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Abstract 

Tumor microenvironment (TME) plays an important role in tumor progression, metastasis and therapy resistance. 
Remodeling the TME has recently been deemed an attractive tumor therapeutic strategy. Due to its complexity and 
heterogeneity, remodeling the TME still faces great challenges. With the great advantage of drug loading ability, 
tumor accumulation, multifactor controllability, and persistent guest molecule release ability, mesoporous nanodrug 
delivery systems (MNDDSs) have been widely used as effective antitumor drug delivery tools as well as remolding 
TME. This review summarizes the components and characteristics of the TME, as well as the crosstalk between the 
TME and cancer cells and focuses on the important role of drug delivery strategies based on MNDDSs in targeted 
remodeling TME metabolic and synergistic anticancer therapy.
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Graphical Abstract

Introduction
Tumor microenvironment (TME), as a complex environ-
ment, can be roughly divided into the cellular TME and 
the biophysiochemical TME. The cellular TME consists 
mainly of all noncancer cells, such as cancer-associated 
fibroblasts (CAFs), endothelial cells, and immune cells. 
The biophysiochemical TME includes the extracellu-
lar matrix, metabolites, signaling molecules and solu-
ble products, small extracellular vesicles, oxygen partial 
pressure and interstitial pressure, pH, etc. The TME, as 
the “soil”, provides a suitable environment for the growth 
of cancer cells and plays an important role in the occur-
rence, progression, metastasis, recurrence and treatment 
resistance of tumors [1]. Due to the crucial role of the 
TME in tumor survival and treatment resistance, remod-
eling the TME may contribute to the cure of cancers, 
which is currently a hot topic in cancer therapy.

Emerging mesoporous nanodrug delivery systems 
(MNDDSs) have been facilitated as a novel therapeutic 
approach for remodeling the TME. As an advanced nan-
odelivery system, mesoporous nanoparticles significantly 
enhanced drug loading efficiency and realized all kinds of 
chemotherapy drugs safe, precise and efficient delivery to 
the tumor site [2, 3]. Moreover, modified MNDDSs can 
recognize and target both cancer cells and reshape the 
TME.

In this review, the TME regulation of cancer cell biol-
ogy and targeted remodeling of the TME by MNDDSs are 
reviewed. We first discussed the composition and char-
acteristics of the TME and then reviewed the interaction 
between the TME and cancer cells, especially focusing 

on the TME promoting tumor survival and therapeu-
tic resistance. Finally, the advantages of the MNDDSs 
for targeting and reshaping the TME were introduced, 
and the biggest remaining challenges in this field were 
summarized.

The tumor microenvironment
Composition and characteristics of the TME
The TME can be roughly classified into two categories: 
the cellular TME and the noncellular TME. The cel-
lular TME consists of vascular endothelial cells, fibro-
blasts, immune cells, etc. The noncellular TME refers to 
the extracellular matrix (ECM) surrounding cancer cells 
and stromal cells, which can be divided into three cat-
egories: (1) biological factors: energy materials (glucose, 
amino acids, fatty acids, lactate), cytokines (interleukin, 
interferons, tumor necrosis factor superfamily, colony 
stimulating factor, chemokines and growth factors), ECM 
(collagen, elastin, proteoglycan and amino chitosan), etc.; 
(2) physical factors: interstitial pressure; (3) chemical fac-
tors: pH, oxygen, carbon dioxide, nitric oxide (NO), ions 
(K+, Na+, Ca2+, Fe2+, etc.), etc. (Fig. 1).

Cellular microenvironment and its biology
Cancer cell biology is regulated by both intrinsic factors 
and the surrounding stromal cells, such as endothelial 
cells, fibroblasts and immune cells.

Tumor neovascularization
Tumor neovascularization functions by delivering vari-
ous nutrients and oxygen to the tumor and removing 
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metabolic waste. In addition, the number, maturity 
and distance of tumor vessels play key roles in tumor 
therapy efficacy [4]. The distinct prognosis of early and 
advanced renal cancer may be ascribed to the neovas-
cularization density, vascular endothelial cell size, and 
proliferation capacity [5]. Moreover, microvessel den-
sity is a meaningful prognostic factor in non-small cell 
lung cancer (NSCLC), colorectal cancer, and breast 
cancer [6–8].

Tumor neovascularization results from tumor-asso-
ciated endothelial cells (TAECs) and forms dysfunc-
tional capillaries of blood vessels, which are induced by 
noncellular microenvironments. The direct crosstalk 
between TAECs and cancer cells may contribute to the 
process of tumor angiogenesis. The mitogen-activated 
protein kinase (MAPK) and Notch signaling pathways 
are thought to be critical factors. The Notch signal-
ing pathway is involved in the differentiation of apical 

Fig. 1  Schematic presentation of the TME. Various cell types and non-cell components are involved to support tumor proliferation, invasion, and 
metastasis
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cells, proliferation of endothelial cells, and formation of 
mature vascular structures [9]. In addition, e-selectin and 
ligand sialyl Lewis oligosaccharide X are also involved in 
tumor neovascularization [10]. In addition, the hypoxic 
and acidic microenvironment could induce and stabi-
lize HIF1-α expression, upregulates vascular endothelial 
growth factor (VEGF) expression levels, and promotes 
tumor neovascularization [11, 12]. Moreover, VEGF can 
also induce cancer cells to shift from oxidative phospho-
rylation (OXPHOS) to glycolysis, indirectly leading to 
lactate accumulation in the microenvironment, forming a 
positive feedback effect [13, 14].

Cancer‑associated fibroblasts
As one of the most important stromal cells in solid tumor, 
CAFs may transform into various subtypes of CAFs 
under the stimulation of stress, inflammation and cancer 
cells and express α-smooth muscle actin (α-SMA) and 
fibroblast activation protein (FAP). CAFs could mediate 
cancer cell growth, migration and invasion depending on 
secreting various nutrients (lactate, glutamine) [15–17] 
and signaling molecules, such as aspartic acid, hepato-
cyte growth factor (HGF), VEGF, growth arrest specific 
protein 6 (GAS6), and exosomes [18–21]. CAF-derived 
ADAM-9 is positively associated with melanoma cell 
proliferation, apoptosis resistance, migration and inva-
sion [22]. In addition, CAFs derived type I, III, and V col-
lagen and fibronectin and matrix crosslinking enzymes 
can remodel the ECM and provide a supporting skeleton 
for cancer cell survival and proliferation [23].

CAFs also contribute to cancer cell therapy resistance 
and recurrence [24]. CD10+ GPR77+ CAF subtypes may 
provide a survival niche for cancer stem cells (CSCs), 
which are thought to be the seed of chemoresistance and 
recurrence [25]. In addition, CAF-derived soluble factors 
and cell adhesion molecules could activate the cancer 
cell antiapoptotic response and drug resistance-related 
signaling molecules. CAF-derived HGF could increase 
receptor tyrosine kinase (RTK) ligand level in melanoma 
cells, further activating the downstream effector factors 
phosphatidylinositol-3-OH kinase (PI3K) and MAPK and 
thus promoting resistance to kinase inhibitors [26]. CAF-
secreted interleukin (IL) -6 activates the transformation 
of epithelial-mesenchymal phenotypes of esophageal 
adenocarcinoma cancer cells, which further enhances 
therapy resistance, migration, and clonogenesis of cancer 
cells [27].

In addition, CAFs are also associated with an immu-
nosuppressive TME and cancer cell immune escape. 
CAFs secreted collagen fibers that increase the viscosity 
of the ECM and impede immune cell infiltration, which 
ultimately results in T-cell depletion and tumor immune 
tolerance [28]. CAF-secreted chemokines, such as IL-6, 

C–X–C motif chemokine ligand 9 (CXCL9) and TGF-β, 
can regulate the migration of infiltrating leukocytes [29]. 
Moreover, CAFs can also inhibit natural killer (NK) cell 
functions depending on Netrin G1 [30]. KRAS-mutant 
pancreatic cancer cells can enhance myeloid-derived sup-
pressor cell (MDSC) infiltration into tumors and lead to 
anti programmed cell death 1 immunotherapy resistance 
[31].

