fabricated 
by Wu et  al. exhibited good analytical performance in 
the linear range of 0.05–15.5 μmol/L with a sensitivity of 
414.4  mA·M−1 and a low detection limit of 12 n mol/L 
[78]. In this study, Ti3C2Tx nanosheets were synthesized 
by exfoliating the Al layer from the precursor Ti3AlC2 
with HF at room temperature; consequently, the surface 
of Ti3C2 was terminated mostly by -OH, which provided 
an aqueous-like biocompatible microenvironment for 
immobilized enzyme molecules.

Although MXene-based biosensors alone have exhib-
ited satisfactory results, constructing MXene com-
posites is an excellent strategy. The construction of 
composite materials enables the various materials 
to complement each other to produce better results, 
such as overcoming electrode surface resistance upon 
enzyme immobilization [79] and enhancing the affin-
ity and stability of graphene for enzymes [80]. TiO2 
has superior biocompatibility and chemical stability. 

To further improve the biocompatibility of Ti3C2Tx 
(MXene), Wang et  al. modified Ti3C2Tx with TiO2 to 
maintain protein bioactivity and stability more effec-
tively [81]. They synthesized TiO2 nanoparticles that 
were modified with Ti3C2 nanocomposites by simple 
in  situ hydrolysis followed by a hydrothermal process. 
Nanoscale TiO2 with a size of less than 30  nm greatly 
increased the effective surface area for protein adsorp-
tion. Ti3C2Tx, which has an excellent charge transfer 
rate, is an efficient energy transfer medium between the 
enzyme and the electrode. Hence, using hemoglobin 
(Hb) as a model protein, the constructed TiO2–Ti3C2-
based biosensor displayed good performance for the 
detection of H2O2 with a low detection limit, a wide 
linear range and especially excellent long-term stabil-
ity, thereby offering a new avenue for broadening the 
applications of MXenes in enzyme immobilization. 
As another example, Rakhi et  al. successfully demon-
strated a GOx/Au/MXene/Nafion/GCE biosensor by a 
dropcasting method in which anchored Au nanopar-
ticles significantly improved the electron transfer pro-
cess between GOx and GCE [79]. As a result, the GOx/
Au/MXene/Nafion/GCE biosensor was shown to be 
suitable for the detection of glucose concentrate (in 
a range 0.1–18  mM) in biological samples with good 

Fig. 4  a Schematic diagram of the surface modification of Ta4C3 nanosheets using SP. Reproduced with permission from Ref. [71], © John 
Wiley and Sons 2017. b (i)The SEM image of Ti3AlC2. (ii)TEM images of AuNPs. (iii) TEM images of Ti3C2Tx nanosheets. (iv) TEM images of AuNPs/
Ti3C2 nanocomposites. Reproduced with permission from Ref. [73], © Elsevier 2020. c Schematic diagram of the preparation of electrochemical 
miRNA-155 biosensor based on AuNPs/Ti3C2 3D nanocomposite. Reproduced with permission from Ref. [73], © Elsevier 2020
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sensitivity of 4.2 μA·Mm−1·cm−2, a lower detection 
limit of 5.9  μM, and excellent stability, reproducibility 
and repeatability. Moreover, many other methods are 
available for developing novel biosensors by the hybrid-
ization of MXenes with other suitable nanomaterials.

Affinity sensors  Affinity sensors specifically recognize 
analytes and form stable complexes with them. Accord-
ing to the type of analyte binding on the affinity sensor, 
affinity sensors can be classified into nucleic acid-based 
biosensors, molecularly imprinted polymer (MIP) sensors 
and immunosensors.

Nucleic acid sensors are based on nucleic acids, which 
are used as molecular recognition elements and are 
immobilized on the surface of an MXene-based mate-
rial with a large specific surface area. Nucleic acid-based 
biosensors are also known as genosensors or aptasensors 
and can be further divided into RNA sensors and DNA 
sensors [82].

An example is tetrahedral DNA nanostructures 
(TDNs), which have a unique configuration that ena-
bles efficient and rapid binding of target molecules onto 
the electrode surface, thereby producing amplified elec-
trochemical signals. In 2019, Wang et  al. immobilized 
tetrahedral DNA nanostructures onto the surfaces of 
Ti3C2Tx nanosheets through the coordination interac-
tions of phosphate groups on DNA with titanium to pre-
pare a highly sensitive electrochemical biosensor for the 
detection of gliotoxin [83]. Combining the advantages 
of the large surface area of Ti3C2Tx and the molecu-
lar recognition of TDNs, the prepared sensor exhibited 
a wide detection range from 5 pM to 10 nM with a low 
limit of detection (LOD) of 5 pM. Moreover, a synergetic 
MXene-based and duplex-specific nuclease (DSN)-based 
signal amplification system was also reported [84], which 
was applied on an SPGE electrode for the very sensi-
tive, specific and rapid detection of multiple miRNAs in 
total plasma,. MXene-Ti3C2Tx was modified with 5  nm 
AuNPs, which significantly enhanced the electrochemical 
properties of the MXene (Fig.  5c–i). Of course, the use 
of RNA as a receptor in the design of biorecognition ele-
ments for label-free ultrasensitive detection of miRNA-
182 has also been reported [85].

Molecularly imprinted polymers, which are modified 
materials that improve the selectivity of sensors, have the 
advantages of specific recognition properties, low cost 
and short synthesis time. In recent years, novel modi-
fied electrodes that are based on molecularly imprinted 
polymers have had powerful sensor applications in bio-
molecule/drug detection due to their high selectivity, 
sensitivity and low toxicity. In this research direction, a 
highly selective and sensitive molecularly imprinted poly-
mer sensor that is based on hierarchical porous MXene/

amino carbon nanotube (MXene/NH2-CNT) compos-
ites was developed for fisetin detection [86]. As another 
example, a molecularly imprinted sensor that is based on 
delaminated titanium carbide MXene and multiwalled 
carbon nanotubes was also reported for amyloid-β pro-
tein recognition and can be used in real samples for clini-
cal applications in Alzheimer’s disease [87].

Immunosensors, which rely on specific antibody–anti-
gen interactions, have also received much attention [88–
91]. Salama et  al. immobilized bioreceptors (anti-CEA) 
on ultrathin Ti3C2Tx nanosheets to prepare an immu-
nosensor for label-free, ultrasensitive detection of carci-
noembryonic antigen (CEA), which is a cancer biomarker 
[88]. In this work, Ti3C2Tx was synthesized by mini-
mally intensive layer delamination (MILD) methods and 
uniformly functionalized with APTES for the covalent 
immobilization of anti-CEA. The fabricated immunosen-
sor exhibited excellent characteristics with a wide linear 
detection range of 0.0001–2000 ng·mL−1 and a sensitivity 
of ~ 37.9 µA·ng−1·mL·cm−2 per decade.

Fluorescent/optical biosensors
MXenes possess not only excellent bulk capacitance and 
metallic conductivity but also superior fluorescence, 
optical and plasmonic properties, which can be enhanced 
by surface modification to enhance the properties of 
MXenes or combining them with other nanomaterials for 
promising applications in fluorescent biosensors.

MXenes are used as fluorescent quenching agents, 
which can block the fluorescent signal that is emit-
ted by a fluorescent sensing probe through the interac-
tion of aptamers with MXenes before the detection of 
target analytes. When the target analytes are added, the 
aptamer interacts with them and is released, thereby 
allowing the fluorescence to recover. In 2018, a univer-
sal fluorescence resonance energy transfer platform that 
is based on the Cy3-labeled CD63 aptamer (Cy3-CD63 
aptamer)/Ti3C2Tx MXene nanocomplex was devel-
oped for the quantitative detection of exosomes [92]. 
Yang et  al. bound Cy3-CD63 aptamers to the surfaces 
of Ti3C2Tx nanosheets by selective adsorption (through 
hydrogen bonding and metal chelation) between the 
aptamer and Ti3C2Tx nanosheets [92]. The fluorescence 
signal of the Cy3-CD63 aptamer was quenched due to 
the interaction between Cy3 and the MXenes. Due to the 
high affinity of the aptamer on the exosome surface with 
the CD63 protein, the exosome specifically bound to the 
aptamer with the addition of the exosome, which caused 
the release of the Cy3-CD63 aptamer from the surfaces 
of the Ti3C2Tx, thereby finally allowing the fluorescence 
of Cy3 to recover. Meanwhile, the autofluorescence sig-
nal of the MXenes showed little change during the whole 
process and could be used as a standard reference. The 
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self-standard turn-on FRET biosensing system that was 
developed using this fluorescence-based sensing mecha-
nism is expected to be widely used for the detection of 
multiple biomarkers.

The excellent photoluminescence (PL) properties of 
MQDs can also be exploited to develop fluorescent bio-
sensors. For example, an ε-poly-L-lysine (PLL)-decorated 
Ti3C2Tx MQD-based biosensor was developed for fluoro-
metric determination of cytochrome (cyt-c) and trypsin 
[93]. The PLL-protected Ti3C2 MQDs exhibited blue pho-
toluminescence with excitation/emission wavelengths at 
330/415  nm and showed a high quantum yield (QY) of 
the synthesized -PLL-MQDs of approximately 22% due 
to strong quantum confinement (Fig.  6a). The fluores-
cence intensity of PL-MQDs decreased with increasing 
cyt-c content due to the internal filtering effect of cyt-c. 

Then, with the addition of trypsin, cyt-c was hydrolyzed 
into small peptides, thereby resulting in the fluores-
cence intensity of PLL-protected Ti3C2Tx MQDs being 
restored. The novel and highly sensitive fluorescence 
turn-off–on nanosensor was successfully applied to the 
determination of cyt-c and trypsin in spiked serum sam-
ples with a low detection limit of 20.5 nm for cyt-c and 
0.1 μg/ml for trypsin (Fig. 6).

