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Abstract
Due to the excellent biocompatible physicochemical performance, luminogens with aggregation-induced emission 
(AIEgens) characteristics have played a significant role in biomedical fluorescence imaging recently. However, 
screening AIEgens for special applications takes a lot of time and efforts by using conventional chemical synthesis 
route. Fortunately, artificial intelligence techniques that could predict the properties of AIEgen molecules would 
be helpful and valuable for novel AIEgens design and synthesis. In this work, we applied machine learning 
(ML) techniques to screen AIEgens with expected excitation and emission wavelength for biomedical deep 
fluorescence imaging. First, a database of various AIEgens collected from the literature was established. Then, 
by extracting key features using molecular descriptors and training various state-of-the-art ML models, a multi-
modal molecular descriptors strategy has been proposed to extract the structure-property relationships of AIEgens 
and predict molecular absorption and emission wavelength peaks. Compared to the first principles calculations, 
the proposed strategy provided greater accuracy at a lower computational cost. Finally, three newly predicted 
AIEgens with desired absorption and emission wavelength peaks were synthesized successfully and applied for 
cellular fluorescence imaging and deep penetration imaging. All the results were consistent successfully with 
our expectations, which demonstrated the above ML has a great potential for screening AIEgens with suitable 
wavelengths, which could boost the design and development of novel organic fluorescent materials.
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Introduction
Fluorescent probes, especially organic luminogens, were 
indispensable agents that were widely used in biological 
research owing to their lower safety risks and biodegrad-
ability[1–3]. However, conventional organic probes still 
suffer from poor water solubility, severe photobleaching, 
and low stability. These intrinsic drawbacks significantly 
hinder the wide applications of organic probes in bio-
medical research. Fortunately, the luminogens with AIE 
characteristics (AIEgens) have brought a perfect solution. 
AIEgens have weak or even no emission at the molecular 
state but exhibited highly enhanced fluorescence emis-
sion in the aggregated state[4]. Such a feature endowed 
AIEgens with good colloidal stability in water, greater 
resistance to photobleaching, and highly strengthened 
functional stability. Therefore, AIEgens have attracted 
extensive attention among scientists and have been rec-
ognized as a better option than conventional organic 
probes in recent years[5–8].

AIEgens with various wavelengths could be used for 
various biological applications, such as in vivo fluores-
cence imaging, orthogonal monitoring, multicolor fluo-
rescence labeling, and fluorescence resonance energy 
transfer (FRET) analysis[9–12]. In addition, tuning the 
wavelength of AIEgens could obtain an appropriate pen-
etration depth with minimal interference from tissue 
absorption, scattering, and autofluorescence to obtain 
a better signal-to-noise ratio[13]. Researchers showed 
tremendous interest in designing AIEgens with suit-
able absorption and emission peaks (λabs, λem). Thus, it 
is important to have a profound understanding of struc-
ture-property relationships between molecular struc-
tures and optical properties before chemical synthesis. 
The challenge is arose from the complex AIE mecha-
nisms based on various dimensions of photophysics, such 
as restriction of intramolecular rotation or vibration[14], 
restriction of excited-state deformation[15], suppression 
of Kasha’s rule[16], and et al. Furthermore, it is note-
worthy that the optical properties of molecules are also 
highly dependent on solvent polarity, which make it even 
more difficult to design molecules reasonably that match 
the expected properties[17].

Although some computational methods, such as lin-
ear response time-dependent density functional theory 
(TD-DFT), could be used to predict the λabs and λem of 
molecules, the different hybrid functional and basis sets 
dramatically impacted on performance[18–20]. For 
example, in many cases, TD-DFT systematically overes-
timated the energy of absorption and emission [21, 22]. 
Although some optimization strategies could address 
these problems, the computational costs increased sig-
nificantly[23, 24]. In addition, TD-DFT had significant 
errors in some skeletons and was unachievable for large-
scale screening of molecules given the enormous time 

complexity. Thus, our aim is to explore a user-friendly 
approach that only requires information on the molecu-
lar structure and solvent to guide us to design and syn-
thesis of molecules.

Among various techniques, machine learning (ML) 
has grown in popularity and achieved inspiring success 
in various fields, including drug design, organic syn-
thesis, and materials chemistry due to its time-efficient 
nature[25–28]. By scanning large datasets and extracting 
their molecular features, ML models could predict a wide 
range of properties without understanding the under-
lying physical or chemical information[29–31]. When 
there was already some understanding of the physical or 
chemical mechanism behind it, ML could help provide 
further insights[32]. This gives researchers the ability to 
develop molecules with properties that are in accordance 
with expectations.

In this study, we established a database containing 
experimental information on 1245 solvated AIEgens, 
which were collected from the literature published within 
the last twenty years (24 solvents and 618 AIEgens in var-
ious combinations) (Scheme 1a). The molecular structure 
was first transformed into a vector form that could be 
recognized by ML (Scheme 1b) and then trained by seven 
different ML models, including support vector machine 
(SVM)[33], K-nearest neighbor (KNN)[34], extreme gra-
dient boost (XGBoost)[35], gradient boost regression 
Tree (GBRT)[36], random forest (RF)[37], multilayer 
perceptron (MLP)[38] and convolutional neural network 
(CNN)[39] (Scheme 1c) to predict λabs and λem. Multi-
modal molecular descriptors were further created to 
improve the accuracy of the ML models for large-scale 
screening of molecules. Finally, three novel AIEgens with 
different wavelengths have been predicted and synthe-
sized according to our proposed ML strategy (Scheme 
1d). The predicted results were consistent with the exper-
imental results.