Immune cells
Tumor-infiltrating immune cells are a complex society, 
including innate immune cell subpopulations, such as 
NK cells, macrophages and dendritic cells (DCs), and 
adaptive immune cell subpopulations, such as CD8+ T 
and CD4+ T cells.

Tumor immune escape results mainly from the dys-
function of cytotoxic T cells (CTLs) [32]. Inhibitory 
receptors, such as programmed cell death 1 (PD-1), lym-
phocyte activation gene-3 (LAG-3), T-cell immunoglobu-
lin-3 (TIM-3), and cytotoxic T-lymphocyte-associated 
protein 4 (CTLA-4), are highly expressed in tumor-
infiltrated CD8+ T cells, which results in CD8+ T-cell 
exhaustion [33, 34].

Tumor-associated macrophages (TAMs) can polarize 
into either M1-like macrophages with proinflammatory 
(antitumor) function or M2-like macrophages with anti-
inflammatory (protumor) function [35]. M2-TAMs are 
rich in tumor tissues, promote vascular production and 
degrade ECM, provide nutrition for tumor growth, and 
promote tumor development and metastasis [36]. Lactate 
can promote the transformation of the macrophage phe-
notype from M1 to M2, while glutamate accumulation 
can induce the reverse process [37, 38].

DCs are the most powerful antigen-presenting cells 
in the body, with strong antigen uptake and processing 
capabilities, and can present tumor antigens to primary T 
cells [39]. DCs trigger specific immune responses against 
cancer cells by enhancing the function of CD8+ T cells 
or NK cells [40, 41]. Inhibitory cytokines in the TME 
may lead to DC dysfunction, which results in cancer cells 
escaping the surveillance of the immune system [42, 43]. 
NK cells can directly kill cancer cells and promote adap-
tive immunity by secreting cytokines, playing a crucial 
role in the antitumor process [44]. However, cancer cells 
can induce dysfunction of NK cells and evade the surveil-
lance of NK cells [45, 46]. As classic immune suppression 
cells, infiltrated Tregs in tumors can secrete immunosup-
pressive factors, directly killing or inhibiting the prolif-
eration of effector T cells [47].

Biophysiochemical microenvironment and its biology
The biophysiochemical microenvironment is a criti-
cal connection between cancer cells and the cellular 
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microenvironment, also plays a crucial role in cancer cell 
biology.

Biological factors
Biological factors include metabolism materials (glucose, 
amino acids, fatty acid, and lactate), cytokines (IL, inter-
ferons (IFNs), tumor necrosis factor superfamily, colony 
stimulating factor, chemokines and growth factors), ECM 
(collagen, elastin, proteoglycan and amino chitosan) and 
small extracellular vesicles.

TME metabolites are the main energy source of can-
cer cells and play an important role in tumorigenesis, 
recurrence and metastasis. Cancer cells obtain energy 
depending on glycolysis derived lactate at the cost of 
consuming glucose, called aerobic glycolysis or Warburg 
effect [48]. Sotgia et  al. suggested that the stromal cells 
derived metabolites (L-lactate and ketone bodies) could 
be transport into epithelial cancer cells, and further drive 
OXPHOS and mitochondrial metabolism, which was 
termed the “reverse Warburg effect”  [49]. Both glucose 
metabolism pattens are essential for tumor biology. Lac-
tate is either one of the critical cancer cell energy materi-
als or biological factors in the TME. Maria et  al. found 
that lactate in the TME contributed to cancer cell chemo-
therapy resistance [50]. ECM components, especially col-
lagens, also contribute to drug resistance. Collagen fibers 
form a dense physical barrier that blocks pancreatic can-
cer cell from taking up chemotherapy agents [51]. Similar 
phenomena can be detected in breast and colon cancer 
cell models [52].

Chemokines participate in TME remodeling and 
tumor progression [53]. Chemokines (IL1, 6, 12, and 23) 
remodel the immune ECM, promote the expression of 
iNOS, and ultimately promote tumor progression [54]. 
Chemokine ligand 2 (CCL2) expression is positively cor-
related with poor prognosis in breast and bladder cancer 
[55, 56]. Moreover, the feedback between chemokines 
and cancer cells makes tumors “unhealed wounds”.

Extracellular vehicles (EVs), including exosomes, 
microvesicles, and large oncosomes, are involved in the 
transmission of signals or other molecules between can-
cer cells and stomal cells [57]. As a key component of the 
TME, EVs play different roles in tumor immunity escape, 
proliferation, metastasis and therapy sensitivity. There-
fore, a deeper and more comprehensive understanding 
of how EVs integrate between cancer cells and the TME 
may represent a novel cancer treatment strategy.

Physical factors
High interstitial pressure is the characteristic of solid 
tumor microenvironment, which contributes to tumor 
progression and therapy resistance [58]. High tumor 
interstitial pressure results mainly from internal and 

external factors. The internal factors include: (1) a high 
concentration of collagen accumulation; (2) high tumor 
vascular permeability; (3) poor elastration performance 
and vulnerable vessel walls; and (4) a dysfunctional lym-
phatic system [59]. External factors refer to the external 
pressure on the tumor [60]. Increased interstitial pressure 
limits the continuous perfusion of blood to the tumor 
site, which results in chemotherapy drugs, monoclonal 
antibodies and immune cells hardly accumulating in the 
tumor [61]. Pancreatic ductal adenocarcinoma (PDAC) 
TME is characterized by excessive fibrosis and extracel-
lular matrix deposition, resulting in high interstitial pres-
sure, vascular collapse, and low diffusion of nutrients 
and oxygen. Chemotherapy drugs and immune cells also 
hardly penetrate into the tumor, leading to treatment 
resistance and immunity escape [62]. Moreover, the tor-
tuosity, leakage of the vessel walls and dysfunctional lym-
phatic system will lead to uneven blood flow and local 
fluid accumulation, increase the interstitial pressure, 
which further obstacles chemotherapy agents or mac-
romolecule transport into the TME [63, 64]. Therefore, 
reducing the interstitial pressure may improve chemo-
therapy effective. Thus, targeting ECM components, 
anti-angiogenesis, normalizing blood vessels, physical 
operation or combination of all these factors may bring 
new inspiration to the solid tumor treatment.

Chemical factors
Chemical factors include low pH, oxygen, glutathione 
(GSH), reactive oxygen species (ROS), carbon dioxide, 
NO, ions (K+, Na+, Ca2+, Fe2+, etc.), etc. Hypoxia is con-
sidered to be one of the most important factors in the 
TME, resulting from unlimited proliferation of cancer 
cells and dysfunctional blood vessels [65]. Hypoxia is 
closely associated with poor clinical prognosis, increased 
genomic instability, increased chemotherapy or radio-
therapy resistance, immunosuppression, CSCs enrich-
ment, and metastasis. Mainly, hypoxia induces activation 
of hypoxia inducible factor 1-alpha (HIF-1α) and its 
downstream genes related to cell metabolism, survival, 
movement, basal membrane integrity, angiogenesis, and 
hematopoiesis, which promotes cancer cell proliferation, 
invasion and metastasis [66–68]. In addition, hypoxia 
could also regulate overall mRNA homeostasis and 
enhance stress tolerance [69].

Low pH is another feature of the TME, which results 
mainly from metabolic materials and a variety of ion 
effluxes [70]. Low pH contributes to cancer cell apopto-
sis resistance, proliferation, and multiple drug resistance 
(MDR) [71]. Vacuolar proton pumps (V-ATPases), which 
function to pump H+ to the extracellular space or inter-
membrane [72], can maintain the neutral cytoplasm and 
extracellular acidic environment and avoid self-acidosis. 
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Moreover, the accumulation of H+ around cancer cells 
can activate the enzyme cascade reaction and induce 
proteolytic enzyme secretion, which contributes to the 
degradation or reconstruction of the ECM and tumor 
invasion and metastasis [73].

High concentration of GSH is another characteristic of 
the TME [74]. GSH could protect cancer cells from both 
oxidative stress damage and the toxicity of exogenous 
electrophiles, maintaining redox homeostasis. ROS could 
both directly oxidizes GSH to GSSG, and reaction with 
niacinamide adenine dinucleotide phosphate (NADPH) 
to form GSH. Also, GSH could act as a cofactor to reduce 
hydroperoxide substrates [75]. Hence, overexpressed 
GSH in the TME would seriously scavenge ROS, weaken-
ing the radiotherapy, chemotherapy and chemodynamic 
therapy (CDT) efficiency. Reducing GSH levels in the 
TME has become a potential target for cancer treatment 
[76].