Field‑effect transistor
With its hydrophilic surface properties and 2D layered 
atomic structure, MXene is a promising candidate for 
the fabrication of biocompatible field-effect transis-
tors (FETs) for fast, direct and label-free detection of 
biological events[94, 95]. Moreover, MXenes are eas-
ily micromachined into various geometries with large 

Fig. 5  a The amperometry i-t curve obtained at the Au-PCB/Ru/MXene-β-HBD-NAD-GA-BSA electrode at an applied potential of −0.35 V vs. Ag/
AgCl (3 M NaCl) in PBS pH 7.4 b The corresponding linear calibration plot for the amperometric determination of β-HBA (n = 3)+. Reproduced with 
permission from Ref. [77], © Springer Nature 2020. c Typical DPV response of the fabricated biosensor device toward multiple detection of serial 
concentrations of miR-21 and miR-141 in HEPES buffer (pH 7.4). d Corresponding regression plot illustrating the oxidation current peak values of 
MB and Fc as a function of miR-21 concentrations. e Schematic diagram representing the whole assay procedure for multiplex and concurrent 
detection of miR-21 and miR-141. f Nyquist plots (Z′ vs.—Z″) obtained for AuNP/Au and AuNP@MXene/Au and the equivalent Randles circuit 
model; Inset shows the corresponding cyclic voltammograms of AuNP/Au (black) and AuNP@MXene/Au (red); Experiments were performed in PBS 
(pH 7.4) comprising 5 mM of Fe (CN)6 4−/3− and 0.1 M KCl with CV scan rate of 50 mV/s. g Typical chronocoulometric response of RuHex on AuNP/
Au and AuNP@MXene/Au in 20 mM KCL and hexaammineruthenium (iii) chloride (200 μM) + KCl (20 mM); Dash lines show the outward stretching 
tangents extrapolated to the Y-axis illustrating the intercept values. h DPV curves obtained for Base141/AuNP/Au and Base141/AuNP@MXene/Au 
after being hybridized with uncleaved Fc-labeled DNA sequences (DSN products of 20 μM and 1 pM miR-141 reaction). i Statistical analysis of the 
normalized oxidation current peak value of Fc. Reproduced with permission from Ref. [84], © Elsevier 2020.
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contact surfaces, which can greatly simplify the device 
manufacturing process. A highly sensitive biosen-
sor that is based on ultrathin Ti3C2Tx micrographs 
was developed by Xu et  al. for monitoring dopamine 
release [94]. The technique that they developed for 
preparing ultrathin conductive Ti3C2-MXene tran-
sistors is simple and efficient, and the prepared 
MXene-FET biosensors are compatible with long-
term cultured neurons. This study will greatly facili-
tate the wide application of MXenes in detecting 
biological events in cellular models. An interdigitated 
spiral-based MXene-assisted organic electrochemi-
cal transistors (isMOECTs) biosensor was developed 
for the first time for the highly sensitive detection of 
fPSA / tPSA with an improved detection limit down 
to 0.01 pg/ml (S/N > 3), demonstrating its potential for 
clinical diagnosis of human (prostate) cancer, paving a 
convenient and versatile platform for detect other bio-
markers in various types of cancer or for liquid biopsy 
[96].

Due to their unique laminar morphology, excellent 
biocompatibility and superior electrical properties, 
Mxenes have been used in biosensors such as elec-
trochemical biosensors, fluorescent biosensors and 
immunosensors, which provides a large-area immo-
bilization for the inclusion of biological recognition 
elements such as enzymes, molecularly imprinted 
polymers and nucleic acids. These MXene-based bio-
sensors have proven to have excellent performance 
parameters such as low lower detection limits, high 
sensitivity, short response times and a wide linear 
range. As high-performance receptors, they have high 
selectivity, a low limit of detection (LOD), high sensi-
tivity, a short response time, and a wide linear range, 
which are the main performance parameters.

Diagnosis
In addition to their promising applications in biosensors, 
MXene-based materials also play a significant diagnostic 
role. Imaging technology is indispensable for the early 
diagnosis of cancer and is very important for the pre-
cise localization and staging of tumors and for guiding 
cancer treatment and detecting cancer recurrence after 
treatment. The excellent physicochemical properties of 
MXene nanosheets give them great potential for diagnos-
tic imaging, and they can be applied with various imaging 
techniques, such as X-ray computed tomography (CT), 
magnetic resonance imaging (MRI), photoacoustic imag-
ing and fluorescent imaging. Imaging techniques that are 
based on novel MXene-based reagents are beneficial for 
overcoming some of the common problems and draw-
backs of current reagents. For example, compared to 
conventional imaging agents, 2D MXene-based reagents 

have quantum size effects for photoluminescence (PL) 
cell imaging, which can enhance the intrinsic photother-
mal properties for PA imaging and elemental contrast for 
X-ray CT imaging.

Luminescent imaging
Conventional MXene-based materials exhibit extremely 
low luminescence properties in aqueous solutions, in 
which no photoluminescence response can be detected. 
To further broaden their biomedical applications, 
researchers have used various strategies to enhance the 
fluorescence properties of MXenes. There are currently 
two main ways in which the fluorescence properties of 
MXene materials can be enhanced. One of the strate-
gies is attaching a fluorescent species to the surfaces of 
MXenes to equip them with fluorescent properties. Liu 
et al. loaded the cationic fluorescent drug DOX onto an 
MXene with the p-terminus aluminum oxide anion by 
electrostatic adsorption to obtain coupling (Fig. 7a) [98]. 
Due to the autofluorescence effect of the anticancer drug 
DOX, this system can be used for biological imaging as 
well as anticancer therapy.

Another strategy is to prepare MXene quantum dots 
(MQDs) with luminescence properties. Similar to gra-
phene quantum dots (QDs) [99], molybdenum disulfide 
QDs [100] and boron nitride QDs [101], MQDs [54, 
102] exhibit excitation-dependent luminescence prop-
erties and, thus, have potential applications in efficient 
fluorescence imaging [103]. MXene flakes can be broken 
into quantum dots, which have extremely small sizes and 
excellent photoluminescence (PL) properties, by a vari-
ety of methods, including hydrothermal methods [55, 60, 
104]. Compared with conventional organic fluorescein, 
quantum dots of inorganic two-dimensional nanomate-
rials, including MQDs, have the advantages of tunable 
wavelength, high chemical stability and photostability, 
high photoluminescence quantum yield, low cytotoxic-
ity, and high dispersibility for bioimaging, which can be 
tuned by changing the size, shape, or functionality of the 
prepared quantum dots. Although strong photolumines-
cence effects can be observed in 2D materials such as 
graphene and MXene quantum dots, there is still contro-
versy about the mechanism of their luminescence. There 
are two main views on the mechanism of luminescence 
in 2D materials: size effect and surface defects [105, 106]. 
In 2016, Xue et  al. prepared monolayered Ti3C2Tx QDs 
at temperatures of 100  °C (MQD-100), 120  °C (MQD-
120) and 150  °C (MQD-150) by a facile hydrothermal 
method and demonstrated that these MQDs had excita-
tion-dependent luminescence properties [58]. From the 
UV–vis spectra and the PL excitation (PLE) spectrum 
that was recorded with the strongest luminescence, they 
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concluded that the MQDs exhibited excitation-related 
PL behavior (Fig.  7b). By studying the variation of PL 
intensities of MQDs at various pH values, it was found 
that MQDs are stable enough to be used in  situations 
with various pH values. Preliminary studies on MQD-100 
and MQD-120 cell imaging were performed by labeling 
RAW264.7 cells, which demonstrated the great potential 
of MQDs as biocompatible multicolor cell imaging rea-
gents [58] (Fig. 7c).

Although inorganic nanofluorophore fluorescence has 
good potential for imaging applications due to its satis-
factory biological properties, a nonnegligible disadvan-
tage of these inorganic nanofluorophores is that they 
are usually nonbiodegradable [18]. Yang et  al. synthe-
sized Nb2CTx QDs in tetrapropylammonium hydroxide 
(TPAOH) solution using ultrasound-assisted physico-
chemical exfoliation [107]. Compared with conventional 
nanofluorescence, the prepared Nb2CTx QDs exhib-
ited excellent chemical stability and biocompatibility, 

especially surprising enzyme-responsive biodegradability 
and excellent antiphotobleaching ability (Fig. 8a).

As the utilization of MQDs becomes increasingly wide-
spread, the modification strategies of MQDs are increas-
ingly being investigated. The properties of MQDs can be 
further improved by suitable modification to improve 
their performance for cell imaging. The electronic prop-
erties and structure of quantum dots can be significantly 
changed by doping with N, Cu, and P, among other ele-
ments, to realize higher quantum yields (QY), better sta-
bility and more surface active centers [108–110]. Guan 
et  al. prepared nitrogen-phosphorus functionalized 
Ti3C2Tx MXene-based quantum dots (N,P-MQDs) by a 
top-down hydrothermal method, which greatly increased 
the photoluminescence quantum yield (PLQY) to 20.1% 
(Fig.  8b) [22]. Moreover, the prepared photolumines-
cent quantum dots exhibited strong green fluorescence 
near 560  nm under 480  nm excitation for the first time 
(Fig.  8c). As another example, Lu et  al. synthesized a 

Fig. 6  a Fluorescence intensity schematic presentation of PLL-protected Ti3C2 MQDs in 10 mM tris–HCl buffer (black); PLL-protected Ti3C2 MQDs 
and trypsin (80.0 μg mL−1) (red); PLL-protected Ti3C2 MQDs and cyt-c (40.0 μM) (green); PLL-protected Ti3C2 MQDs, cyt-c (40.0 μM) and trypsin 
(80.0 μg mL−1) (blue). b Fluorescence intensity schematic presentation of the mixture containing PLL-protected Ti3C2 MQDs and cyt-c (40.0 μM) 
in the presence of different concentrations of trypsin (from bottom to top: 0, 0.5, 2.5, 5.0, 10.0, 20.0, 40.0, 60.0, 80.0, 160.0, 250.0 μg mL−1. c 
The relationship schematic presentation between the change in fluorescence intensity of the mixture and the trypsin concentration. A linear 
relationship between changes in fluorescence intensity and trypsin concentration [trypsin] = 0.5, 2.5, 5.0, 10.0, 20.0, 40.0, 60.0, 80.0 μg mL−1. Error 
bars represent standard deviations from triplicate measurements. d Effect of different proteins (100 μM) on the fluorescence intensity of Ti3C2 MQDs. 
e) The selectivity of the PLL-protected Ti3C2 MQDs toward trypsin using ALP, lysozyme, bovine serum albumin (BSA), pepsin, thrombin and IgG. The 
concentration of trypsin was 80 μg mL−1, and other substances are 200 μg mL−1. Reproduced with permission from Ref. [93], © Springer Nature 
2019
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class of N-Ti3C2Tx quantum dots using two-dimensional 
Ti3C2Tx as the raw material, along with DMF as the sol-
vent medium and nitrogen-doping agent simultaneously 
[111]. The obtained N-Ti3C2Tx quantum dots showed 
good dispersion stability and were further compounded 
with DAP to form a composite nanoprobe (N-Ti3C2Tx 
quantum dots@DAP nanoprobe).