Results and discussion
Data collection
Herein, we created a database containing experimental 
data of 1245 AIEgens, which were collected from the lit-
erature published within the last twenty years (618 dis-
tinct AIEgens in 24 solvents). Each data entry contained 
the molecular structure of AIEgen, solvent, absorption, 
and emission peaks. If a particular solvated AIEgen has 
numerous absorption and emission peaks, the absorption 
peak with the longest wavelength and the emission peak 
with the highest intensity would be collected. In brief, 
the absorption and emission peaks of most AIEgens were 
located in the ranges from visible to the near-infrared 
region (400 ~ 700  nm) (Fig.  1a). The AIE characteristics 
of every molecule in the database had been documented 
in the literature. These AIEgens included rotor structures 
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or their derivatives, such as triphenylamine (TPA), tetra-
phenylpyrazine (TPP), tetraphenylene (TPE), and hexa-
phenylsilole (HPS) (Fig. 1b) [4, 40].

Descriptor Acquisition
To obtain information that could be recognized and pro-
cessed by ML, molecules and solvents were converted to 
molecular descriptors in vector form, that was, descriptor 
acquisition [41], which was critical to improve the accu-
racy of the ML models. In this work, we have chosen two 
forms of molecular descriptors, quantitative (Fig. 2a) and 
qualitative descriptors (Fig. 2b). The detailed descriptions 
of molecular descriptors were available in the Molecule 
descriptors. Quantitative molecular descriptors provided 
information on a molecule’s physical and chemical prop-
erties, such as total molecular weight, lipophilicity, num-
ber of electrons, hydrophilicity, hydrophobicity, number 
of atoms, the fraction of rotatable bonds, and heavy atom 
molecular weight, etc. Qualitative molecular descriptors 
were also known as molecular fingerprints. A molecular 

fingerprint was an abstract representation of a molecule 
that converted (encoded) it into many bit strings (also 
known as bit vectors) that were then easily compared 
between molecules. Each bit on the molecular fingerprint 
corresponded to the presence or absence of a molecular 
fragment. We chose Morgan circular fingerprint, Day-
light fingerprint, Atom-pair fingerprint, and Topologi-
cal torsion fingerprint to extract molecular and solvent 
features. In addition, we created multi-modal molecular 
descriptors to improve the accuracy of the ML models 
for large-scale screening of molecules, that was, stitch-
ing different types of molecular fingerprints together as 
a new type of molecular fingerprint (Fig. 2c). Through the 
use of this strategy, data from various molecular finger-
prints were combined to create features that were more 
complete in their information, increasing the ML mod-
el’s accuracy. It has been shown that combining multiple 
fingerprint features (MFFs, more than 70,000 bits) into a 
single molecular descriptor had good accuracy[42].

Fig. 1 Database information. (a) Data distribution of absorption and emission peaks of solvated AIEgens in our database. (b) Rotor structure of several 
typical AIEgens in the database

 

Scheme 1 Schematic illustration of (a) data collection, (b) feature acquisition, (c) model development, and (d) applications
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Model development
Model selection was critical for accurate ML prediction, 
and we have chosen seven state-of-the-art algorithmic 
models for predicting λabs and λem. These algorithms were 
shown in Fig. 3, which included support vector machine 
(SVM), K-nearest neighbor (KNN), extreme gradient 
boost (XGBoost), gradient boost regression Tree (GBRT), 
random forest (RF), multilayer perceptron (MLP) and 
convolutional neural network (CNN). To compare and 
assess the effectiveness of the algorithms, we used the 
mean absolute error (MAE) as an evaluation metric. Fur-
thermore, we adopted a 10-fold cross-validation strategy 
to evaluate different methods under different molecular 
descriptors (Figure S22).

To evaluate the performance of different combinations 
of these molecular descriptors and ML algorithm mod-
els, we first compared the performance of ML on the 
test set. Both absorption (Fig. 4a) and emission (Fig. 4b) 
predictions were evaluated. The outcomes showed 
that multi-modal molecular descriptors consistently 
performed better than single molecular fingerprints, 
demonstrating the superiority and robustness of our 
proposed multi-modal molecular descriptors strategy. 
Multilayer perceptron (MLP) is one type of neural net-
work that has recently attracted tremendous attention 
among researchers. However, since neural network need 
more information to function better, the MLP model 
hasn’t done the best on our dataset. Additionally, the 

Fig. 2 Illustration of the acquisition of molecular descriptors in the study. (a) Quantitative molecular descriptors. (b) Qualitative molecular descriptors. (c) 
Multi-modal molecular fingerprint for various ML methods
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MLP model performed poorly on multi-modal molecu-
lar descriptors, likely the result of overfitting due to the 
MLP model’s sensitivity to high-dimensional data. RF 
was a general ensemble learning algorithm that produced 
the final decision by combining the results of individual 
trees constructed on a randomly chosen subset of data. 
This strategy for combining various sub-results into a 
final result did not produce significant errors and was 
thus stable on our dataset. However, RF did not perform 
as well on regression problems as it did on classification 

problems because it could not produce predictions 
beyond the scope of the data in the training set, resulting 
in poorer results than other models. In terms of quali-
tative molecular descriptors, the SVM model and KNN 
model performed better than the RF model but worse 
than quantitative molecular descriptors. This might be 
because qualitative molecular descriptors were better 
suited for our dataset, and the same trend could be seen 
for the MLP model. The CNN and XGB models outper-
formed the others for single and multi-modal molecular 