The mesoporous nanodrug delivery systems target 
the TME
Classification of mesoporous nanodrug delivery systems
MNDDSs are currently hotspots in tumor diagno-
sis, monitoring and treatment. MNDDSs are nanod-
rugs synthesized based on porous nanomaterials with a 
diameter of 2–50  nm. According to the chemical com-
ponent of the nanosystem, MNDDSs can be divided 
into inorganic structures (such as oxide, mesoporous 
carbon, mesoporous nitrogen, phosphate, sulfides and 
monoatomic mesoporous materials), organic structures 
(such as polymer, mesoporous organosilicon, etc.) and 
inorganic–organic hybrid structures (such as metal-
organic frameworks)  [77]. Also, based on the spatial 
distribution characteristics, MNDDSs can be divided 
into ordered (regular pore arrangement) and disor-
dered (irregular pore size distribution). According to the 
pore structure, MNDDSs can be divided into hexago-
nal (MCM41), cubic (MCM48) and layered mesoporous 
(MCM50), etc. According to the shape, it can be divided 
into mesoporous particles, mesoporous membranes and 
mesoporous three-dimensional bodies. According to the 
TME response, MNDDSs can be divided into pH-sensi-
tive, enzyme-sensitive, temperature-sensitive, reduction-
sensitive and photosensitive delivery systems (Fig.  2) 
[78]. In our review, MNDDSs can be roughly divided into 
cellular TME targeted (TAEC targeted, CAF targeted, 
immune cell targeted, etc.) and biophysiochemical TME 
remodeled (pH, energy metabolism, redox homoeostasis, 
hypoxia remodeled, etc.)

Properties and advantages of MNDDSs in the TME
MNDDSs with the following advantages: (1) intrin-
sic physical advantages of mesoporous nano-systems, 

including high loading capability, controllable pore size, 
morphology and framework control; (2) highly multi-
functional modification ability as the drug delivery sys-
tems [79].

Intrinsic physical advantages
The multi-porous structure of mesoporous materials pro-
vides huge space for the cargo transportation and ensures 
high drug loading. In particular, the hollow mesoporous 
nanomaterials have expanded the internal space. Zhang 
et  al. developed the intelligent triple-PSS (mesoporous 
carbon nitride, nitrogen-doped graphene quantum 
nitride and photofrin) hybrid nano-regulator could 
simultaneously respond to UV–vis light, generate higher 
rate of ROS, and improve the therapeutic effects [80]. The 
high load ability of MNDDSs ensures a large number of 
cargoes, which provides a prerequisite for the efficient 
performance of nanodynamic therapy. In addition, the 
controllable aperture is more suitable for carrying dif-
ferent types of cargoes, such as drugs, protease, nucleic 
acid, and ultra-small NPs [81–83].

The shape of MNDDSs would affect their movement 
mechanism in the circulation or pass through the bio-
logical barrier, performing higher rate of cell uptake and 
tumor inhibition [84, 85]. Therefore, to improve their 
behavior, virous shapes of MNDDSs were constructed, 
such as nanospheres [86], core–shell structures [87], 
dendritic and tubular structures [88, 89]. Huang et  al. 
revealed that different forms of mesoporous silica nano-
particle (MSN) function distinct in human melanoma 
A375 cells [90]. Moreover, to diversify the function, 

Fig. 2  Multifunctional modified MNDDSs respond to stimulus in vitro 
and in vivo to target remodeling tumor microenvironment
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additional elements were integrated into the skeleton 
design of MNDDSs, such as inorganic metal ions [91], 
organic macromolecules [92], organic functional 
groups [93], etc. Compared with purely inorganic skel-
eton, framework control enhances the optimization of 
MNDDSs therapeutics.

Multifunctional modification
Surface modification also plays an irreplaceable role in 
the functional diversification of MNDDSs. MNDDSs 
encapsulated with biological membranes (red cell mem-
brane, cancer cell membrane) have better biocompat-
ibility and achieved high accumulation in target tissues 
[94, 95]. Integrating polyethylene glycol biocompatible 
polymers into mesoporous materials reduced the clear-
ance of blood proteins and macrophages, and prolong the 
blood circulation time of MNDDSs [96]. Taking advan-
tage of the specific expression characteristics of some 
receptors in tumor cells, mesoporous materials such as 
folic acid (FA) [97], hyaluronic acid (HA) [98], glucose 
protein 78 peptides (GRP78P) [99, 100] can be modified 
with ligands to achieve specific targeting purposes. Simi-
larly, the biochemical characteristics of TME, such as pH, 
GSH and hypoxia, could act as the activator for the gate-
keeper response and drug release of MNDDSs [78, 101]. 
These specific-targeted designs enable more precise drug 
delivery and tumor localization, more comprehensive 
diagnosis and treatment of local and systemic lesions. 
Finally, the modification of nano sensitizers can make 
MNDDSs triggered by exogenous/endogenous activators 

or internal chemical/biological reactions in the TME, 
which can be used for image-guided phototherapy, ther-
mology and dynamic therapy [102, 103]. The diversified 
functional modification on the surface of MNDDSs allow 
its wide application in nano-dynamic therapy, providing 
an excellent reference for future design.

MNDDSs reshape the cellular microenvironment
Remodeling the blood vessel system
Tumor vascular therapy strategies currently include 
tumor angiogenesis inhibitors and promoting tumor vas-
cular maturation (Fig. 3).

Blocking neovascularization formation
Tumor angiogenesis inhibitors may directly or indirectly 
antagonize angiogenic factors. Direct vascular inhibitors, 
such as bevacizumab (Avastin), Endostar, and siRNA 
VEGF, can inhibit the expression and function of proangi-
ogenic factors [104, 105]. Hu et al. constructed a cervical 
cancer-targeted gold nanorod-MSN for the codelivery of 
cisplatin and the antiangiogenic drug Avastin to achieve 
efficient vascular inhibition [106]. Chen et al. built a mag-
netic MSN carrier, delivering siRNA VEGF to silence 
VEGF in the tumor tissue and inhibit angiogenesis [107]. 
Recently, several studies also revealed that VEGF inhibi-
tion may also contribute to the immunosuppressive TME 
[108]. Combining antiangiogenic agents and immune 
therapy could significantly improve tumor inhibition. 
Moreover, the application of mesoporous nanomaterials 

Fig. 3  A Strategies for remodeling tumor blood vessel systems currently include blocking neovascularization formation, destructing existing blood 
vessels and normalizing tumor vessels. B MNDDSs could eliminate CAFs, inhibit the function of CAFs, and reverse CAFs to a quiescent condition or a 
tumor suppressor phenotype
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as a drug delivery system is thought to be a promising 
strategy for this combination therapy.

Tyrosine kinase inhibitors (TKIs), such as sorafenib 
(SO), nintedanib, lenvatinib, and axitinib, can simulta-
neously target multiple pathways associated with VEGF, 
PDGFR and FGFR, which are indirect multitarget angi-
ogenesis inhibitors in the future [109–111]. Zhao et  al. 
developed pH-sensitive MSNs USMNS-Cl, which were 
used for the controlled release of SO and ursolic acid 
(UA) [112]. Compared with UA alone, USMNS-Cl sig-
nificantly downregulated the expression of epidermal 
growth factor receptor (EGFR) and vascular endothelial 
growth factor receptor 2 (VEGFR2) and inhibited tumor 
angiogenesis in vitro and in vivo. Due to the role of lac-
tate in promoting tumor neovascularization [113], con-
suming lactate may represent a good choice to antagonize 
the formation of abnormal tumor blood vessels to a cer-
tain extent. Tang et  al. used dendritic MSN (ODMSN)-
loaded lactate oxidase (LOX) as a carrier to antagonize 
tumor angiogenesis by consuming 99.9% TME lactate, 
downregulating VEGR and inhibiting angiogenesis [114].