In addition to these two strategies, researchers have 
developed other methods for applying MXenes to bioim-
aging. Wang et  al. synthesized ultrasmall MXenes with 
monolayer thickness, lateral dimensions of 2–8 nm, and 
bright and tunable fluorescence by simultaneous layer 
cutting and stacking cleavage in aqueous TMAOH solu-
tion using a solvothermal approach [112]. Moreover, 
Zhou et al. innovatively developed a method for the syn-
thesis of graphene quantum dots (GQDs) from layered 
Ti3C2Tx by solvent heat treatment of Ti3C2Tx in dimeth-
ylformamide (DMF) [113].

Researchers improve the fluorescent properties of 
MXenes through the strategy of loading fluorescent 
species on the MXenes surface and preparing MQDs 
with luminescent properties, confirming the potential 

of MXenes for fluorescent imaging. With the develop-
ment of MQDs modification strategies, the performance 
of MQDs for cellular imaging continues to be improved. 
Meanwhile, more methods for applying MXenes to bio-
imaging are being developed.

Photoacoustic imaging (PAI)
PAI is a noninvasive and nonionizing biomedical imag-
ing technique that has emerged in recent years. A non-
ionizing pulsed laser is irradiated onto biological tissues 
and converted into ultrasound waves (also called photoa-
coustic signals) by the light absorbing domains on the tis-
sues. The photoacoustic signal, which carries information 
about the light absorption characteristics of the tissue, is 
accepted by the ultrasonic transducer and transformed 
into an image of the light absorption distribution of the 
tissue. Compared to pure optical tissue imaging, PAI 
principally avoids the effects of light scattering and pro-
vides a higher spatial distribution rate for living objects, 
thereby enabling deeper tissue imaging [114, 115]. There-
fore, an effective PAI contrast agent should have excellent 
photothermal conversion ability to produce a signal that 

Fig. 7  a Schematic diagram of the preparation of multifunctional nanoplatform (Ti3C2-DOX). Reproduced with permission from Ref. [98], © 
American Chemical Society 2017. b UV–Vis spectra (solid line), PLE (dashed line) and PL spectra (solid line, Ex = 320 nm) of MQD-100 (i), MQD-120 
(ii) and MQD-150 (iii) solutions under visible light and 365 nm UV lamp. Reproduced with permission from Ref. [58], © John Wiley and Sons 2017. c 
(i)(v) Bright-field imaging of RAW264.7 cells. Confocal imaging (405, 488, and 543 nm) of RAW264.7 cells incubated with (ii–iv) MQD-100 and (vi–viii) 
MQD-120. Reproduced with permission from Ref. [58], © John Wiley and Sons 2017
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is in significant contrast to the PA signal that is formed by 
the surrounding tissue. MXene nanosheets with the LSPR 
effect are considered to be very attractive PAI contrast 
agents. A variety of MXenes, including Ti3C2Tx [116, 
117], Nb2CTx [18], and Ta4C3Tx [71], have been reported 
to have excellent photothermal conversion properties.

Ta4C3Tx-SP demonstrates good potential for use in PA 
contrast agents due to its satisfactory photothermal con-
version efficiency and biocompatibility. The extinction 
coefficient (ε) and photothermal conversion efficiency 
(η) are the two main parameters that determine the pho-
tothermal performance of a photothermal converter. 
The extinction coefficient reflects the absorption capac-
ity of light while the photothermal conversion efficiency 
reflects the performance of the photothermal converter. 
Two-dimensional ultrathin Ta4C3Tx nanosheets that 
were prepared by the liquid-phase exfoliation method, 
which combines HF etching and probe ultrasonication, 
possessed excellent near-infrared photothermal prop-
erties, with an extinction coefficient of 4.06 lg−1·cm−1 
at 808  nm, a photothermal conversion efficiency of 
44.7%, and good photothermal stability [71]. Moreo-
ver, the surface modification of Ta4C3Tx nanoflakes with 

biocompatible soybean phospholipids greatly improved 
the biocompatibility and physiological stability of Ta4C3 
nanoflakes, and in  vitro and in  vivo tests did not show 
any noticeable toxicity [71]. Lin et al. also experimentally 
demonstrated the use of Nb2CTx-PVP (polyvinylpyrro-
lidone) for PAI, with an extraordinarily high photother-
mal conversion efficiency (36.4% at NIR-I and 45.65% at 
NIR-II) and high photothermal stability [18].

Of course, in addition to applications in fluorescence 
imaging, MQDs, which are characterized by a strong 
and broad near-infrared absorption band, are also ideal 
imaging agents for tumor PAI. In 2019, an MQD was 
prepared by a fluorine-free method. Due to the modi-
fication of a large amount of aluminum oxygen anions 
on its surface, the quantum dots exhibited stronger and 
wider absorption capabilities in the near-infrared region 
with an extinction coefficient of as high as 52.8 lg−1·cm−1 
at 808  nm and a photothermal conversion efficiency of 
as high as 52.2%. The prepared MXene quantum dots 
achieved simultaneous photoacoustic (PA) imaging and 
PTT effects on tumors [118]. Overall, due to its low tis-
sue attenuation coefficient, MXene-based PAI can hope-
fully overcome the penetration limitations of traditional 

Fig. 8  a The AFM images of Nb2CTx quantum dots after 24 h of different biodegradation treatments and the corresponding height distributions. 
Reproduced with permission from Ref. [107], © Elsevier 2020. b Schematic diagram of the preparation of N,P-MQD [22]. c Fluorescence emission 
spectra of the N, P-MQDs prepared at 120 ℃ at different excitation wavelengths. Inset: photo under UV light (365 nm). Reproduced with permission 
from Ref. [22], © Royal Society of Chemistry 2019
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optical imaging techniques to achieve deeper tissue 
imaging as a promising imaging tool.

Computed tomography (CT) imaging
CT imaging is one of the most widely used and effective 
diagnostic imaging tools due to its high spatial resolution, 
noninvasiveness and deep tissue penetration. CT imag-
ing is based mainly on the variability of tissue absorption 
of rays, and one section after another of a body part is 
scanned to form a 3D image [119, 120]. Nanomaterials 
that contain high atomic number elements such as bis-
muth, cesium, tantalum and tungsten are often consid-
ered potential CT imaging materials due to their ability 
to attenuate X-rays [120]. The most common clinically 
approved CT contrast agents, namely, iodine-containing 
compounds, have been shown to be inappropriate for 
patients who require repeat CT scans or are at high risk 
due to their short circulation time in the bloodstream 
and high toxicity [121, 122]. Therefore, the search for 
CT imaging agents with high atomic number elements 
and better biocompatibility is a popular direction in the 
development of CT. Two-dimensional materials such as 
MXenes have attracted much attention from researchers 
in the biomedical field due to their unique physicochemi-
cal properties and structural characteristics.

Tantalum (Ta) is an element with a high atomic num-
ber (Z = 73) and a high X-ray attenuation coefficient. At 
100  eV, the X-ray attenuation coefficient of tantalum is 
4.3 cm2/kg, compared to 5.16 cm2/kg for gold [123]. Ta-
based MXenes Ta4C3Tx are considered to be ideal agents 
for CT imaging [71, 117, 124]. The brightness and cor-
responding enhanced Hounsfield unit (HU) values of 
CT images of MnOx/Ta4C3Tx-SP composite nanosheets 
showed a good linear positive correlation with the con-
centration of Ta, which was enhanced with increasing Ta 
concentration (Fig. 9a, b). Compared with the CT imag-
ing effect of iodine-based iopromide, which is currently 
used in clinical practice, in  vitro CT images of MnOx/
Ta4C3Tx-SP composite nanosheets showed a stronger sig-
nal and higher contrast at the same elemental concentra-
tion (Fig. 9c, d) [117].

Magnetic resonance imaging (MRI)
MRI, which is another noninvasive clinical imag-
ing modality, has similar imaging capabilities to CT, 
which requires the use of harmful rays [125]. However, 
MRI technology shows the structure of human soft tis-
sues more clearly, can directly obtain native 3D cross-
sectional images without reconstruction, and causes 
no damage to the body with ionizing radiation [126]. 
Gadolinium(III) complexes are now widely used and typi-
cal MRI contrast agents. However, their toxicity to the 

kidney has been of increasing concern in recent years. 
The use of gadolinium(III)-based MRI contrast agents 
in patients with renal failure is likely to result in fatal 
nephrogenic systemic fibrosis (Nsf ), and metallic gado-
linium deposits have recently been observed in the brains 
of patients with normal renal function [127, 128]. There-
fore, finding an MRI contrast agent with high biosafety 
and low toxicity to improve the quality and specificity of 
MRI has attracted much attention from the biomedical 
community.