Fig. 3 Illustration of the various ML methods used in the study. (a) Support vector machine (SVM). (b) K-nearest neighbor (KNN). (c) Gradient boosting 
regression tree (GBRT) and extreme gradient boosting (XGBoost). (d) Random Forest (RF). (e) Multilayer perceptron (MLP). (f ) Convolutional neural net-
work (CNN).
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descriptors. CNN was a popular image processing model 
for extracting multi-dimensional feature information 
from images. We adopted molecular fingerprints in vec-
tor form to the CNN model in this work. We obtained 
superior results because the topological information 
generated by molecular fingerprints could be extracted 
maximally by the one-dimensional convolutional ker-
nel. The XGB model was based on the cumulative, itera-
tive GBRT model and enhanced it. Both XGB and GBRT 
were ensemble methods based on regression trees. Thus, 
they had excellent performance because they were less 
likely to be overfitting or underfitting. For molecular fin-
gerprints, Daylight fingerprints generally outperformed 
other fingerprints on various models because Daylight 
fingerprints express molecular information in a topologi-
cal manner that was more suitable for the structure of 
AIEgens.

The XGB model performed better at predicting λabs, 
while the CNN model excelled at predicting λem. To 
determine the most applicable multi-modal molecular 
descriptors for these two models, two additional evalu-
ation metrics, coefficient of determination (R2) and root 

mean square error (RMSE), were added to determine fur-
ther the level of fit and magnitude of error between ML 
predictions and experimental results. As shown in Fig.
S18, we assessed how well the two models performed 
for each of the three multi-modal molecular descriptors. 
From the results, the scatter plot and R2 showed that our 
model performed equally well on various multi-modal 
molecular descriptors, with an R2 of 97%. For the RMSE 
values, the toptorsion-daylight fingerprint was most suit-
able for the XGB model for predicting absorption peaks 
(Fig. 4c), and the atompair-daylight fingerprint was ideal 
for the CNN model predicting emission peaks (Fig. 4d). 
Furthermore, ML performed better in absorption peak 
prediction, which was understandable given the struc-
ture-property relationship and the solvation effect of 
AIEgens. However, given the significance of fluorescence 
emission in biological applications, we considered that 
the emission prediction was more important.

With the above results, we have initially constructed 
and screened ML models with excellent performance. 
We have also analyzed our models’ error distribution and 
scalability in screening AIEgens with the desired optical 

Fig. 4 Testing results of absorption and emission wavelengths of ML models with various molecular descriptors using 10-fold cross-validation. (a) MAE 
of predicted absorption peak. (b) MAE of predicted emission peak. (c) The XGB model predicts λabs based on toptorsion-daylight fingerprint. (d) The CNN 
model predicts λem based on atom-pair-daylight fingerprint
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properties (Fig. S19 and S20). As shown in Fig.  5a and 
b, the predictions achieved by 10-fold cross-validation 
had the majority of prediction errors within 10 nm, with 
the number of errors greater than 20 nm accounting for 
around 10% of the total, demonstrating that our model 
had excellent performance. In general, the better perfor-
mance of ML models was obtained, the more data were 

included. On our dataset, we investigated the model’s 
ability to scale, that was, how the model would perform 
as the size of the test set and training set were gradually 
increased and decreased, respectively. As the test set was 
reduced and as the training set was expanded, the MAE 
of these models gradually declined, and their perfor-
mance gradually improved (Fig. 5c and d).

Fig. 5 ML prediction error distribution, model scalability, and comparison of ML and TD-DFT. (a) Absorption peak error distribution. (b) Emission peak 
error distribution. (c) Absorption model scalability. (d) Emission model scalability. (e) Time cost for one molecule. (f ) MAE of predicted absorption peak
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To validate the utility of ML, we compared it to TD-
DFT, a method that could calculate molecules’ absorp-
tion and emission peaks (Fig. S21). We gathered 36 
AIEgens from the literature that contained TD-DFT cal-
culations. All of the AIEgens we collected used a theory 
level of B3LYP/6-31G(d) to avoid the effects of different 
basis sets and functionals on the results. As illustrated in 
Fig.  5e, it consumed longer time by using the TD-DFT 
method than using ML. According to statistics, it took 
approximately 4 h to optimize the molecular ground state 
structure, about 40  h to optimize the molecular excited 
state structure, and about 50 h to calculate the molecu-
lar single point energy based on the optimized molecular 
excited state structure[43]. In contrast, it took no more 
than 5  min to train the ML models on our server, and 
the trained ML models predicted the molecule in less 
than 1  s. As a result, the time-cost issue with TD-DFT 
was resolved by using ML as an alternative, significantly 
increasing the efficiency of large-scale screening of AIE-
gens with expected absorption and emission wavelength. 
As shown in Fig.  5f, not only did ML outperform TD-
DFT in terms of time cost, but the accuracy of the ML 
model was also higher than the calculated results of TD-
DFT. The reason for the poorer outcomes of TD-DFT 
was that TD-DFT tended to overestimate the absorption 
and emission energies of molecules, resulting in relatively 
large errors[21, 22]. In addition, TD-DFT had signifi-
cant errors in some skeletons and the results were much 
worse than those generated by ML models[44]. In con-
trast to quantum chemical calculations, trained ML mod-
els allowed researchers to quickly and accurately obtain 
results without the need for extensive knowledge of phys-
ics, chemistry, or quantum computing. Therefore, ML 
may overtake first-principles calculations as chemists’ 
preferred method in the future.