Destruction of existing blood vessels
The destruction of the existing blood vessels may result 
in cancer cell starvation and death [115]. Liu et al. con-
structed a hollow mesoporous silica nanodrug delivery 
system (tHMSN) modified with TLYP-1 and doxoru-
bicin (DOX), which displayed strong cytotoxic effects for 
breast cancer cells and tumor umbilical vein endothelial 
cells [116]. Veeranarayanan et  al. synthesized a dual-
drug and DNA fluorescence dye DAPI-loaded monodis-
perse mesoporous silica microsphere (MSN-FT), which 
could specifically target and completely disrupt cancer 
cell migration and angiogenic germination of activated 
endothelial cells [117]. Although targeting to destroy 
tumor blood vessels was achieved, targeting to destroy 
tumor blood vessels also prevented antitumor drugs from 
reaching core tumor tissue, which may result in therapy 
resistance, recurrence, and metastases [118].

Normalize tumor vessels
The imbalance between proangiogenic factors and 
antiangiogenic factors leads to vascular abnormalities 
[119]. Normalized tumor blood vessels have attracted 
great attention recently and can decrease interstitial pres-
sure, increase oxygen content, improve an immunosup-
pressive TME, deliver drugs into the tumor tissue, and 
enhance therapeutic effects [120, 121]. Dopamine-loaded 
nanoparticles (NPs@DA) could release dopamine in a 
weakly acidic environment, which further significantly 
inhibited the migration of vascular endothelial cells 
and the formation of tubules, induced the normaliza-
tion of tumor vessels, and thus improved the antitumor 

chemotherapy effect of DOX. Moreover, NPs@DA also 
upregulated Ang1 in pericytes and Kruppel-like factor-2 
(KLF2) in endothelial cells and inhibited VEGF expres-
sion [122]. Although normalization of tumor vessels is 
another promising strategy, there are few reports using 
MNDDSs in this area.

Reshape the CAFs microenvironment
With the enhanced permeability and retention (EPR) 
effect and special physical characteristics, modified 
MNDDSs could eliminate, inactivate or inhibit the func-
tion of CAFs and further break CAFs-formed physical 
barriers, which ultimately enhanced drug delivery and 
tumor inhibition efficacy.

As losartan (LOS) could inhibit CAFs from secret-
ing collagens, Zhang et  al. encapsulated LOS in hol-
low mesoporous Prussian blue nanoparticles (HMPBs) 
and constructed the (LOS + DOX) @HMPBS platform, 
which realized ECM degradation, improved the pen-
etration ability of DOX in tumors and inhibited tumor 
growth [123]. Hou et al. also constructed a CAF-targeted 
molecule AEAA-modified Pep-APCDs@Fe/DOX-LOS 
mesoporous carbon nanodot platform for the targeted 
delivery of LOS, DOX, and Fe ions. This platform inhib-
ited CAF function and enhanced the deep tumor pen-
etration of DOX and Fe ions in tumor tissues and 
therapeutic efficiency [124].

Elimination of CAFs can enhance the penetration of 
therapeutic drugs into the tumor, improve the immuno-
suppressive microenvironment and enhance the antitu-
mor immune response [125, 126]. Elimination of CAFs 
is usually accompanied by serious side effects, such as 
increasing the risk of tumor metastasis and invasion, pro-
moting epithelial to mesenchymal transition, and trigger-
ing chemotherapy resistance [127].

Reversing CAFs to a quiescent condition or a tumor 
suppressor phenotype is currently a hot topic, and this 
objective may be precision-realized using the MNDDSs. 
Additionally, MNDDSs used to impede CAFs to secrete 
chemokines have not been reported and deserve deeper 
investigation in the future [128].

Remodeling the immune microenvironment
Due to the immunosuppressive state of the TME and 
exhausted immune cells, remodeling the immune micro-
environment is of great significance for cancer treatment 
(Fig. 4).

Removal of immunosuppressive factors
PD-1 and CTLA-4 are the most common T-cell func-
tional inhibitors [129]. Zhao et  al. designed pH-respon-
sive cancer cell membrane-camouflaged MSNs (DTIC@
CMSN) to deliver dacarbazine (DTIC) and PD-1 



Page 9 of 25Hang et al. Journal of Nanobiotechnology          (2023) 21:101 	

antibody (aPD1) to achieve superior antitumor effects 
[130]. DTIC@CMSN + aPD1 activates tumor-specific T 
cells and reverses the immunosuppressive TME. In colo-
rectal tumor, pancreatic, and lung tumor models, Allen 
et  al. demonstrated that the GSK3 inhibitor AZD1080-
loaded MSNs, termed sAZD1080, reduced the expres-
sion of PD-1 in CD8+ T cells and promoted the release 
of perforin from CD8+ T cells [131]. Relieving immuno-
suppressive factors is an effective strategy to boost the 
immunotherapy efficiency. Thus, combination MNDDSs 
loaded immunosuppressive factor inhibitor and immu-
notherapy could realize significantly achievement.

Inhibition of the immunosuppressive subpopulation
As one of the main immunosuppressive components 
in the TME, inhibiting the function of M2 TAMs or 
depressing the transformation of M2 TAMs into M1 
TAMs contributes to preserving the immunosuppres-
sive microenvironment. Jiang et  al. reported a biomi-
metic magnetic nanoparticle Fe3O4-SASS@PLT loaded 
with sulfasalazine (SAS) and further coated with a plate-
let (PLT) membrane [132]. Fe3O4-SASS@PLT-mediated 

ferroptosis further upregulated the expression of nuclear 
factor NF-κB family proteins (Nfkb1 and Nfkb2), which 
effectively promoted macrophage polarization from the 
immunosuppressive M2 phenotype to the antitumor 
M1 phenotype. As NO facilitated macrophage polariza-
tion to M1 phenotype [133, 134]. Theivendran’s group 
constructed S-Nitrosothiol (SNO) modified organosilica 
nanoparticles with a tetrasulfide-containing to produce 
intracellular NO. High level of NO leading to mitochon-
drial dysfunction and disruption of the tricarboxylic acid 
cycle, resulting in polarization of TAMs to M1 phenotype 
and delayed tumor growth [135]. Thus, both endogenous 
and exogenous factors can be used to activate promote 
the transformation of immunosuppressive conditions.

Elimination or suppression of MDSCs is another fea-
sible strategy to relieve the immunosuppressive micro-
environment. Zuo et  al. designed a mesoporous silica 
nanoplatform CeO2@MSNs@IR780/Met containing 
metformin (Met), mitochondrial respiratory inhibitor, 
IR-780, photosensitizer and CeO2, an endogenous H2O2 
consumer. Both CeO2 and Met could significantly hin-
der MDSC tumor infiltration and downregulate tissue-
specific MDSC PD-L1 expression. Additionally, CeO2@
MSNs@IR780/Met activated T cells to transform into 
CTLs, resulting in an enhanced antitumor immune 
response [136].

Tregs also have significant immunosuppressive effects, 
which are characterized by the expression of Foxp3, 
CD25, and CD4 [137]. Targeting Foxp3 can effectively 
inhibit the immunosuppression of Tregs. Liu et al. devel-
oped an MSNP coated with a lipid bilayer and encapsu-
lated the activated chemotherapeutic drug oxaliplatin 
(1,2-cyclohexane platinum (II) (DACHPt)) in the pore, 
forming a DACHPt silicasome. Treatment of a KRAS-
derived PDAC model with DACHPt silicasome decreased 
Treg cell number and function [138].

Enhanced antitumor immune factors
Developed MNDDSs enhance antitumor immune factors 
through four main methods: (1) Inducing cancer cells 
death via ICD or DAMPs release; (2) Nanovaccines; (3) 
Cytokine carriers; and (4) Co-stimulation of immune cell 
activation.