As a novel biocompatible material, manganese 
(Mn)-based paramagnetic agents have great poten-
tial for clinical applications in magnetic resonance 
imaging [116, 129]. For instance, paramagnetic MnOx 
was firmly immobilized on the surfaces of Ti3C2Tx 
nanosheets by the "redox reaction-induced growth" 
(RR-IG) method, and the stability of the MnOx/
Ti3C2Tx composite nanosheets (MnOx/Ti3C2Tx-SP) was 
greatly improved by further modification of the sur-
face with soy phospholipids (SP) [116]. Since the sur-
face-anchored paramagnetic MnOx component shows 
unique pH-responsive T1-weighted MRI capability, 
the prepared MnOx/Ti3C2Tx-SP composite nanosheets 
can be used for MRI of tumors. The Mn–O bond is eas-
ily broken under the mildly acidic microenvironment 
of the tumor to release Mn2+ ions (Fig.  10a), which 
maximizes the opportunity for interaction between 
paramagnetic Mn centers and water molecules, thereby 
further improving the T1-weighted MRI performance 
[130]. This conclusion was supported by in  vitro 
experiments, in which the enhancement of MRI sig-
nal (Fig.  10b, c) and the dissociative release of Mn2+ 
under acidic conditions (Fig.  10a) were observed, and 
in  vivo experiments in mice, in which the MRI signal 
was significantly enhanced in tumors (Fig. 10d, e) [116]. 
To further evaluate the capability of MnOx/Ti3C2Tx-SP 
composite nanosheets, T1-weighted imaging was per-
formed at various times after intravenous administra-
tion of a suitable dose of MnOx/Ti3C2Tx-SP composite 
nanosheets (dose: 2  mg·mL−1, 100 μL) to mice. In the 
results of T1-weighted imaging, a significant brighten-
ing effect of MRI signals in tumors was observed, and 
the signals were gradually enhanced with prolonged 
imaging duration (Fig. 10d, e) [116].

On the other hand, IONPs have been widely inves-
tigated as an effective contrast agent for MR imaging. 
Attempts to prepare agents for multimodal imaging were 
also performed by Liu and his coworkers, who success-
fully immobilized superparamagnetic iron oxide nano-
particles (IONPs) on the surface of a 2D MXene, namely, 
Ta4C3Tx, by in  situ growth to produce Ta4C3Tx-IONP, 
thereby endowing the Ta4C3Tx/superparamagnetic iron 
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oxide (IONP) nanocomposite with contrast-enhanced 
T2-weighted MR imaging capability [124] (Fig.  11a). A 
different strategy was reported by Zong and colleagues, 
who prepared GdW10@Ti3C2 composites by deposit-
ing GdW10 onto the surfaces of Ti3C2 nanoflakes, which 
can be used as contrast agents for enhanced CT and MR 
imaging [131] (Fig. 11b).

Due to its high biocompatibility and unique phys-
icochemical properties, MXene has been shown to have 
potential to be used as an imaging agent of CT, PAI 
and MRI imaging for diagnostic imaging and additional 
studies have further advanced the clinical application of 
MXenes.

Therapy
Due to their excellent physicochemical properties and 
unique structural characteristics, MXenes have been 
applied in various fields of biomedicine. To date, in addi-
tion to biosensor and diagnostic applications, various 
types of MXenes and their composites have been devel-
oped for therapeutic applications, including drug delivery 
systems, typical photothermal therapy (PTT), photody-
namic therapy (PDT), immunotherapy and synergistic 
combinations of multiple technologies for treatment.

Drug delivery systems
Due to the distinctive structure of MXenes, MXenes can 
be applied to construct gene/drug delivery systems to 
further achieve targeted drug delivery, reduce drug tox-
icities and improve the pharmacokinetics of drug mol-
ecules. The nanoscale size of MXene materials facilitates 
intravenous delivery to and efficient accumulation at the 
diseased site during the treatment process. Moreover, the 
two-dimensional planar topology endows MXenes with 
their characteristic large specific surface area, thereby 
providing abundant sites for therapeutic molecules to 
anchor on the surface of the laminar structure. Currently, 
cancer is a major disease that threatens human health 
and causes many deaths worldwide every year. MXene-
based materials can effectively attack cancer cells through 
controlled drug release and enhancement of the cellular 
uptake of the payload [132–135]. MXenes are considered 
effective anticancer tools based on preliminary studies.

Chen et  al. established a multifunctional Ti3C2-based 
nanoplatform (Ti3C2Tx-DOX) via layer-by-layer surface 
modification of doxorubicin (DOX) and hyaluronic acid 
(HA), which was achievable due to the negative charge 
of tumor-targeted hyaluronic acid (HA) and the sur-
face of Ti3C2Tx and the positive charge of DOX [136]. 

Fig. 9  In vitro CT images (a) and HU values (b) of MnOx/Ta4C3Tx-SP composite nanosheet solution and iopromide solution with varied 
concentrations (concentration of Ta, I). c In vivo 3D reconstructed CT (left) and contrast (right) images of mice before and after intravenous injection 
of MnOx/Ta4C3Tx-SP composite nanosheets (20 mg·kg.−1, 100 μL) for 2 h. d CT comparison of tumor tissues in vivo before and after intravenous 
administration of MnOx/Ta4C3Tx-SP composite nanosheets. Reproduced with permission from Ref. [117], © American Chemical Society 2017
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Ti3C2Tx that were synthesized by tetrapropylammonium 
hydroxide (TPAOH) intercalation were functionalized 
with hydroxyl groups, which further enhanced the pho-
tothermal performance and light harvesting capability 
in the NIR region. HA coating of the outer layer of the 
nanosheets improved the biocompatibility of the system 
and enabled active targeting of tumor cells via CD44+ 
overexpression on the cell membranes of cancer cells. 
This Ti3C2Tx-DOX showed a drug loading capacity of 
as high as 84.2%. Moreover, in vitro and in vivo experi-
ments showed that the system could exhibit excellent 
biocompatibility and efficient pH-responsive and NIR 
laser-induced drug-releasing behavior [136]. Similar to 
the abovementioned study, anticancer drugs (doxoru-
bicin, DOX) can also be loaded onto the surfaces of SP-
modified Ti3C2 nanosheets with a large specific surface 
area (Ti3C2Tx-SP) for highly efficient tumor eradication 
(Fig.  12a). Ti3C2Tx-SP, which is a novel drug-delivery 
nanosystem, also features high drug-loading capacity (up 
to 211.8%), pH responsiveness (Fig.  12b and NIR laser-
triggered drug release (Fig. 12c) [137].

However, MXenes lack a confined space for high load-
ing of drugs, which is a possible challenge for the use 
of MXenes as drug-delivery carriers. To enhance drug 
loading/release capabilities and extend the biomedical 

applications of MXenes, surface nanopore engineering of 
Ti3C2Tx was performed based on facile sol–gel chemistry 
in a recent study [138]. The surface of Ti3C2Tx was suc-
cessfully coated with a thin mesoporous silica shell layer 
under alkaline synthesis conditions using cetyltrimethyl-
ammonium chloride (CTAC) as a mesoporous guide and 
tetraethylorthosilicate (TEOS) as a precursor (Ti3C2Tx@
mMSNs), which improved the interfacial proper-
ties of Ti3C2Tx and combined the advantages of both 
materials as drug carriers, including a space-confined 
mesoporous structure, enhanced hydrophilicity, suit-
able surface chemistry and dispersibility. To achieve an 
active targeting response to the tumor region, arginine-
glycine-aspartic acid (RGD) was bound to polyethylene 
glycol (PEG)-modified Ti3C2Tx@mMSNs by covalent 
interaction. The prepared Ti3C2Tx@mMSNs have a good 
mesoporous structure with a uniform pore size (3.1 nm), 
high pore volume (0.96 cm3/g) and large specific surface 
area (772 m2/g). In  vitro and in  vivo evaluations have 
shown that the novel MXene-based composite nano-
systems that are synthesized by this method have high 
active-targeting capability and biocompatibility and can 
completely eradicate tumors without significant recur-
rence by synergizing with conventional chemotherapy 
and photothermal hyperthermia [138].

Fig. 10  Contrast-enhanced pH-responsive MRI of MnOx/Ti3C2Tx-SP nanosheets in vitro and in vivo. a Schematic diagram of the disintegration of 
the MnOx fraction under weakly acidic conditions. b In vitro T1-weighted magnetic resonance imaging of MnOx/Ti3C2Tx-SP nanosheets after 3 h 
immersion in buffered solutions with different pH values. c MnOx/Ti3C2Tx-SP nanosheets soaked in buffer solutions of different pH values for 3 h, 1/
T1 vs. Mn concentration. T1-weighted imaging d and detection of the corresponding MRI signal intensity e after intravenous injection of MnOx/
Ti3C2Tx-SP composite nanosheets to mice at different time points were performed. Reproduced with permission from Ref. [116], © American 
Chemical Society 2017
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In addition, a promising post-MXene materials, 
MBene, has recently been developed as a multifunc-
tional nano-delivery platform. He et  al. successfully 
synthesized the 2D zirconium boride nanosheet (ZBN) 
by a microwave-associated chemical etching method, 
which has excellent NIR-photothermal property with a 
high photothermal conversion efficiency of 76.8% in the 
NIR-II window (1060  nm) and obtain good dispersion 
through surface modification of hyaluronic acid (HA) 
by borate esterfication. High drug loading (ZBN-HA/
DOX and ZBN-HA/NO) was achieved by loading doxo-
rubicin (DOX) and NO prodrug (Gal-NO) on the surface 
of ZBN-HA via borate esterification. the photopyrolysis 
of ZBN-HA/DOX and ZBN-HA/NO allowed HA decon-
jugation and ZBN aggregation, realizing photocontrolled 
intratumoral retention and drug release [139].

In conclusion, MXenes are already an ideal drug car-
rier due to their nano-size and two-dimensional planar 
topology.

Photothermal therapy
For the treatment of cancer, which is one of the most 
dangerous diseases to human health, traditional thera-
peutic strategies mainly include surgery, chemotherapy 
and radiation therapy. However, surgery alone usually 
does not completely remove all cancerous tissues, and 
radiotherapy kills cancer cells while having a greater 
toxic effect on normal tissues and cells. In recent years, 
emerging photothermal therapy (PTT) has attracted 
much attention for its excellent performance in cancer 
treatment. A nanomaterial with photothermal activity, 
namely, a photothermal agent (PAT), is delivered to the 

Fig. 11  a Transverse and coronal section of T2-weighted MRI of 4T1 tumor-bearing mouse before and after intravenous injection of 
Ta4C3Tx-IONP-SPS at different time points. Regions of hypointense signal T2 images found at the tumor site became more obvious as the 
observation time increased. Reproduced with permission from Ref. [124], © Ivyspring International Publisher 2021. b In vivo MRI signal intensity of a 
tumor and liver of 4T1 tumor-bearing mice after i.v. administration. Reproduced with permission from Ref. [131], © Springer Nature 2018
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cancer site without damaging the surrounding healthy 
tissue. Due to the poor heat resistance of tumor cells, 
the photothermal agent can convert near-infrared light 
into heat energy at the tumor site to generate superheat, 
which leads to a series of hazards, such as protein dena-
turation, cell lysis, and organelle damage, thereby killing 
cancer cells [140, 141]. The ideal photothermal agent has 
high selectivity for the target tissue, a large absorption 
cross section for optical wavelengths, low toxicity, and 
easy functionalization [142]. Various nanomaterials have 
been reported for PTT, such as gold nanorods [143, 144], 
copper sulfide nanoparticles [145], and black phospho-
rus [146]. MXenes, including Ti3C2Tx [147, 148], Nb2CTx 
[18, 149] and Ta4C3Tx [141], have also become new PTT 
reagents for deep tissues due to their remarkable pho-
tothermal conversion efficiency and strong absorption 
in the near-infrared wavelength range, and the use of 
MXenes has been successfully demonstrated for in  vivo 
PTT.