In this section, we evaluated various ML models and 
molecular descriptors for predicting the absorption and 
emission peaks of AIEgens in various solvents. Two com-
binations with optimal performance were developed to 
meet the needs of large-scale screening. The XGB model 
with toptorsion-daylight fingerprint performed best in 
predicting absorption peaks, and the CNN model with 
atom-pair-daylight fingerprint performed best in predict-
ing emission peaks. We considered several evaluation 
metrics, error distributions, and model scalability in our 
evaluation process. Furthermore, it has been demon-
strated that our ML models could improve performance 
by using multi-modal molecular descriptors and expand-
ing the database. These results showed the viability of our 
ML model in practical applications.

Synthesis and application according to the predictions
To validate the ability of the ML model to predict the 
structure of novel molecules, we synthesized a series 

of potential AIEgens at different wavelengths based on 
the results of ML screening and their synthesizability 
(Scheme S1). The molecular structures of these AIEgens 
were depicted in Fig.  6a, PTMM was simply synthe-
sized by the one-pot reaction of 2-tetralone and benz-
aldehyde derivative, and the non-coplanar backbone 
between pyridine core and benzene ring endow the mol-
ecules with active intramolecular torsion. Then TTNA 
and TTBI were facilely synthesized through a few-step-
reactions, which are both comprised of triphenylamine 
moiety (working as donor), thiophene fragment (D and 
π-bridge), double bond (π-bridge) and the nitrobenzene/ 
quaternary ammonium salt unit (A). Additionally, to val-
idate the ability of our model to predict the absorption 
and emission peaks of AIEgens in different solvents, we 
measured the absorption (Fig. S12) and emission (Fig. 6b-
d) spectra of these AIEgens in five different solvent sys-
tems, including tetrahydrofuran (THF), ethyl acetate 
(EA), chloroform (Chloroform), acetonitrile (ACN), and 
dimethyl sulfoxide (DMSO). It can be seen that the peaks 
of the PL spectra of the three AIEgens show some dif-
ferences with increasing solvent polarity. Suggesting a 
certain solvent effect and strong twisted intramolecular 
charge transfer (TICT) effect[45]. The AIE characteristics 
of three AIEgens were further examined using PL spectra 
in different ACN/water solvent systems (Fig. 6e-g), when 
the water fraction continuously increased, the fluores-
cence intensity of the AIEgens enhanced largely, which 
was attributed to the mechanism of restriction of intra-
molecular motions along with aggregation[46]. In such 
a binary solvent system, there is a competition between 
AIE and TICT on the PL.

For both the absorption peaks and emission peaks of 
the three molecules, as shown in Table S1, the experi-
mental results were in good agreement with the ML-
predicted outcome at five different solvents, which 
demonstrated that our ML models could accurately pre-
dict the absorption and emission peaks of AIEgens in dif-
ferent solvents at various wavelengths.

To confirm that the AIEgens predicted by ML model 
could be used for biomedical applications, AIEgens were 
firstly encapsulated into nanoparticles (NPs) by nano-
precipitation using DSPE-PEG2000 as an encapsulation 
matrix (Fig.  7a). The morphology and photophysical 
properties of PTMM NPs, TTNA NPs, and TTBI NPs 
were investigated. As shown in Fig.  7b-d, the absorp-
tion peaks for PTMM NPs, TTNA NPs, and TTBI NPs 
in water were observed at 269, 483, and 589 nm, respec-
tively. The emission peaks for these NPs in water were 
observed at 400, 678, and 822  nm, respectively. The 
hydrodynamic sizes of the PTMM NPs, TTNA NPs, and 
TTBI NPs were measured by dynamic light scattering 
(DLS). As illustrated in Fig.  7e-g, the average diameter 
of PTMM NPs was ~ 120 nm, TTNA NPs was ~ 90 nm, 
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and TTBI NPs was ~ 100 nm. The transmission electron 
microscope (TEM) images showed that the average sizes 
of the formed PTMM NPs, TTNA NPs, and TTBI NPs 
were close to 80, 60, and 70 nm, respectively.

In order to investigate the biocompatibility and stability 
of the AIEgens NPs for biomedicine, a cell labeling exper-
iment was performed. HeLa cells were co-cultured with 
PTMM NPs, TTNA NPs, and TTBI NPs and a confocal 
laser scanning microscope (CLSM) was applied to take 
the fluorescence images. Considering the general uptake 
pathway of NPs, lysosome-tracker green (LTG) probe was 
applied to localize the AIEgens NPs[47, 48]. As shown in 
Fig. 8a3-c3, an intense blue and red fluorescent signal was 
observed, indicating a good signal-to-noise ratio within 
the cells. As shown in Fig. 8a4-c4, the merged images of 
two fluorescence channels overlapped perfectly, dem-
onstrating that PTMM NPs, TTNA NPs, and TTBI NPs 
entered the cellular lysosomes after 4  h co-culture. The 
results showed that our ML model performed superbly in 
predicting new structures and that the AIEgens identified 

through ML screening could be successfully used in bio-
logical applications.