Inducing ICD or DAMP release is becoming a new 
therapeutic strategy to stimulate immune response gen-
eration. Zhang et  al. prepared a GSH-responsive ICD 
nanoamplifier containing diselenide-bridged MONs and 
ruthenium compound (KP1339), which induces ICD and 
enhances the antitumor immune response [139]. Wang 
et al. reported an all-round mesoporous nanocarrier con-
sisting of an upconverting nanoparticle core and a large-
pore silica shell (UCMS), photosensitizer molecules, 
indoleamine-2,3-dioxy-genase (IDO) -derived peptide 

Fig. 4  Strategies for remodeling immune environment. A Remove 
immunosuppressive factors, such as PD-1 and CTLA-4, etc. B Inhibit 
function of immunosuppressive subpopulation, such as TAMs (M2 
phenotype), MDSCs and Tregs. C Enhance antitumor immune in 
the form of inducing cancer cells immunogenic cell death (ICD), 
damage-associated molecular patterns (DAMPs) or antigen release; 
delivering adjuvants or cytokines, and co-stimulating activation of 
immune cell
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vaccine Al-9 and PD-L1 inhibitors. Near infrared (NIR) 
light can activate photosensitizers, induce ICD, and pro-
mote effector T-cell infiltration [140].

Vaccination is one of the strategies to boost the anti-
tumor immune response. Mesoporous nanomaterials are 
often used as adjuvants or delivery carriers to stimulate 
antigen presenting cells (APC) and enhance antitumor 
immune response due to their biocompatibility, drug 
delivery/release ability, and tunability of particle size, 
morphology, structure and surface function [141]. Yang 
et  al. designed an intelligent nanoreactors constructed 
from a hybrid silica framework incorporated with Fen-
ton’s reagents (Cu2+) and tetrasulfide groups, which 
respectively trigger the Fenton reaction to produce ROS 
and antioxidant GSH depletion in the DOX treated can-
cer cells, leading to oxidative stress and amplified ICD. 
These nanoreactors are intrinsically immunogenic, 
exhibiting excellent immune-adjuvant activity for stimu-
lating the maturation of APC, which possessed good syn-
ergistic effect with ICB (PD-L1 antibody) and exhibited 
excellent anticancer performance [142]. Take advantage 
of MNDDSs as immune adjuvants in situ without cargo 
loading is a major advance in personalized nanomedicine 
for clinical transformation.

Nanovaccines have been used to deliver molecu-
lar adjuvants to DCs, including toll-like receptor (TLR) 
agonists and TLR agonists [CpG oligonucleotide and 
monophosphoryl lipid A (MPLA)] to extend the median 
survival of tumor-bearing mice [143]. Hu et al. prepared 
a mesoporous silica nanovaccine loaded with adjuvant 
CpG modified by the B16-F10 cancer cell membrane, 
which enhanced DC antigen presentation and T-cell 
immune activation in the presence of anti-CTLA4 [144]. 
Wang et al. prepared a black mesoporous titanium diox-
ide (BMT) multifunctional nanovaccine loaded with 
L-arginine (LA), forming BMT@LA. BMT@LA com-
bined with PD-L1 antibody (αPD-L1) induced a strong 
antitumor immune response that effectively killed the 
primary tumor and further inhibited metastasis [145]. 
As a kind of tumor-specific antigen, neoantigens consti-
tute ideal cancer vaccine targets and have attracted more 
attention, but the design of mesoporous nanoplatforms 
has not yet been reported [146].

Cytokines also participate in immune homeostasis 
and the inflammatory response in the TME [147]. Kong 
et al. constructed an A/D/I-dHMLB nanoplatform based 
on lipid-coated degradable hollow MSNs (dHMLBs) 
co-encapsulated with all-trans retinoic acid (ATRA), 
DOX and IL-2. The A/D/I-dHMLB could promote 
cytokine (IFN-γ and IL-12) secretion, further activate 
tumor-infiltrating T lymphocytes and NK cells, suppress 
MDSC infiltration, and reduce IL-10 and TGF-β secre-
tion, which ultimately reshapes the immunosuppressive 

microenvironment and enhances the antitumor effect 
[148].

Mesoporous nano-costimulation-based immune cell 
activation is another popular method to activate tumor 
immunity. Wang et al. treated bone marrow-derived den-
dritic cells (BMDCs) with stellate fibrous mesoporous 
silica nanospheres, which significantly promoted BMDCs 
proliferation; stimulated IFN-γ, IL-2, IL-4, and IL-10 
secretion in lymphocytes; increased the secretion of 
IgG, IgG1, IgG2a, IgM, and IgA in serum; and enhanced 
effector memory CD4+ T and CD8+ T cells in the lymph 
nodes, spleen and bone marrow of mice [149]. Mean-
while, the combination of Poly(I:C) with stellate fibrous 
mesoporous silica nanospheres significantly reduced the 
necessary dosage of Poly(I:C) for antitumor immunity, 
opening up new opportunities for the clinical application 
of Poly(I:C) in tumor immunotherapy. Table 1 lists some 
MNDDSs designed for targeting and remodeling the cel-
lular TME.

MNDDSs reshape the physicochemical 
microenvironment
Ameliorating the hypoxia state of the TME
Currently, there are two ways to overcome tumor tissue 
hypoxia using MNDDSs: (i) deliver O2 directly to tumor 
tissues, and (ii) Promote in situ O2 production of tumor 
tissues.

Delivery of O2 to tumor tissues
Red blood cells, hemoglobin and perfluorocarbon vesicles 
have been used to directly delivery O2 to hypoxic TME 
[150]. Although no directly report on using mesoporous 
nanomaterials as O2 carriers to improve tumor hypoxia, 
it still provides a possible way to transport O2. However, 
there are still challenges as the O2 transporter, includ-
ing low level O2 loaded, oxygen leakage and difficulty 
in co-delivery with other therapeutic drugs. Thus, more 
smart strategies need to be explored. Moreover, utiliza-
tion MNDDSs for in situ oxygen production in the TME 
is currently a promising strategy.

O2 supplied by catalysis in situ in the TME
Compared with normal tissues, H2O2 level is higher in 
the TME. This feature provides a strategy for tumor treat-
ment. Endogenous H2O2 can be catalytically decomposed 
to O2 in situ. Oxygen can be stimulated by exogenous or 
endogenous stimuli to produce more reactive free radi-
cals (including H2O2, ·OH, singlet oxygen(1O2), etc.), 
thus improve the efficiency of oxygen-dependent nano-
dynamic therapy. MNDDSs loaded with catalase (CAT) or 
metal oxide could induce local decomposition of H2O2 to 
produce O2 in tumor tissues. Liu et al. developed a mul-
tiscale hybrid catalytic nanoreactor (catalase@MONs, 
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Table 1  Summary of strategies for targeting and remodeling the cellular TME

Cellular TME Remodeling strategy MNDDSs Guest drug Application Tumors Refs.

Tumor blood vessels Destroying existing 
vessels

tHMSN DOX Endothelial cells and 
angiogenesis inhibi-
tion

Breast cancer [116]

MSN-FTC Suramin/paclitaxel Migration inhibition of 
activated endothelial 
cells and angiogenesis 
inhibition

Breast cancer [117]

Normalizing tumor 
vessels

M-MSN_VEGF; siRNA@
PEI-PEG-KALA

VEGF-siRNA VEGF gene silence 
and angiogenesis 
inhibition

Ovarian carcinoma [107]

NPs@DA DA Inhibiting migration of 
vascular endothelial
cell and tubule forma-
tion

Breast cancer [122]

USMNs-CL SO/UA Increased cell apopto-
sis, downregulated
expression of EGFR 
and VEGFR2 proteins

Hepato-cellular 
carcinoma

[112]

ODMSN- AQ4N-LOX LOX/AQ4N Downregulated VEGF 
expression and anti-
angiogenesis

Breast cancer [114]

CAFs Inhibiting function of 
CAFs

(Losartan + DOX) @
HMPBs

LOS/DOX Inhibiting the secre-
tion function of CAFs;

Breast cancer [123]

Pep-APCDs@Fe/
DOX-LOS

LOS/DOX/Fe Enhanced inhibition of 
LOS on CAF;

Breast cancer [124]

Immune cells Removing the 
immuno-suppressive 
factors

DTIC@CMSN + aPD1 DITC Promoted DITC 
cytotoxicity; enhanced 
immuno-therapy 
efficiency

Melanoma [130]

sAZD1080 AZD1080 Suppressed PD-1 
expression

Colorectal tumor/lung 
and pancreas cancer

[131]

Limiting the release or 
activation of immuno-
suppressive factors

Fe3O4-SAS@PLT SAS Immune response trig-
gered by ferroptosis; 
TAMs repolarize to M1 
phenotype