In recent years, researchers have made a series of 
breakthroughs in the development of MXene materials 
for PTT, including Nb2C with extremely high photother-
mal conversion efficiency in both the NIR-I and NIR-II 
regions [18, 149], Ta4C3Tx-SP nanosheets that enable 
dual-mode CT and PA imaging of living tumors [117], 
and MQDs with extremely high photothermal conver-
sion efficiency [118, 150]. Ti3C2 material was synthesized 
through rational design with the (MnO)x composition 
anchored on the surface of Ti3C2 by redox reaction by Dai 
et  al. [116]. To further improve the stability of (MnO)x/
Ti3C2Tx, the surface was also modified with soy phospho-
lipids (SP). After experimental validation, the synthesized 
MnOx/Ti3C2Tx-SP composites showed much higher pho-
tothermal stability and achieved a photothermal conver-
sion efficiency of 22.9%, which is comparable to those 

of conventional Au nanorods (21%) and Cu2-xSe carbon 
nanotubes (22%) [116].

PTT has reduced side effects compared to traditional 
cancer treatment modalities due to the high spatiotempo-
ral control of local heat. To overcome heat shock protein 
(HSP)-induced thermal resistance to achieve effective tumor 
tissue ablation, the temperature of PTT usually needs to 
exceed 50 °C, which may lead to thermal damage to normal 
organs near the tumor [151]. Moreover, it was shown that 
the second near-infrared (NIR-II) biological window (1000–
1350 nm) is more favorable than the NIR-I biological win-
dow (750–1000  nm) for achieving deep tissue penetration 
[18]. Cao et  al. proposed a strategy for cryogenic nuclear-
targeted PTT in NIR-II region-modifying small fluores-
cent V2CTx quantum dots with good photothermal effects 
in the NIR-II region with TAT peptide and constructed a 
V2CTx-TAT@Ex-RGD multifunctional thermal therapy plat-
form by RGD modification (Fig. 13a) [152].

Moreover, Shao et al. studied the synthesis of nitride-
based MXenes and Ti2NTx quantum dots, which exhib-
ited extremely high photothermal conversion efficiency 
in both the first and second near infrared (NIR) biologi-
cal windows (NIR-I, 48.62% at 808 nm; NIR-II, 45.51% at 
1064 nm) (Fig. 14) [150]. To our excitement, in addition 
to the good biocompatibility and photothermal therapeu-
tic efficiency, Ti2NTx quantum dots also show suitable 
degradation properties and excretion rate in vivo and can 
be smoothly excreted from the body after the PTT thera-
peutic effect has been exerted (Fig. 13b).

With significant photothermal conversion efficiency 
and strong absorption characteristics in the NIR range, 
MXenes has become an excellent PTT reagent for deep 
tissues. Moreover, different surface modifications and 
other strategies can significantly improve the photother-
mal properties and enhance tumour elimination.

Fig. 12   a Schematic diagram of the pH-responsive and laser-triggered drug release of DOX-loaded Ti3C2Tx-SP nanosheets [137]. b The Dox release 
profiles of Dox@Ti3C2Tx-SP nanosheets in buffer solutions at different pH values [137]. c The Dox release profiles triggered by 808 nm laser irradiation 
at different pH values. Reproduced with permission from Ref. [137], © John Wiley and Sons 2018
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Photodynamic therapy
Photodynamic therapy (PDT) is another very promis-
ing light therapy for the treatment of tumors. Photosen-
sitizers (PSs) are an important factor in determining the 
effectiveness of PDT. By systemic or local administration, 
PS is allowed to accumulate at the tumor site. Then, pho-
tosensitizing molecules are activated in the presence of 
suitable wavelengths of light to form cytotoxic reactive 
oxygen species (ROSs) in the presence of endogenous 
molecular oxygen species, especially singlet-state oxygen, 
which eventually leads to cancer cell death [153, 154]. 
Due to their unique electronic structure and optoelec-
tronic properties, MXene nanosheets are ideal materials 
for use as PDT photosensitizers. Since photosensitizer 
drugs have little toxicity until they are activated by exter-
nal light, PDT can significantly reduce side effects and 
improve target specificity compared with conventional 
cancer treatment modalities such as radiotherapy and 
chemotherapy [155, 156].

In 2017, Liu et  al. discovered the ability of Ti3C2Tx 
nanosheets to generate reactive oxygen species 
(ROS) under light and their potential as a novel 

photosensitizer for photodynamic therapy [136]. They 
used 1,3-diphenylisobenzofuran (DPBF) as a single-
linear oxygen (1O2) detector and observed a significant 
decrease in the absorbance of DPBF under irradiation 
with 808  nm light, which indicated that 1O2 was pro-
duced by Ti3C2Tx nanosheets under irradiation with 
near-infrared light. The near-infrared laser-triggered 
generation of singlet oxygen by Ti3C2 nanosheets has 
led to its consideration as a novel photosensitizer for 
effective photodynamic therapy.

As research continued, it was found that in addition 
to Ti3C2Tx, other MXenes have potential applications 
in the field of photodynamic therapy. Recently, Zhang 
et  al. found that Mo2CTx can also generate high tem-
perature and ROSs under laser excitation, which can 
significantly induce apoptosis [157]. Encouragingly, by 
synthesizing 3D MXene with a honeycomb structure 
and anti-aggregation properties, Guo et  al. found that 
3D MXene has a higher ROS generation ability than 
Ti3C2Tx nanosheets [158].

Multiple studies have shown that MXene as a photo-
sensitiser can produce reactive oxygen species under 

Fig. 13  a (i) Photothermal heating curves of V2CTx-TAT@Ex-RGD (V2CTx-TAT, 100 μg/mL) solution under 1064 nm (NIR-II) laser irradiation at different 
power densities. Photothermal heating curves (ii) and corresponding thermal images (iii) of V2CTx-TAT@Ex-RGD solution under 1064 nm laser 
irradiation at different concentrations at a power density of 0.96 W cm−2. Reproduced with permission from Ref. [152], © American Chemical Society 
2019. b Absorption spectra (absorption intensity at 808 nm (A/L) (i) and percentage degradation(ii) of Ti2NTx quantum dots after degradation in 
water for 0, 2, 4, 6 and 8 days. Reproduced with permission from Ref. [150], © Elsevier 2020.
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appropriate wavelengths of light which is important 
for cancer treatment. As research progresses, numbers 
of MXene is shown to have potential as photodynamic 
therapy.

Immunotherapy
Immunotherapy, which is a novel method for treat-
ing tumors, generates a durable antitumor response by 
enhancing or activating the patient’s own immune sys-
tem to achieve precise tumor treatment, targeted killing 
of tumor cells, and prevention of tumor recurrence and 
metastasis [159]. MXene-based materials are gradually 
showing unique advantages in the field of immunother-
apy due to their excellent properties, such as high specific 
surface area, biocompatibility, and tumor-targeting accu-
mulation. The advantages of MXene-based materials in 
the field of immunotherapy have gradually been demon-
strated. However, it is usually difficult to achieve satisfac-
tory results by immunotherapy alone, and a combination 
of immunotherapy with traditional nonimmunotherapy 
treatment modalities (e.g., chemotherapy, photothermal 
therapy, and photodynamic therapy) is usually utilized 
[160–163].

In 2020, Hao et  al. designed and constructed a multi-
functional niobium carbide (Nb2CTx) MXene-modi-
fied 3D printing biodegradable scaffold that was loaded 
with an immune adjuvant (R837) for the treatment of 
bone metastases of breast cancer. The prepared BG@
NbSiR scaffold could induce tumor ablation by a ther-
mal effect under the action of an 808 nm NIR laser. Fol-
lowing tumor ablation, tumor fragments were released 
in large quantities, which together with R837 could 
perform a vaccine-like function to promote dendritic 
cell (DC) recruitment/maturation and cytokine secre-
tion, thereby activating an immune response to attack 
tumors (Fig. 15). In particular, combination therapy with 
PD-L1 checkpoint blockade protected the organism from 
breast cancer bone metastases by inducing DC recruit-
ment/maturation at the tumor site and CTL infiltration, 
which awakened the immune system to eliminate both 
primary and metastatic tumors (Fig.  16a). In addition, 
the combination therapy established long-term protec-
tion by stimulating the host to produce immune memory, 
thereby effectively avoiding tumor recurrence (Fig.  16b) 
[161]. Meanwhile, the biodegradation products of the 
BG@NbSiR scaffold also promoted the subsequent bone 
regeneration process [161]. As another example of the 