Furtherly, to evaluate the deep tissue imaging capability 
of AIEgens NPs with various emission peaks, phantom 
models were prepared to simulate skin tissue (Fig. 8b). A 
quartz capillary loaded with different NPs was inserted 
into the phantom for fluorescence imaging, and the 
results are shown in Fig.  8c. The results suggested that 
stronger signals could be seen at deeper penetration 
depths using AIEgens with long absorption and emission 
wavelengths as we expected.

Conclusions
In this study, we created a dataset of solvated AIEgens 
gathered from the literature. Five molecular descrip-
tors, including the morgan circular fingerprint, daylight 
fingerprint, atom-pair fingerprint, topological torsion 
fingerprint, and quantitative descriptors were chosen 
and used to decipher the molecular structure and sol-
vent properties. By combining the proposed multi-modal 

Fig. 6 Optical properties of PTMM, TTNA, and TTBI. (a) Chemical structure of PTMM, TTNA, and TTBI. (b) Normalized Photoluminescence (PL) spectra of (b) 
PTMM, (c) TTNA, and (d) TTBI in various solvents. PL intensities of (e) PTMM, (f ) TTNA, and (g) TTBI in ACN/water mixtures with different volume fractions 
of water. Inset: Digital images of corresponding AIEgens exposed to white and UV radiation (365 nm) with different water fractions
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molecular descriptor approaches with various ML mod-
els, we have obtained good and reliable predictive results. 
This strategy took into account the properties of different 
molecular descriptors, not only learning the structural 
details of existing molecules but also accurately predict-
ing the properties of unknown molecules. Three novel 
AIEgens were then predicted and synthesized according 
to the large-scale ML screening. Remarkably, good con-
sistency between the predictive and experimental results 
has been obtained. The screened AIEgens were further 
applied in the cellular fluorescence imaging and the deep 
penetration imaging. All the results were consistent with 
our expectations. In this new paradigm, we provided a 
novel ML method for new AIEgens design with desired 
optical properties and dramatically less time cost, thereby 
boosting the development of high-performance organic 
fluorescent materials.

Experimental section
Materials and instruments
4-Hydroxybenzaldehyde, 4-(2-chloroethyl)morpho-
line, 2-tetralone, ammonium acetate, 4-bromo-N,N-
diphenylaniline, (5-formylthiophen-2-yl)boronic acid, 
PdCl2(dppf), 1,1,2-trimethyl-1  H-benzo[e]indole, 
2-(4-nitrophenyl)acetonitrile, iodoethane and sol-
vents were all purchased from Sigma Aldrich and 
used as received without further purification. Chloro-
form and ethanol was obtained from Macklin reagent. 
2-Distearoyl-sn-glycero-3-phosphoethanolamine-N-
[methoxy(polyethylene glycol)-2000 (DSPE-mPEG2000) 
was purchased from Xi’an ruixi Biological Technology 
Co., Ltd. PBS (pH 7.4) was purchased from Beyotime 
Biotechnology and Lyso-tracker Green were purchased 
from Sigma Aldrich. DMEM medium, fetal bovine serum 
(FBS), penicillin and streptomycin were purchased from 
Gibco. 3-Ethyl-1,1,2-trimethyl-1  H-benzo[e]indol-3-
ium iodide was synthesized according to the literature 
method[49].

Fig. 7 Optical properties of Nanoparticles (NPs). (a) Schematic illustration of NPs fabrication by nanoprecipitation. Normalized absorption and fluores-
cence spectra of (b) PTMM NPs, (c) TTNA NPs, and (d) TTBI NPs in aqueous solutions. DLS profile of (e) PTMM NPs, (f ) TTNA NPs, and (g) TTBI NPs. Inset: TEM 
images of corresponding NPs (Scale bar, 200 nm)
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1 H and 13 C NMR spectra were recorded with a Bruker 
ARX 400 NMR spectrometer using CDCl3 or DMSO-d6 
as solvent. Liquid Chromatography-Mass Spectrometry 
(LC-MS) was recorded on a Thermo Scientific LCQ Fleet. 
High-resolution mass spectra (HRMS) were recorded on 
XEVO G2-XS QTOF Mass Spectrometer System oper-
ating in a Matrix-Assisted Laser Desorption/Ionization 

Time of Flight (MALDI-TOF) mode. UV–vis absorp-
tion spectra were measured on a PerkinElmer Lambda 
950 spectrophotometer. Photoluminescence (PL) spec-
tra were recorded on Edinburgh FS5 fluorescence spec-
trophotometer. The particle size and zeta potential 
were measured using a Malvern Zetasizer Nano-ZS90. 
The particle size and morphology were observed on a 

Fig. 8 Cell imaging, co-localization imaging and tissue penetration depth evaluated by a phantom model. Confocal images of HeLa cells after co-culture 
with NPs for 4 h, including bright field channel, Lysosome-Tracker Green (LTG) channel, NPs channel, and merged image. (a1-a4) PTMM NPs; (b1-b4) TTNA 
NPs; (c1-c4) TTBI NPs. Scale bar: 20 μm. (b) Schematic illustration of evaluation of tissue penetration by a phantom model. (c) Z-stack images of phantom 
with intervals of 50 μm. Scale bar: 200 μm
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HITACHI-HT7700 transmission electron microscope 
(TEM). Confocal laser scanning microscopy (CLSM) 
images were collected on a ZEISS-LSM880 CLSM. The 
chemical structures of the final products have been con-
firmed by NMR spectra and mass spectra (Figures S1–
S11, Supporting Information).