Breast cancer [132]

DMON-SNO SNO/Tetrasulfide Increased intracellular 
NO to polarize TAMs to 
M1 phenotype

Breast cancer [135]

CeO2@MSNs@IR780/
Met

Met/IR780/CeO2 Hindered MDSCs 
tumor infiltration, 
relieved TME hypoxia; 
enhanced immune 
response and PDT

Melanoma [136]

DACHPt Silicasome Pt/DACHPt Chemotherapy; ICD Pancreas cancer [138]

Enhancing the activity 
of immune factors

MON@KP1339 KP1339 Amplified KP1339 
ICD; boost antitumor 
immune responses

Breast cancer [139]

UCMS@Pep-aPDL1 AL-9/Atezolizumab NIR Laser-mediated 
PDT and peptide-
augmented immune 
response and ICB 
therapy

Lung cancer [140]

Cu-DMONs/DOX Cu2+/DOX/Tetra-
sulfide groups

GSH deletion by Fen-
ton reaction; amplified 
ICD; stimulated APC 
maturation

Breast cancer [142]
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C@M) by integrating mesoporous organosilica nano-
particles (MONs), and CAT. C@M can catalyze H2O2 to 
continuously generate O2. Additionally, as an on-demand 
catalytic nanoreactor, C@M can achieve precise tumor 
localization and efficient high-intensity focused ultra-
sound (HIFU) surgery, which is highly desirable for clini-
cal HIFU application [151]. Huang et al. designed a novel 
hollow mesoporous double-shell Co9S8@MnO2 nanoplat-
form loaded with the molecular photodynamic agents 
indocyanine green (ICG) and DOX. The designed MnO2 
shell nanoplatform can be used as a TME-responsive oxy-
gen self-sufficient producer to alleviate tumor hypoxia 
and improve photodynamic therapy (PDT) efficiency 
[152]. Zhang et al. constructed a biodegradable BiPT-PFA 
nanocomposite by loading platinum (Pt) nanodots into 
mesoporous bismuth (Bi) nanoparticles. Pt nanodots in 
the nanocomplex can catalyze the decomposition of H2O2 
to produce O2 to alleviate hypoxia, further enhancing the 
tumor radiation sensitization effect of PFA [153].

In addition to catalyzing the oxygen production of 
H2O2 in  situ, MNDDSs can also load multivalent metal 
ions and oxidase to assemble an O2 generator to supply 
O2 to the TME. For example, You et al. reported the self-
catalyzed Fenton nanosystem (TA/Fe@GOD@DMONs) 
loaded with natural glucose oxidase (GOD) and tannic 
acid (TA) grafted using Fe3+ on the surface, GOD decom-
poses glucose to produce H2O2, and TA accelerates the 
conversion of Fe3+/Fe2+, greatly improving the effi-
ciency of Fenton reaction, and catalyzing effective CDT 
to inhibit tumor [154]. Similar combinations also occur 
in the combination of oxidase (GOD、LOX) and mul-
tivalent metals (such as Mn2+、Cu2+) [155, 156]. These 
new ideas represent a new paradigm for the development 
of autocatalytic O2 generated nano-systems for effective 
treatment.

Destruction of redox homeostasis
As mentioned in 2.3.3 above, overexpressed GSH could 
maintain the redox homeostasis by eliminating ROS, 

which attenuates tumor sensitivity to radiotherapy, 
chemotherapy and CDT. Three strategies could be 
explored: (1) expanding ROS generation in the TME; (2) 
consuming the existing GSH; (3) suppressing the genera-
tion of GSH and accelerating its excretion [157].

Expanding ROS generation in the TME
The production and elimination of ROS play an impor-
tant role in maintaining the redox homeostasis of tumor 
tissues [158]. Although the concentration of ROS is high 
in cancer cells, it is insufficient to kill cancer cells. Thus, 
excessive ROS production in tumor tissues is currently a 
popular strategy for tumor treatment, such as enzyme-
catalyzed therapy (ROS-producing enzyme or enzyme 
complex, peroxidase, glucose oxidase (GOx), etc. Huo 
et  al. prepared mesoporous silica loaded with GOx and 
Fe3O4 and formed GOx-Fe3O4@DMSN. GOx produce a 
large amount of H2O2, and ·OH is produced by the Fen-
ton reaction catalyzed by Fe2+ to boost cancer cell apop-
tosis  [159]. Shao et al. synthesized IONP-GOD@ART for 
collaborative therapy using GOD-modified mesoporous 
iron oxide nanoparticles (IONPs) loaded with arte-
misinin (ART). In an acidic environment, the nanomate-
rials gradually decomposed and released Fe2+/Fe3+, GOD 
and ART, and GOD and Fe2+ formed a “metal oxidase” 
cascade catalytic system. In addition, unstable endoper-
oxide bridged in ART were destroyed in the presence of 
Fe2+, producing numerous ROS, which further induced 
ICD in cancer cells and enhances tumor immunity. 
IONP-GOD@ART can completely inhibit tumor growth 
and distant metastasis  [160]. Huang et  al. successfully 
prepared mesoporous silica nanoplatform MSNs-PFH@
PDA-ICG-PEG-FA loaded with ICG and polydopamine 
(PDA) layers and coated them with polyethylene glycol-
FA. After irradiation by NIR at 808  nm, MSNs-PFH@
PDA-ICG-PEG-FA can not only effectively generate heat 
to achieve photothermal therapy (PTT), but produce 
ROS to enhance PDT efficiency  [161].

Table 1  (continued)

Cellular TME Remodeling strategy MNDDSs Guest drug Application Tumors Refs.

MSN-CpG@CM CpG Enhanced accumula-
tion in lymph nodes 
and immune activa-
tion

Melanoma [144]

BMT@LA + US + αPD
L1

LA Enhanced oxidative 
stress; improved 
antitumor immuno-
therapy

Cervical cancer [145]

A/D/I-dHMLB ATRA/DOX/IL-2 Chemo-immuno-
therapy

Melanoma [148]
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Consuming the existing GSH
GSH-depleted anticancer nanodrugs could promote the 
effect of ROS-based tumor therapeutic efficacy [162]. 
Lin et  al. developed a versatile and bacteria-like PEG/
Ce-Bi@DMSN nanozyme by coating Bi2S3 nanorods 
(NRs) with dendritic mesoporous silica (Bi2S3@DMSN) 
and then decorating Bi2S3@DMSN with ultrasmall ceria 
nanozymes. The nanozymes showed dual enzyme-mimic 
catalytic activities (peroxidase-mimic and CAT-mimic) 
under acidic conditions, and effectively consume overex-
pressed GSH through redox reactions, which simultane-
ously elevate oxidative stress and alleviate hypoxia and 
significantly improving ROS-mediated therapeutic effi-
ciency [163]. Simultaneously depleting GSH and increas-
ing ROS represents a promising avenue [164]. Hu et  al. 
combined FA-modified mesoporous dopamine nanopar-
ticles (FA-MPPD) with new indocyanine green (IR-820) 
and perfluorooctane (PFO) to form the nanoplatform 
IR-820/PFO@FA-MPPD, which integrates the functions 
of ROS supply, GSH consumption and tumor targeting, 
ultimately enhancing the PDT tumor inhibition effect  
[165].

Taking advantage of sulfide and high-valence metal ions 
could also diminish the intracellular GSH level. Dendritic 
mesoporous organosilica nanoparticles (GDMONs) with 
a tetrasulfide-incorporated framework reported by Yu 
et al. could decrease the intracellular GSH level through 
-S‒S-/GSH redox chemistry, increase ROS production 
in  vitro and in  vivo, facilitate CTLs proliferation, and 
reduce the growth of aggressive melanoma models [166]. 
Moreover, Lin et al. synthesized multifunctional dendritic 
mesoporous organosilica (DMOS) co-incorporated with 
manganese ions, iron ions or cobalt ions and tetrasulfide 
bonds to deliver ICG. In the TME, hydrogen sulfide (H2S) 
produced by the reaction between tetrasulfide bonds 
and overexpressed GSH results in mitochondrial injury 
to reduce cellular respiration. Additionally, the released 
Mn2+ catalyzes endogenous H2O2 to produce O2. Both 
GSH depletion and trimodal O2 compensation signifi-
cantly improve the PDT efficiency of ICG [167]. Ma’s 
group synthesized bimetallic Zn2+/Cu2+ co-doped hol-
low mesoporous organosilica (HMOS@MOF), used for 
targeted delivery of cisplatin (cis-diaminodichloro plati-
num (CDDP). Cu2+ can consume intracellular GSH and 
catalyze the decomposition of H2O2 into highly toxic 
• OH. Seriously reduced GSH could protect the • OH 
from scavenging, greatly improving the CDT effect of • 
OH group and the toxicity of CDDP [168]. As a widely 
studied strategy to destroy the TME homeostasis, GSH 
depletion plays a significant role in synergizing tumor 
radiotherapy and chemotherapy (Fig. 5).