Fig. 14  In vitro photothermal experiments. a Absorption spectra of Ti2NTx quantum dots at different concentrations (NIR-I: 750–1000 nm, NIR-II: 
1000–1350 nm). b, c Normalized absorbance intensities at 808 nm and 1064 nm for the characteristic cell length (A/L) of Ti2NTx quantum dots. d, e 
Corresponding calculations of photothermal conversion efficiency. Reproduced with permission from Ref. [150], © Elsevier 2020
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application of Nb2CTx, Lu et  al. constructed a Nb2C@
PDA-R837@RBC smart nanoplatform with stronger 
PTT effects and enhanced immunotherapeutic effects 
that used polydopamine (PDA)-coated Nb2C nanosheets 
to load the immune adjuvant R837 and was coated with 
a red blood cell membrane (RBC) on the surface. After 
Nb2CTx@PDA-R837@RBC NPs induced effective abla-
tion of primary tumor foci, TAAs and R837 were success-
fully released to stimulate dendritic cell (DC) maturation, 
thereby achieving the immunotherapeutic effects of kill-
ing primary tumor cells, inhibiting tumor cell growth 
and preventing tumor recurrence. In addition, coating an 
erythrocyte membrane on the nanoplatform can avoid 
excessive blood clearance and prolong blood circula-
tion, thereby resulting in better biocompatibility[135]. In 
another application of (Ti3C2Tx)MXene material, a nano-
composite drug delivery system (Ti3C2Tx@Met@CP) was 
established by layer-by-layer adsorption of metformin 
(Met) and composite polysaccharide (CP) on the surfaces 
of Ti3C2Tx nanosheets to achieve a combination of PTT/
PDT/chemotherapy/immunotherapy for complete tumor 
eradication and effective inhibition of tumor recurrence 
and metastasis. CP is a novel immunomodulator that 
mixes lentinan, pachymaran and tremella polysaccha-
rides in optimal proportions. The modification of CP on 
the surfaces of Ti3C2Tx nanosheets improves its tumor 
site aggregation and biocompatibility and activates the 
immune function of the host [162]. In addition, a study 
prepared a Ti3C2-PEG-OVA-Mn2+ (TPOM) nanoplat-
form for PTT. The nanoplatform can release OVA and 
Mn2+ upon the irradiation of NIR laser, which simul-
taneously activated an anti-tumour adaptive immune 
response and natural immunity of the STING pathway, 
boosting DC maturation and increasing CTL infiltration 
validated by in vitro/vivo experiments [163].

In addition to being used as drug carriers of immune 
adjuvants or immunomodulators for combination immu-
notherapy, the immunomodulatory effect of MXenes may 
enable them to be used for immunotherapy directly [160, 
164]. Recently, Rafieerad et al. experimentally found that 
Ti3C2Tx quantum dots can produce immunomodulatory 
effects in purified T cell populations without dedicated 
antigen-presenting cells (APCs), which enables them to 
independently suppress inflammatory activation, thereby 
demonstrating their potential as novel immunomodula-
tory platforms [160].

Synergistic therapy
Compared to the application of MXene alone in one 
area of treatment or diagnosis, researchers are more 
interested in developing its effective synergistic thera-
peutic effects with multiple treatment modalities. Com-
bining PTT and PDT with other therapeutic diagnostic 

modalities synergistically can often produce unexpected 
results, such as combining PTT with PDT [165], PTT 
with SDT [166] or PTT with conventional chemotherapy 
and PDT or PTT with drug delivery [167]. Qun et  al. 
found that the synergistic effect of Mo2C-mediated PDT/
PTT (induction of apoptosis) was significantly better 
than that of PDT or PTT alone by using the ROS buster 
NaN3 to eradicate ROSs and using Mo2C-mediated pho-
totherapy in an ice bath to eliminate the effects of PDT 
and PTT [157]. In 2017, Liu et al. developed a therapeutic 
nanoplatform for synergistic PTT/PDT/chemotherapy 
based on the advantages of Ti3C2Tx nanosheets with 
tumor-specific accumulation, stimulated-responsive drug 
release, and excellent biocompatibility, which was proven 
to have excellent tumor ablation effects in ex vivo experi-
ments [136].

Of course, in addition to cancer treatment, drug deliv-
ery in combination with PDT or PTT can also be used 
for imaging, thereby leading to the development of new 
nanoplatforms for therapeutic and diagnostic applica-
tions. Based on the powerful X-ray attenuation ability 
and high NIR absorbance of tantalum carbide (Ta4C3Tx) 
nanosheets, Han et  al. constructed a novel multifunc-
tional nanosystem for dual-mode CT and PA imaging of 
living tumors and efficient in vivo photothermal ablation 
of mouse transplanted tumors [71].

Portable and wearable devices
In recent years, with the increased demand for flexible, 
efficient and high-performance devices, wearable, port-
able and highly sensitive devices have attracted much 
research interest in monitoring human health and human 
activities, among other applications.

To date, most research has focused on the develop-
ment of sensors. In 2017, Gao et al. first reported a highly 
flexible and sensitive piezoresistive sensor that is based 
on Ti3C2Tx for detecting subtle human activities and 
other weak pressures [168]. Large changes in the inter-
layer distance of Ti3C2 under external pressure were 
detected by in  situ transmission electron microscopy, 
which demonstrated the basic operating mechanism of 
the piezoresistive sensor. The resultant sensor showed 
high sensitivity (gauge factor ~ 180.1), excellent flexibil-
ity, fast response (< 30 ms) and extraordinarily reversible 
compressibility (over 4000 times). Lei et  al. developed a 
biosensor for sweat analysis that was made from a novel 
MXene/Prussian blue (Ti3C2Tx/PB) composite, which 
provided a promising means for noninvasive monitoring 
of biomarkers. The unique modular and solid–liquid–air 
three-phase interface design enabled durable and sensi-
tive detection of biomarkers (e.g., glucose and lactate) in 
sweat with a typical electrochemical sensitivity of 35.3 
µA·mm−1·cm−2 for glucose and 11.4 µA·mm −1·cm−2 
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for lactate [169]. In another study, Ti3C2Tx was also used 
to prepare a microfluidic wearable impedimetric immu-
nosensor for the noninvasive detection of sweat [170]. 
Recently, Yang et  al. developed a wearable, multifunc-
tional microneedle system using highly stable MXene 
nanosheets to build a "hospital-on-a-chip" system with 
effective diagnostic and therapeutic applications [171]. 
The system consists of integrated microchip biosensors 
with real-time biosensing, electrical stimulation, and 
drug release capabilities (Fig.  17a, b and c). MXene has 
also been compounded with conductive materials such 
as conductive hydrogels with good stretchability [172, 
173], flexible supercapacitor (FSC) [174] to prepare wear-
able sensors. Wan et  al. introduced MXene sheets with 
excellent electrical conductivity into a hydrogel poly-
mer that was composed of polyacrylamide (PAAM) and 
polyvinyl alcohol (PVA) to prepare a wearable electronic 
sensor with antifreeze properties, long-lasting moisture 

retention properties, and self-healing ability [172] 
(Fig. 17d and e).

Recently, researchers have also taken full advantage of 
the properties of MXenes, such as pressure sensing, tem-
perature sensing, and energy storage, and compounded 
MXenes with other materials to discover the applica-
tion potential of MXenes in human physiological activity 
monitoring, health care, personalized medicine, artificial 
skin, and human–computer interaction, among other 
areas.

In smart textiles, researchers have exploited the excel-
lent electrical and thermal conductivity of MXenes by 
interacting them with various polar polymer textiles 
for the preparation of multifunctional textiles. In 2018, 
Zhang et al. prepared the first highly conductive hydro-
phobic textiles with excellent electromagnetic inter-
ference (EMI) shielding efficiency and Joule heating 
properties by depositing in situ polymerized polypyrrole 

Fig. 15  Schematic diagram of the mechanism of anti-tumor immune response induced by BG@NbSiR –based PTT plus anti-PD-L1 immunotherapy. 
Reproduced with permission from Ref. [161], © John Wiley and Sons 2021



Page 27 of 39Li et al. Journal of Nanobiotechnology           (2023) 21:73 	

Fig. 16   a Anti-tumor effects of BG@NbSiR-scaffold-based PTT plus anti-PD-L1 immunotherapy. (i) Scheme diagram of BG@NbSiR-scaffold-based 
PTT plus anti-PD-L1 combination therapy to suppress tumor progression at the distant orthotopic site. Tumor images, weight, and volume diagrams 
of (ii) the primary and (iii) the distant tumors after mice were sacrificed. b Long-term protection efficacy against tumor recurrence by BG@NbSiR 
scaffold-based PTT plus anti-PD-L1 immunotherapy. (i) Schematic illustration of BG@NbSiR-scaffold-based PTT plus anti-PD-L1 combination therapy 
to inhibit tumor recurrence (n = 5). Tumor (ii) images, (iii) volume, and (iv) weight diagrams of the rechallenged tumors after mice were sacrificed. 
Reproduced with permission from Ref. [161], © John Wiley and Sons 2021.
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(PPy)-modified MXene flakes onto poly(ethylene tere-
phthalate) textiles followed by a silicone coating [175]. 
Gao et al. developed a superhydrophobic and breathable 
elastic MXene-based smart textile device with a multi-
core-shell structure. They modified MXene sheets on the 
surface of PDA-modified fibers by van der Waals forces 
and hydrogen bonding and constructed a multicore-shell 
structure on a polydimethylsiloxane (PDMS) coating. The 
prepared MXene-based smart textile devices showed not 
only good superhydrophobic permeability and mechani-
cal durability and excellent photothermal response and 
electrothermal response but also ideal strain sensing 
properties and excellent temperature sensing behav-
ior, which demonstrates the potential for applications in 
next-generation all-in-one wearable electronics, includ-
ing for human motion and temperature monitoring, 
health care and personal thermal management [7].

Electronic skin with recognition and sensing capabili-
ties beyond those of biological skin has vital applications 
in intelligent prosthetics, humanoid robotics and health 
monitoring. Taking advantage of MXene’s adjustable sur-
face termination, rich chemical properties and excellent 
electrical conductivity, MXene can be compounded with 
other materials to create multifunctional monitoring 
sensors. In 2022, Shen et al. prepared a flexible bimodal 
electronic skin based on a bionic chitosan/MXene (CTS/
MX) hybrid membrane using chitosan (CTS) as a bridg-
ing agent. The electronic skin can also recognize pulses, 
sound signals, breathing rates and other human life activ-
ities, and the skin utilizes new strategies for developing 
the next generation of robust systems based on multi-
functional wearable sensors. The prepared CTS/MX thin 
film electronic skin enables fast recognition of pressure 
and continuous monitoring of humidity. Moreover, the 
flexible bimodal e-skin has shown satisfactory results in 
recognizing pulses, sound signals, breathing rates and 
other human life activities. The excellent properties of 
the skin offer broad application prospects for its appli-
cation in intelligent flexible systems such as electronic 
skins, bionic robots, biomedical devices and haptic feed-
back systems [176].