Synthesis of PM[50]
To a mixture of 3-hydroxybenzaldehyde (1.0  g, 8.20 
mmol) in acetonitrile were added 4-(2-chloroethyl)mor-
pholine (1.2 g, 8.20 mmol) and anhydrous potassium car-
bonate (1.68 g, 12.3 mmol), and the mixture was refluxed 
for 10 h. The mixture was filtered and dried to give the 
crude product. The crude product was finally purified by 
column chromatography (DCM/MeOH = 50:1) to yield 
the desired compound as brown oil (1.39  g, yield 72%). 
1 H NMR (500 MHz, CDCl3 ) δ 9.88 (s, 1 H), 7.90–7.77 
(m, 2  H), 7.09–6.94 (m, 2  H), 4.20 (t, J = 5.7  Hz, 2  H), 
3.80–3.67 (m, 4 H), 2.84 (t, J = 5.6 Hz, 2 H), 2.67–2.49 (m, 
4 H).

Synthesis of PTMM[51]
In a 50 mL round-bottomed flask, added ammonium ace-
tate (0.77 g, 10 mmol), PM (0.24 g, 1.0 mmol), 2-tetralone 
(0.30 g, 2.0 mmol), 10 mL of glacial acetic acid and stirred 
for 24 h at room temperature. After the completion of the 
reaction as monitored by TLC, the resulting product was 
poured into water. The solid was obtained, filtered, and 
purified by column chromatography (PE/EA = 10:1) as 
eluent to give the light green solid (0.42 g, yield: 85%). 1 H 
NMR (400 MHz, CDCl3) δ 7.58–7.50 (m, 1 H), 7.46–7.36 
(m, 3  H), 7.35–7.31 (m, 2  H), 7.37–7.29 (m, 1  H), 7.28 
(s, 1 H), 7.03–6.93 (m, 2 H), 6.94–6.88 (m, 2 H), 4.20 (t, 
J = 5.8  Hz, 2  H), 3.81 (t, J = 4.4  Hz, 4  H), 3.21–3.09 (m, 
4 H), 3.03–2.95 (m, 2 H), 2.88 (s, 2 H), 2.80 (t, J = 6.5 Hz, 
2 H), 2.66 (s, 4 H). 13 C NMR (101 MHz, CDCl3) δ 158.48, 
158.13, 153.52, 145.75, 138.72, 133.28, 131.18, 129.54, 
128.70, 127.89, 127.61, 127.22, 126.91, 126.07, 125.72, 
114.56, 66.87, 65.79, 57.69, 54.15, 33.27, 29.62, 29.55, 
29.32. LC-MS : m/z, cal 488.246, found: 489.521 [M + H]+; 
Retention time = 0.881 min.

Synthesis of TTA[52]
A solution of 4-bromo-N,N-diphenylaniline (1.0  g, 3.0 
mmol) and (5-formylthiophen-2-yl)boronic acid (0.63 g, 
4.0 mmol) was refluxed under nitrogen in the mixed 
toluene/MeOH (20 mL: 20 mL) in the presences of 
PdCl2(dppf) (0.23 g, 0.31 mmol) and K2CO3 (2.13 g, 15.4 
mmol) for 24 h. The combined organic phase was filtered 
and dried to obtain the crude product, which was further 
purified by silica-gel chromatography (PE/DCM = 2:1) 
to obain the yellow solid (0.74 g, yield: 69.2%). 1 H NMR 
(400 MHz, CDCl3) δ 9.88 (s, 1 H), 7.73 (d, J = 3.9 Hz, 1 H), 

7.57–7.52 (m, 2  H), 7.35–7.29 (m, 5  H), 7.19–7.14 (m, 
4 H), 7.14–7.06 (m, 4 H).

Synthesis of TTNA[53]
A solution of 5-(4-(diphenylamino)phenyl)thiophene-
2-carbaldehyde (0.177 g, 0.5 mmol) and 2-(4-nitrophenyl)
acetonitrile (0.810 g, 0.5mmol) were added to ethanol (20 
mL) with a drop of piperidine and refluxed for 5 h. It was 
then cooled down to room temperature and produced 
a black product, which was then filtered, washed three 
times with cold ethanol, and dried in a vacuum (0.167 g, 
67%). 1 H NMR (500 MHz, CDCl3) δ 8.32–8.26 (m, 2 H), 
7.85–7.75 (m, 3 H), 7.65 (d, J = 4.0 Hz, 1 H), 7.57–7.52 (m, 
2 H), 7.34–7.26 (m, 5 H), 7.17–7.11 (m, 4 H), 7.11–7.03 
(m, 4 H). 13 C NMR (126 MHz, CDCl3) δ 151.92, 149.07, 
147.42, 147.12, 140.66, 137.34, 136.64, 135.48, 129.62, 
127.28, 126.28, 126.10, 125.27, 124.55, 123.99, 122.99, 
122.61, 117.84, 103.97. MALDI-TOF (ESI): m/z calcd for 
C31H21N3O2S [M]+,499.1354; found, 499.1354.