Suppressing the generation of GSH and accelerating its 
excretion
Glutamate cysteine ligase (GCL) and glutathione syn-
thetase and glutaminase (GLS) is glutathione synthesis 
rate-limiting enzyme. Glutamic acid, cysteine and gly-
cine are GSH synthesis raw materials. Blocking either 
rate-limiting enzyme or raw material would affect the 
GSH synthesis. Raloxifene could inhibit the intake of 
glutamine (Gln) and intercept GSH synthesis. Liu et  al. 
prepared mesoporous carbon nanospheres loaded with 
raloxifene and 2,2-azobis[2-(2-imidazolin-2-yl) pro-
pane] dihydrochloride (AIBI). AIBI was decomposed into 
alkyl radicals to kill cancer cells, while raloxifene inhib-
ited the synthesis of GSH and synergistically enhanced 
PDT [169]. CB839, a depressor of GLS, was grafted 
on the bifunctional nanozyme of nano-sized Au and 
Fe3O4 coloaded dendritic MSNs (DMSN-Au-Fe3O4). 
The nanozyme with Au-mediated H2O2 self-supply, 
Fe3O4-triggered Fenton-like reaction and CB839-medi-
ated GSH depletion significantly boosted the efficacy 
of CDT, and achieved significant anti-tumor properties 
in vitro and in vivo [170].

Deletion GSH is an alternative strategy. Consumption 
of NADPH can inhibit the reduction of GSSG to GSH, 
thereby decreasing the production of GSH. The efflux of 
GSSG is closely related to the multidrug resistance asso-
ciated protein-1 (MRP-1) efflux pump [171]. Therefore, 
regulating MRP-1 could accelerate exporting GSH, thus 
enhance the oxidative stress of TME and improve the 
cancer cells therapeutic resistance. The related clues in 
the field of mesoporous nanomaterials research just in 
infancy, while it provides us with some new strategies to 
reduce intracellular GSH.

Relieve the low pH state of the TME
Acid metabolites molecules (H+, lactate, carbonic acid, 
etc.) construct low pH values that may result in cancer 
occurrence and development. Therefore, deleting acid 
molecules or relieving low pH conditions is a promis-
ing cancer treatment. Currently, the common ways to 
relieve the low pH value include downregulating intra-
cellular and extracellular acid substances, blocking the 
exportation of intracellular acid substances, and con-
suming intracellular and extracellular acid substances.

Carbonic anhydrase (CA) inhibitors (CAIs) have 
been developed to reduce carbonic acid levels, which 
indirectly reduce the acidity of the TME [172, 173]. 
Chen et  al. modified MSNs with an anti-CAIX anti-
body (A-CAIX Ab) and DOX via disulfide bonds and 
developed a new antibody-targeting and GSH-respon-
sive nanocomposite particle, DOX@MSNS-CAIX. 
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DOX@MSNS-CAIX could accumulate in tumors, 
relieve the low pH, and induce more cancer cell apop-
tosis in 4T1-bearing mice [174].

As a special exporter of lactate, MCT inhibition is an 
alternative method to block acid substances. Li et  al. 
constructed a hollow mesoporous organosilica nano-
particle loaded with hydroxycamptothecin (HCPT) 
and monocarboxylate transporter 4 (MCT4) interfer-
ing RNA (siMCT4), which inhibits the efflux of lactate 
from cancer cells. Moreover, the reduction in extracel-
lular lactate can promote the transformation of TAMs 
from the M2 type to the M1 type, restore the activity 
of CD8+ T cells in vivo, alleviate the immunosuppres-
sion of the microenvironment, and effectively inhibit 
the proliferation of B16F10 tumors and lung metasta-
sis of 4T1 cells [175]. Moreover, proton pump inhibi-
tors (PPIs) and Na+/H+ exchange inhibitors are known 
to be involved in pH regulation and contribute to 
relieving the acidic TME [176–178]. Regrettably, there 
are currently no reports on the design of mesoporous 
nanoplatforms based on these drugs.

Consumption of the acid metabolites also assists in 
alleviating the low pH of the microenvironment. Tang 
et al. reported that dendritic MSNs loaded with lactate 
oxidase could increase the consumption of lactate in 
the TME. Lactate consumption downregulates VEGF 
expression and resists tumor angiogenesis and metas-
tasis. Moreover, consumption of lactate catalyzed by 
LOX produces cytotoxic H2O2, which leads to oxida-
tive damage and increased hypoxia levels to enhance 
antitumor and antimetastatic efficacy [114]. Chen 
et  al. incorporated Met and fluvastatin sodium (Flu), 
an MCT4 inhibitor, into MnO2-coated MSNs to con-
struct the tumor-targeting nanoplatform Me&Flu@
MSN@MnO2-FA. Met can promote the production 
of more lactate by cancer cells, while Flu inhibits the 
efflux of lactate, which leads to an acidosis intracel-
lular microenvironment and cancer cell death. Due to 
the limited efflux of lactate, the extracellular lactate 
concentration is reduced, and the migration ability of 
cancer cells is also weakened [179].

Fig. 5  Strategies for reshaping the physicochemical microenvironment. A Ameliorate the hypoxia state of the TME in the methods of delivering O2 
or catalyzing O2 production in situ of TME. B Relieve the low pH state of the TME by blocking the efflux of intracellular acid metabolites or promote 
intracellular acid metabolites generation to induce cancer cells acidosis. C Destruct redox homeostasis in the forms of increased ROS generation in 
the TME, existing GSH consumption and attenuated GSH generation
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Reshaping the biological microenvironment
Remodeling energy metabolism
Energy metabolites play an indispensable role in main-
taining biological tumor behavior. At present, MNDDSs-
based TME energy metabolism remodeling focuses 
mainly on blocking or consuming energy metabolism 
materials and inhibiting the Warburg effect and reverse 
Warburg effect.

Blocking or consuming energy metabolism raw materials
Destroying tumor blood vessels is a traditional avenue to 
block energy materials. Blocking or consuming energy 
metabolism materials (such as glucose, lactate, glutamine, 
etc.) in the TME is a novel strategy for starvation cancer 
therapy (Fig.  6). GOX, which catalyzes the oxidation of 
glucose to produce H2O2 and gluconic acid, consumes 
a large amount of glucose and O2, which could signifi-
cantly enhance synergistic chemotherapy, phototherapy, 
and immunotherapy [180]. Mesoporous nanomaterials 
loaded with GOX, peroxidase, prodrugs, polyvalent metal 

ions and other substances may realize multimodal can-
cer combination therapies. Shan et  al. designed organo-
silica-based hollow mesoporous bilirubin nanoparticles 
(HMBRNs) coloaded with GOx and tirapazamine (TPZ), 
which rapidly depleted glucose and oxygen in tumors 
and enhanced starvation therapy and chemotherapy, 
with fewer side effects [181]. Huo et al. integrated GOD 
and ultrasmall Fe3O4 nanoparticles into large pore-sized, 
biodegradable dendritic silica nanoparticles to prepare 
a sequential nanocatalyst. GOD in nanocatalysts can 
effectively deplete glucose and generate a large amount 
of H2O2 to catalyze Fe3O4 through Fenton-like reactions, 
which ultimately trigger cancer cell death [159].