Husam et  al. developed a self-charging power unit 
for the first time by integrating a triboelectric nano-
generator with MXene-based microsupercapacitors. 
This device could simultaneously and effectively collect 
and store mechanical energy of human biomechanical 
motions for powering electronics using skin as the con-
tact, thereby opening up new possibilities for wearable/
implantable sensor networks [177].

Antibacterial agents
Over the past few decades, antibiotic-resistant bacte-
rial infections have progressively become a major public 

health threat as bacteria become more resistant to con-
ventional antibiotics, coupled with the increasing diffi-
culty of discovering new effective antibiotics. Therefore, 
the development of novel antimicrobial agents for fight-
ing drug-resistant bacterial infections is currently a 
major research objective in this field. Two-dimensional 
nanomaterials, which are represented by graphene and 
MoS2, have offered numerous excellent opportunities 
for the study of highly effective antimicrobial agents due 
to their unique two-dimensional structures. Accord-
ing to relevant reports, novel 2D nanoparticles show 
higher membrane permeability than antibiotics. The 
generation of reactive oxygen species (ROSs) and free 
radicals, enhanced oxidative stress, damage to genomic 
DNA, damage to cellular structural integrity and physi-
cal damage to cell membranes due to the sharp edges of 
2D materials have been reported as the main antibacte-
rial mechanisms of 2D nanoparticles [178–182]. MXene-
based materials, which are characterized by a large 
specific surface area, feasible chemical manipulation and 
functionalization, and the potential to load various anti-
microbial functional groups, are considered to be high-
potential antimicrobial agents.

In 2016, Rasool and Mahmoud et  al. reported that 
Ti3C2Tx exhibited antibacterial behavior in colloidal sus-
pensions, which was the first observation after graphene 
oxide in which Ti3C2Tx was found to act as an antibac-
terial agent [20]. By examining the inhibition effects of 
three materials, namely, Ti3AlC2Tx(MAX), ML-MXene, 
and delaminated Ti3C2Tx nanosheets, which were tested 
by the colony counting method, it was found that all 
three materials had inhibitory effects on both E. coli and 
B. subtilis. In particular, a Ti3C2Tx colloidal solution led 
to 97.70 ± 2.87% and 97.04 ± 2.91% viability losses of 
E. coli and B. subtilis. Subsequently, they found that the 
antibacterial activity of Ti3C2Tx was dose-dependent by 
measuring the growth curves and cell viability of bacte-
ria in Ti3C2Tx colloidal solutions of various concentra-
tions. When the concentration of Ti3C2Tx was 200  μg/
mL, the bacterial inhibition rate increased to more than 
99%. Moreover, comparing the antibacterial activities of 
Ti3C2Tx and GO, the Ti3C2Tx had higher cell inactivation 
than GO. By LDH release analysis, SEM and TEM images 
and glutathione oxidation analysis, the following antibac-
terial mechanism of Ti3C2Tx nanosheets was proposed: 
Ti3C2Tx adsorbs on the cell surface, thereby leading to cell 
membrane rupture, and eventually the cells are damaged 
and die. Shamsabadi et  al. investigated the antibacterial 
performances of MXene nanosheets of various lateral 
sizes (0.09, 0.35, 0.57 and 4.40 μm) against Bacillus subti-
lis and Escherichia coli bacteria using flow cytometry and 
fluorescence imaging techniques, and they confirmed 
both the size-dependent and exposure-time-dependent 
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antibacterial performances of MXenes, which was the 
first study of the main antimicrobial mode of action of 
MXenes [183]. In addition, they used a broth microdilu-
tion assay for the first time to determine the correlation 
between the interaction between MXene nanosheets 
and bacterial cells and the antimicrobial performance of 
the nanosheets. They discovered that the sharp edges of 
the MXene nanosheets damaged the bacterial cell walls 
significantly, thereby leading to the release of bacterial 
DNA and consequently the dispersion of the bacteria 

(Fig. 18a). Making full use of the antibacterial properties 
of MXenes, Mayerberger et al. functionalized electrospun 
CS nanofiber mats with Ti3C2Tx sheets for the first time 
to prepare a flexible bandage material with remarkable 
antibacterial properties, which led to a cell reduction rate 
of 95% against gram-negative bacteria (Escherichia coli) 
and 62% against gram-positive bacteria (Staphylococcus 
aureus) [184]. A series of studies are currently underway 
to compound MXene with materials such as chitosan 
[185], electrospun poly (polycaprolactone) [186] and 

Fig. 17   a Schematic diagram of the "hospital-on-a-chip" concept. b (i) Schematic representation of bioelectrical signal transmission from the 
neuron to the electrode or vice versa. (ii) Photograph of a PLA microneedle. (iii) Image of a close look of the tiny needles. c Photographs of wearable 
microneedle electrodes. Reproduced with permission from Ref. [171], © American Chemical Society 2021. d Schematic illustration of the fabrication 
of a conductive, anti-freezing, and self-healing conductive MXene nanocomposite organohydrogel (MNOH). e The experiment of self-healing. (I)The 
self-healing behavior between the original MNOH (black) and the MNOH dyed with rhodamine (red). (II) Time evolution of the healable process for 
the conductive MNOH by the real-time resistance measurements. (III) A circuit comprising MNOH in series with a red LED indicator: (i) original, (ii) 
completely bifurcated, (iii) self-healed, and (iv–vi) the corresponding schematic diagrams of the circuit. Reproduced with permission from Ref. [172], 
© John Wiley and Sons 2021
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chitin [187] for the preparation of multifunctional com-
posite films with excellent antibacterial properties, excel-
lent biocompatibility and promotion of wound healing.

In recent years, various studies [20, 183, 184, 188–
190] have demonstrated the excellent antimicrobial 
activity of MXenes. However, recently, it has been 
shown that MXenes can be modified by using nano-
particles of metals and metal oxides with antimicro-
bial activity (e.g., silver, zinc, and copper) [191, 192] 
to further enhance their antimicrobial properties. In 
2018, Pandey et  al. prepared Ag@MXene composite 
nanopore membranes by self-reduction of AgNO3  to 
generate AgNPs on the surfaces of MXene nanosheets 
[188]. In this experiment, E.  coli was placed on PVDF 
(control), MXene and 21% Ag@MXene composite 
membranes and incubated at 35  °C for 24  h. Accord-
ing to the results, the 21% Ag@MXene composite 
membrane inhibited the growth of E.  coli up to 99%, 
while the inhibition rate of the MXene membrane 
against E.  coli was approximately 60% (Fig.  18b). In 
2020, a cuprous oxide-anchored MXene nanosheet 
showed good antibacterial activity against Staphylo-
coccus aureus and Pseudomonas aeruginosa bacteria 
with inhibition rates of 97.04% and 95.59%, respectively 
[189]. The Cu2O-anchored MXene nanosheets showed 
greatly enhanced antibacterial activity compared to 
the original MXene nanosheets through the syner-
gistic effects of MXene acceleration of photoelectron 
transfer, Cu2O antibacterial activity and photocataly-
sis, generation of reactive oxygen species (ROSs), and 
ionophore resonance (Fig.  18c, d). In the future, it is 
possible that the development of new MXene compo-
sitions will lead to the discovery of alternatives with 
more antimicrobial potential. On the other hand, the 
high-photothermal conversion efficiency in the near-
infrared radiation (NIR) biological window imparts or 
enhances the antimicrobial ability of MXene [193–196]. 
The strong antimicrobial properties make MXene a 
new multifunctional wound dressing. Simultaneously, 
the mild photothermal action is conducive to the pro-
motion of cell proliferation and angiogenesis, facili-
tating the repair and remodeling of damaged tissues 
[197]. Herein, the development of MXene based wound 
dressings has attracted more and more attention. Gold 
nanoparticles (AuNPs) exhibit various unique proper-
ties including low toxicity, photothermal effects and 
polyvalent effects, as well as accelerating the keratino-
cytes and fibroblasts migration to speed up the skin 
repair. Xu et  al. prepared a chitin/MXene composite 
sponge by incorporating MXene-based nanomateri-
als with gold nanoparticles (AuNPs) into the network 
of chitin sponge. The prepared composite sponges 

showed predominant antibacterial activity through 
the synergy between the capture and the photother-
mal effects, and promoted normal skin cell migration 
to heal the infected wound [194]. Mo et al. successfully 
constructed an antibacterial nanofibrous membrane 
(MXene-AMX-PVA nanofibrous membrane) by mix-
ing amoxicillin (AMX), MXene and polyvinyl alcohol 
(PVA) for the treatment of bacterially infected skin 
wounds. Under lower power density NIR irradiation, 
the hyperthermia generated by MXene inhibited the 
bacterial proliferation and accelerated AMX release, 
effectively enhancing the healing rate of bacterially 
infected wounds [195].

Further research is required to develop new MXene 
compositions, and it is possible to discover alternatives 
with more antimicrobial potential. What’s more, addi-
tional studies of the antibacterial mechanism of MXene 
is important to promote the application of MXene as an 
antibacterial agent.