Synthesis of TTBI
The synthetic procedure for the preparation of TTBI[52]. 
A solution of 5-(4-(diphenylamino)phenyl)thiophene-
2-carbaldehyde (0.1  g, 0.3 mmol) and 3-ethyl-1,1,2-tri-
methyl-1  H-benzo[e]indol-3-ium iodide (0.13  g, 0.36 
mmol) was refluxed in dry ethanol catalyzed by a few 
drops of piperidine for 10 h under nitrogen. After cooling 
to room temperature, the solvent was evaporated under 
reduced pressure. The residue was purified by silica-gel 
chromatography (DCM/MeOH = 20:1) to give the purple-
black solid (0.19  g, yield: 88.4%). 1  H NMR (400  MHz, 
CDCl3) δ 8.70 (d, J = 15.5 Hz, 1 H), 8.51 (d, J = 4.1 Hz, 1 H), 
8.25 (d, J = 8.4 Hz, 1 H), 8.15–8.05 (m, 3 H), 7.85–7.62 (m, 
3 H), 7.59 (d, J = 8.4 Hz, 2 H), 7.45 (s, 1 H), 7.37–7.32 (m, 
4 H), 7.17 (t, J = 7.6 Hz, 6 H), 7.07 (d, J = 7.2 Hz, 2 H), 4.90 
(m, J = 7.5 Hz, 2 H), 2.17 (s, 6 H), 1.48 (t, J = 7.3 Hz, 3 H). 
13  C NMR (101  MHz, CDCl3) δ 180.19, 157.17, 149.94, 
145.76, 142.12, 137.84, 133.42, 131.70, 130.29, 129.64, 
128.57, 127.69, 125.60, 124.43, 122.78, 121.67, 111.74, 
107.20, 46.27, 27.18, 22.69. LC-MS : m/z, cal 575.252, 
found: 575.552 [M]+; Retention time = 0.979 min.

Synthesis of NPs
Fabrication of NPs was carried out by injecting THF 
solution (0.5ml) of AIEgens (1  mg) and DSPE-PEG2000 
(5  mg) into 5ml of ultrapure water and stirring vigor-
ously for 2 min. The prepared NPs were purified for a day 
using ultrapure water dialysis (molecular weight cutoff of 
100 kDa). After that, NPs were ultrafiltered for 20 min at 
4400 rpm through ultrafiltration tubes with a molecular 
weight cutoff of 100  kDa. After ultrafiltration, the NPs 
were dispersed in 1°x PBS buffer (pH 7.4) and kept out of 
the light at 4 °C.
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Cell culture, imaging
HeLa cells were cultured in a DMEM medium that con-
tained 10% FPS at 37 °C in a 5% CO2 atmosphere. After 
incubating HeLa cells with NPs (20 µg/mL) in glass bot-
tom dishes for 4  h, 200 nM Lyso-Tracker was added, 
incubated for 30 min. After that, the dishes were washed 
with PBS 3 times and visualized by Confocal laser scan-
ning microscopy (CLSM) immediately.

Molecule descriptors
Molecule descriptors were a crucial step in molecular 
machine learning to encode molecules and extract struc-
tural information. Quantitative structure-activity rela-
tionship (QSAR) was a crucial tool in chemometrics. It 
used mathematical-statistical methods to explain the 
relationship between a compound’s activity or physi-
cochemical characteristics and its molecular structure. 
The foundation of QSAR studies was the calculation of 
molecular descriptors, and the precise definition and 
logical application of these descriptors were crucial to 
QSAR studies. The ability to obtain QSAR models with 
high confidence and validity depended mainly on the 
correct choice of descriptors. A molecular descriptor 
measured a molecule’s characteristics in a specific area, 
such as a physicochemical property or a numerical index 
derived from the molecule’s structure by different algo-
rithms. More than 5000 molecular descriptors were cur-
rently accessible in a variety of software. RDKit was used 
to produce molecular descriptors as numerical descrip-
tors for prediction experiments. There were two types 
of molecular descriptors: quantitative and qualitative. 
Quantitative descriptions were based on molecular graph 
theory, various theoretical or experimental spectral data 
(e.g., UV spectra), molecular composition (e.g., number 
of hydrogen bond donors, number of chemical bonds), 
physicochemical properties (e.g., ester water distribu-
tion coefficients) descriptors, molecular field descriptors, 
and molecular shape descriptors. Qualitative descriptors 
were generally referred to as molecular fingerprints. That 
is, some code represents a molecule’s structure, proper-
ties, fragments, or substructures. All molecular descrip-
tors were generated by RDKit(http://www.rdkit.org).

Quantitative descriptors Depending on the compu-
tational demands of the molecular structure dimension, 
quantitative descriptors could be categorized as one-
dimensional, two-dimensional, three-dimensional, etc. To 
compute descriptors, RDKit offers a variety of methods 
that could be applied to molecular screening, drug toxicity 
testing, and other applications. Herein, 196 one- and two-
dimensional descriptors, including 106 one- and 90 two-
dimensional molecular descriptors, had been screened to 
quantify features.

Qualitative descriptors Qualitative molecular descrip-
tors were also known as molecular fingerprints. One of 
the most critical problems encountered when comparing 
similarities between two compounds was the complexity 
of the task. To make the comparison of molecules com-
putationally easier, a certain degree of simplification or 
abstraction was required. A molecular fingerprint was 
an abstract representation of a molecule that converts 
(encodes) it into many bit strings (also known as bit vec-
tors) that were then easily compared between molecules. 
A typical procedure extracted a molecule’s structural 
characteristics before hashing them to create the bit vec-
tor. Comparing molecules was hard, comparing bit vec-
tors was easy, and comparisons between molecules must 
be quantifiable. Each bit on a molecular fingerprint corre-
sponded to a molecule fragment. Molecular fingerprints 
were classified into several types based on the method 
used to convert the molecular representation into bit vec-
tors. Common molecular fingerprinting methods include 
the morgan circular fingerprint, daylight fingerprint, 
topological torsion fingerprint, and atom-pair fingerprint.