Inhibiting or reversing the Warburg effect
Cancer cells and stromal cells rely mainly on the “War-
burg effect” to acquire energy materials. Recently, the 
“reverse Warburg effect” was also revealed to be involved 
in cancer cell biogenesis [182]. Thus, effectively delivering 

Fig. 6  Strategies for reshaping the biological microenvironment. A Remove tumor-derived sEVs from circulation to increased intestinal A-Exo, and 
attenuated A-Exo-induced tumor metastasis. B Regulate collagen degradation and decomposition to reshape the ECM. C Block or consume energy 
metabolism raw materials (such as glucose, lactate, glutamine, etc.) or silence gene of energy metabolism to induce cancer cell death
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these enzyme inhibitors or siRNA may block the War-
burg effect or reverse the Warburg effect, representing 
a promising tumor therapy. Shen et al. developed a uni-
versal siRNA vector consisting of cyclodextrin-grafted 
polyvinyl imine (CP)-functionalized MSNPs. In  vitro 
and in vivo experiments have shown that CP-MSCs can 
effectively inhibit pyruvate kinase 2 (PKM2) gene expres-
sion, further inhibiting cancer cell growth, invasion and 
migration [183]. In a later report, Shen et al. designed a 
highly efficient mesoporous silica nanoplatform, CP-
MSNP@DOX/siRNA, for the codelivery of DOX and 
PKM2 siRNA oligomers, which showed a good effect of 
the combination of gene and chemotherapy in a mouse 
triple-negative breast cancer model [184].

Reduce the generation of ECM
Downregulating the expression of ECM or degrading the 
generated ECM will help improve the delivery efficiency 
in tumor tissues. As collagen is the main component of the 
ECM, regulating collagen degradation and decomposition 
has become a common target for reshaping the ECM. Vil-
legas et al. designed polymerized nanocapsules with hybrid 
collagenase on the surface of MSNs to improve the infil-
tration of nanoparticles into tumor tissues depending on 
hybrid collagenase degradation in a high-density matrix 
[185]. Besides, exogenous enzymes have often been used to 
degrade collagen. Based on activating endogenous matrix 
metalloproteinases (MMPs-1 and MMPs-2) using NO, Dong 
et  al. presented MSN loaded with DOX and a NO donor 
(S-nitrosothiol). Construction of DN@MSN make tumor 
being more permeable to the nanovehicle and DOX, signifi-
cantly promoting antitumor efficacy with less toxicity [186]. 
However, no administration of MNDDSs have been reported 
in collagen denaturation, which thought to be a promising 
strategy [187].

As another important component of the ECM, reduced 
HA can loosen the ECM skeleton, promote antitu-
mor drug infiltration and relieve high interstitial pres-
sure. Delivering hyaluronidase or HA inhibitors using 
mesoporous nanomaterials enhanced antitumor drug 
penetration into tumor tissue. CD44 can bind specifi-
cally to HA and its derivatives to achieve targeted drug 
delivery through a receptor-ligand mechanism [188, 189]. 
Fang et al. synthesized HA-modified MSNs (HA-MSNs) 
coated with superparamagnetic Fe3O4, which realized 
high tumor penetration [190].

Remodeling extracellular vesicles
Tumor-derived small extracellular vesicles (sEVs) 
play a critical role in regulating the TME and further 
tumor progression and metastasis. Explicitly removing 

tumor-derived sEVs from circulation has been proposed. 
Xie et  al. used positively charged MSNs functionalized 
with EGFR-targeting aptamers (MSN-AP) to specifi-
cally recognize and bind blood-borne negatively charged 
oncogenic exosomes (A-Exo) and deliver A-Exo through 
the hepatobiliary layer and Oddi’s sphincter into the 
small intestine, which significantly decreased circulating 
A-Exo levels, increased intestinal A-Exo, and attenuated 
A-Exo-induced lung metastasis in mice [191].

Conclusion and outlooks
The persistence and complexity of the TME results in 
tumors being more aggressive. The components of the 
TME, such as hypoxia, nutrient deficiency, weak acid-
ity, high ROS and GSH, an immunosuppressive micro-
environment, and a viscous ECM, are closely related to 
cancer cell survival, proliferation, metastasis, and treat-
ment resistance. Additionally, cancer cells can further 
deteriorate the TME through metabolic reprogramming, 
forming a vicious cycle. Combining cancer cells and TME 
therapy represents a promising strategy.

MNDDSs have excellent physical and chemical prop-
erties, which can safely, efficiently and accurately deliver 
agents to tumor tissues, specifically in blocking the inter-
action between the TME and cancer cells, and ultimately 
achieve the purpose of direct treatment or synergistic 
sensitization treatment of tumors. Currently, MNDDSs-
based targeted remodeling TME including: (1) remod-
eling cellular TME, involved decreasing or normalizing 
tumor vessels, regulating functions of CAFs and remod-
eling immune microenvironment; (2) reshaping the 
physicochemical microenvironment, involved improving 
oxygen supply, destructing redox and pH homeostasis; 
(3) reshaping the biological microenvironment, involved 
remodeling energy metabolism, reducing ECM genera-
tion, and improving function of extracellular vesicles. 
Table 2 summarizes some strategies MNDDSs applied for 
targeting and remodeling the biophysiochemical TME.

To date, mesoporous oxides (SiO2, MnO2, Fe3O4), 
mesoporous platinum, mesoporous carbon, mesoporous 
nitride, phosphate, and sulfide have been designed for 
tumor target therapy. However, there are still some chal-
lenges that limit treatment efficiency and clinical trans-
formation. Firstly, MNDDSs biosafety. The widely studied 
MSNs have stable inorganic rigid skeleton with slow deg-
radation rate, which can remain in the body for several 
weeks to several months. In order to solve this dilemma, 
various methods have been developed to accelerate the 
degradation of MSNs, such as introducing organic parts/
metal ions into the Si-O-Si skeleton of MSN, bridging 
MSN with selenium/disulfide. Therefore, MNDDSs with 
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skeletal responsive biodegradation characteristics should 
be further developed to achieve biocompatibility and 
ensure the effectiveness of free radicals in nano-dynamic 
therapy. Secondly, drug loading and functional modifi-
cation. Although the strong drug loading and functional 
modification ability, there are still several limitation 
and problems, such as small drug loading, drug leakage, 
tumor treatment residue, single treatment resistance, 
and side effects on surrounding tissues. Further tune 
the physical and chemical characteristics of mesoporous 
materials may contribute to solve this problem. Hollow 
mesoporous materials and sandwich mesoporous mate-
rials not only provide more space, but also prevent the 
premature release and degradation of drugs, regulate 
the therapeutic agents release, reduce side effects, and 
ultimately may improve the results of anti-cancer treat-
ment. Dendritic mesoporous materials are also designed 
to connect multiple functional modification groups, 
reduce drug leakage, and better respond to the endog-
enous stimulation of the TME. Finally, in terms of inter-
nal circulation and action efficiency, most of the current 
nano materials displayed poor stability and low energy 
conversion efficiency. Designed MNDDSs wrapped in 
red cell membrane or cancer cell membrane may avoid 
to be swallowed by immune cells, and increase biocom-
patibility and circulation time. The latter is beneficial to 
the homologous uptake of cancer cells and the activation 
of immunity in situ as artificial antigen. Flexible organic 
mesoporous materials, with long cycle time in  vivo and 
high cell uptake efficiency, have currently become attrac-
tive candidates. Many responsive substances have been 
used to modify MNDDSs for stimulating responsive 
drug cascade release and stimulus-responded nano-
dynamic therapy, significantly enhancing the local thera-
peutic effect of the lesion. How to optimize the internal 
circulation and tissue uptake of MNDDSs is worthy of 
exploration, which is of great significance for clinical 
transformation.

In addition, MNDDSs still face some challenges in 
reshaping TME. MNDDSs with excellent targeting per-
formance, high specific tumor uptake rate and multi-level 
drug delivery at different stages have yet to be designed. 
How to better control the time and space transfer of 
in vitro drug delivery platform is a challenge and needs 
further research. The design of a high biosafety, compre-
hensive and stable mesoporous nano-drug delivery sys-
tem to optimize cancer treatment, and the in-depth study 
of the interaction and regulatory mechanism between 
tumor and microenvironment will accelerate the clinical 
transformation process and show a better prospect for 
the collaborative and efficient treatment of cancer.
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