Implants
Although medical implants are now widely used in clini-
cal treatment, various problems remain to be solved, 
such as immune reaction, postoperative infection, poor 
healing, and tumor regeneration. MXenes can be used 
as a surface coating on implants to enhance and toughen 
implants and even significantly reduce the probability 
of tumor recurrence and bacterial infection because of 
their excellent biocompatibility, biodegradability and 
antimicrobial activity [24, 198–201]. To tackle the chal-
lenges of tumor recurrence and bacterial infection prob-
lems with conventional treatments for osteosarcoma, Xie 
et  al. developed a novel multifunctional implant (Sp@
MXGelMA) that consists of MXene nanosheets, gelatin 
methacrylate (GelMA), and bioinert sulfonated poly-
etheretherketone (SP) [23]. Through in vitro and in vivo 
experiments, it was demonstrated that the Sp@MX-
TOB/GelMA implant has enhanced cytocompatibility, 
osteogenic commitment of preosteoblasts and osseointe-
gration, which are highly favorable for the treatment of 
bone loss after osteosarcoma resection. Yin et  al. intro-
duced photonic-responsive 2D niobium carbide Nb2CTx 
nanosheets into 3D-printed bone-mimetic scaffolds for 
osteosarcoma treatment [198]. Due to the special pho-
tonic response of the integrated 2D Nb2CTx nanosheets 
in the second near-infrared (NIR-II) biological window 
with a high tissue penetration depth, it is highly effi-
cient in killing bone cancer cells and effectively inhibits 
tumor regeneration. In addition, the biodegradation of 
2D Nb2CTx-integrated 3D-printed scaffolds can signifi-
cantly promote the neovascularization and migration of 
the defective area, thereby substantially facilitating osse-
ous regeneration to repair larger bone defects.
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In recent years, several two-dimensional materials, 
such as graphene, have been shown to expedite osteo-
genic differentiation of human bone marrow mesenchy-
mal stem cells [202, 203]. MXenes, which are graphene 
analogs, have also been shown to enhance cell prolif-
eration and osteogenic differentiation capacity [204]. 
In 2019, Zhang et  al. conducted the first study of the 
application of Ti3C2Tx MXene films in bone tissue engi-
neering and GBR treatment [201]. The good cytocom-
patibility and cell proliferation ability of Ti3C2Tx were 
demonstrated by cellular experiments. It was confirmed 
that Ti3C2Tx films show no significant inflammation or 
toxic side effects by the host tissue response to MXene 
films in  vivo, thereby further confirming their safety 
in vivo. Moreover, the results of an alkaline phosphatase 
(ALP) assay and qRT–PCR of MXenes also showed that 
MXenes promoted early osteogenic differentiation of 
preosteogenic cells, which was also confirmed in rat 
calvarial defect model experiments. Recently, Shi et  al. 

developed the ultra-thin 2D Mxenes and testified the role 
of few-layered Nb2C (FNC) in reducing inflammatory 
cytokine production and inhibiting osteoclastogenesis 
via ROS scavenging by Micro-CT, histological assess-
ments, and UHMWPE particle-induced osteolysis mod-
els [205].

In addition, recent studies show that two-dimensional 
Ti3C2Tx MXene promote neural stem cells (NSCs) differ-
entiation and electrophysiological maturation of neural 
circuits, providing a critical and promising direction for a 
line of evidence for using Ti3C2Tx MXene in neural inter-
face or scaffold in stem cell therapy and nerve tissue engi-
neering from morphology, physiology and functionality. 
NSCs cultured on Ti3C2Tx MXene films differentiated 
into neurons with higher efficiency and longer neurites, 
demonstrating their capability to promote NSCs matura-
tion. Furthermore, Ti3C2Tx MXene had no appreciative 
effect on voltage-gated Na+ or K+ currents, but selec-
tively increases the amplitude of voltage-gated Ca2+ 

Fig. 18  a Size dependence and exposure time dependence of antimicrobial activity of MXenes: Fluorescence imaging analysis was performed 
after treatment of Bacillus subtilis and Escherichia coli with 100-μg/ml MXene nanosheets of 0.09 and 0.57 μm size. Reproduced with permission 
from Ref. [183], © American Chemical Society 2018. b Antibacterial activity of PVDF (control), MXene (Ti3C2Tx), and 21% Ag@MXene membranes. 
Reproduced with permission from Ref. [188], © Royal Society of Chemistry 2020. c Schematic of enhancement mechanism of synergistic 
antibacterial ability of Cu2O/MXene. Reproduced with permission from Ref. [189], © Elsevier 2020. d Schematic diagram of the synergistic 
antibacterial mechanism of Cu2O/MXene. Reproduced with permission from Ref. [189], © Elsevier 2020
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currents, which could contribute to longer neurons that 
may contribute to the longer neurites, as well as the 
boosted spiking and subsequently enhanced synaptic 
transmission. Ti3C2Tx MXene enhances synaptic trans-
mission by selectively increasing the frequency instead of 
the amplitude of synaptic events or the number synapses 
[206].

The good biocompatibility, physical degradability and 
antibacterial activity of MXenes provide favourable con-
ditions for tissue regeneration and good therapeutic 
efficacy. Meanwhile, based on the tumour-killing effect 
of MXenes and the bone regeneration ability, MXenes 
research not only provides a new type of nanomaterial 
but also open a new direction for biomedical applications 
of MXenes.

Others
In addition to the fields of application that are discussed 
above, it has recently been found that MXenes can also 
be applied as a nanoenzyme while scavenging excessive 
intracellular ROSs to realize powerful cytoprotective 
effects [207–209]. Reactive oxygen species (ROSs) are 
oxygen-containing chemically reactive molecules, which 
include singlet oxygen (1O2), superoxide anion radicals 
(O2-·), hydroxyl radicals (·OH), and hydrogen peroxide 
(H2O2). Two-dimensional V2C MX enzymes can effec-
tively catalyze the transformation of O2-· into H2O2 and 
O2, which is produced by decomposition into O2 and 
H2O and scavenging of ·OH, thereby inhibiting the eleva-
tion of the intracellular ROS level and achieving smart 
cytoprotection against oxidative stress-induced inflam-
mation and neurotoxicity (Fig.  19). These studies reveal 
new explorations into the applications of MXene nano-
materials, and in-depth research into the properties of 
MXenes is essential to expand their applications.

Perspectives and summary
Summary
Along with the development of nanomedical technol-
ogy, MXenes are a promising new nanomaterial in the 
biomedical field. In this paper, we review the relevant 
advances in the application of MXenes and their deriva-
tives in biomedicine in recent years. Starting from the 
preparation methods, we summarize and outline two 
main synthetic routes: a top-down route that is based 
on the direct exfoliation of multilayer bulk crystals and 
a bottom-up route that is based on the growth of 2D 
ordered structures by molecules/atoms. In addition, 
MXenes have great potential for surface modification 
and functionalization due to their rich surface capping 
functional groups (e.g., hydroxyl (–OH), fluorine (–F), 
and oxygen (–O)). Subsequently, due to the unique struc-
tural features, such as ultrathin atomic thickness and 

high specific surface area, and excellent physicochemi-
cal properties of MXenes, we reviewed and analyzed the 
applications of MXenes in biosensors, diagnosis, medi-
cal implants, antibacterial drugs and wearable devices. 
Overall, with large specific surface area, tunable opto-
electronic properties and considerable biocompatibility, 
MXenes have been proven to be promising for a wide 
range of biomedical applications in biosensing, diagnosis 
and therapy, especially in immunotherapy and wearable 
devices, which are hot research areas. It is believed that 
MXenes will occupy an extremely important position in 
the future biomedical field with gradual research.

Opportunities and challenges
Compared with traditional organic materials, inorganic 
2D MXene nanomaterials show great potential for bio-
medical applications such as biosensors, drug delivery, 
and bioimaging due to their unique physicochemical 
properties, good biocompatibility, and easy function-
alization, but they still face many challenges in clinical 
translation.

The first major challenge in the clinical translation of 
2D MXene nanomaterials is their potential nontargeted 
toxicity. To translate these 2D MXene nanomaterials into 
clinical applications, it is not enough to continuously 
enhance their physicochemical properties (e.g., photo-
thermal conversion efficiency and laser triggering); more 
importantly, their toxicity and biocompatibility must be 
evaluated to fully characterize their safety during clini-
cal translation. Although in vivo and in vitro studies have 
been performed on the biocompatibility of MXenes and 
have shown short-term biocompatibility, these stud-
ies have generally been limited to short-term experi-
ments. However, systematic evaluation of the long-term 
safety of MXene-based materials is essential for further 
expanding the practical application of these materials in 
the biomedical field. A recent study suggested that while 
the accumulation of Ti3C2Tx in the uterus barely affected 
the reproductive capacity of female mice, the neurotoxic 
effect on the offspring mice was evident. It is suggested 
that future studies should pay more attention to the long-
term effects of nanomaterial exposure, including the 
health of adult offspring, especially neurodevelopment, 
rather than being limited to short-term effects, such as 
pregnancy outcomes [210]. The cellular uptake behav-
ior, cytotoxicity mechanisms [211], immunogenicity, 
biodistribution, and factors that may affect the toxicity 
of MXene-based materials need to be further investi-
gated, which will facilitate the development of strategies 
for modulating their toxicity, which is the next step of 
research. It has been shown that the surface functionali-
zation, size, dispersion state, chemical composition, solu-
bility, and crystalline shape of a 2D material may affect its 
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toxicity and biocompatibility [212]. A common strategy 
for reducing the toxicity of MXene materials is surface 
modification. For example, collagen-modified MXenes 
have been shown to enhance ROS production in cancer 
cells while reducing ROS generation due to oxidative 
stress in normal cells, thereby reducing the toxicity of 
MXenes to normal cells. Rozmysłowska-Wojciechowska 
et  al. used collagen to modify the surfaces of MXenes 
using the interaction between the MXene surfaces and 
natural biomacromolecule collagen, which was verified to 
reduce the toxicity of the MXenes and improve cell sur-
vival in in vitro experiments [213].

Second, during the biomedical application of MXenes, 
many MXenes are needed to load therapeutic drugs or 
other auxiliary reagents. Considering the damage of 
drugs to normal cells and the effective drug concentra-
tion during the treatment, achieving controlled release of 
drugs is also crucial for the construction of drug carriers. 
To date, researchers have developed two main strategies 
for controlled drug release: pH induction and NIR induc-
tion [214, 215].

Third, the properties of MXenes (e.g., toxicity) can be 
more easily controlled by precise design of their compo-
sition, size, and surface functionalization. The bottom-up 
synthesis approach is more controllable than the top-
down approach, which lacks size distribution and repro-
ducibility control. Moreover, in addition to the study 
of flat films and quantum dots, the study of MXenes 

with other morphological features, such as nanotubes 
and nanocages, is also valuable. Of course, combining 
MXenes with other types of functional materials to form 
hybrid materials and fully combining the advantages of 
multiple materials are additional research directions for 
MXene biomedical applications [216].

Fourth, to further promote the clinical translation of 
MXenes in the biomedical field, more efforts should be 
made to increase the low yield of MXenes in scale-up 
production.

In conclusion, the future of MXene-based biomaterials 
in the biomedical field is promising, but the road to their 
clinical application is still very long and arduous. It is 
highly expected that this review will provide some inspi-
ration to research scholars in various fields and advance 
the process of clinical translation of novel MXenes and 
related materials.
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