Extended connectivity fingerprint (ECFP) was a circular 
topological fingerprints designed for molecular char-
acterization, similarity search, and structure-activity 
modeling. Morgan connectivity fingerprint (MCP) were 
part of ECFP, derived from Morgan’s algorithm, and 
have became the industry standard method for circular 
molecular fingerprints, designed explicitly for construc-
tive relationship studies. They were often used in ML 
as a benchmark for comparing the performance of new 
strategies. When used, MCP first sets a defined diame-
ter – different diameters produced different fingerprints 
– then employed the Morgan search algorithm to look 
for all substructures in the molecule with that diame-
ter. Finally, it hashed to obtain each substructure’s hash 
value, forming the corresponding fingerprint. ECFPs with 
small diameters were typically appropriate for similar-
ity searches and molecular clustering. Contrarily, ECFPs 
with large diameters gained from having more molecu-
lar structure information and were thus perfect for ML to 
make activity predictions.

Topological or path-based fingerprint started from an 
atom and took each substructure along the path until it 
reached a specified length, then hashed each substructure 
to obtain a molecular fingerprint. This fingerprint could 
be adjusted for quick substructure searching and molecu-
lar filtering and applied to any molecule. The most well-
known examples of this type of fingerprint were daylight 
fingerprint, which had bits that could be up to 2048 bits 
long and encode every possible linkage pathway that a 
molecule could take to reach a specific length. Atom-pair 
fingerprint identified each molecule atom as the shortest 
path based on its environment. Topological torsion fin-
gerprints were generated by constructing a topological 

http://www.rdkit.org


Page 14 of 17Zhang et al. Journal of Nanobiotechnology          (2023) 21:107 

double-angle descriptor using four non-hydrogen atom-
pair bonding paths. Both fingerprints could be expressed 
in sparse form.

Machine learning model
Random Forest (RF) RF was a general-purpose ensem-
ble learning algorithm that used the Classification and 
Regression Tree (CART) algorithm to reach the final 
conclusion after “aggregating” the results of a single fully 
grown regression tree constructed on a randomly chosen 
subset of data. Each regression tree selected a variable to 
reduce the Gini impurity as it grows 

 IG (p) = 1 −
∑J

i=1 p2
i  (1)

to lessen the chance that a new random variable would 
be incorrectly classified. In this case, J was the total num-
ber of classes, and pi was the likelihood that a given item 
belongs to class i. For the overall algorithm to be more 
predictive than a single regression tree and more resil-
ient on a noisy database, RF uses bootstrap sampling and 
random selection of input samples to ensure that each 
regression tree in the forest was distinct and uncorrelated 
to one another. The algorithm’s accuracy would increase 
with a large number of regression trees.

Gradient boosting regression tree (GBRT) The GBRT 
was a well-liked model that performed exceptionally 
well in ML applications. It was a boosting family repre-
sentative algorithm. Boosting was a progressive model 
combination strategy. Each new regressor enhanced the 
predictions of the previous regressor. Thus, boosting was 
a technique for combining models that reduced bias. 
GBRT was an iterative regression tree algorithm that con-
sisted of multiple trees. The integration technique used 
was gradient boosting, and the final result was the sum 
of the conclusions from each tree. The intuitive under-
standing was that each round of prediction has residuals 
with the actual values, the next round of prediction was 
made based on the residuals, and the result was obtained 
by summing all predictions. The GBRT process involved 
several iterations, with each iteration producing a weak 
regressor that was trained using the residuals of the pre-
vious regressor. Since the training process was made to 
reduce residuals, the accuracy of the final regressor was 
continually improved. Generally, the requirements for 
weak regressors were straightforward, with low variance 
and high bias. Classification and Regression Tree (CART) 
was usually chosen with weak regressors. The depth of 
each CART was limited due to the high bias and simplic-
ity requirements. The final total regressor was a weighted 
average of the weak regressors from each training round. 
GBRT could be expressed as follows when a regression 
tree represents the basic model:

 fM (X) =
∑M

m=1 T (X ; Θm) (2)

where T
(
X ; Θm)

)
 represents the regression tree. M was 

the number of trees. The forward distribution algorithm 
was adopted first to determine the initial boosting tree 
f0 (X) = 0 . Then the model in step m was:

 
Θ̂m = argmin

Θm

∑N
i=1 L(yi, f(m−1) (Xi) + T (Xi; Θm))

 (3)

where the loss function L() was used, the mean square 
error and the absolute value error were typically the loss 
functions chosen by the regression algorithm.

K-nearest neighbor (KNN) KNN was one of the most 
basic regression algorithms. When the k-nearest samples 
of a data point were considered, the value of that data 
point was the average of those k values. The number of 
neighbors k and the calculation of distance were two cru-
cial factors influencing KNN. K was usually an integer 
no larger than 20, and distance was calculated using the 
Euclidean distance. Euclidean distance was defined as

 d =
√∑n

i=0(xi − yi)
2  (4)

Where n was the number of samples.

Support vector machine (SVM) The Vapnik-Cher-
vonenkis theory was the basis for the development of 
SVM, also known as “support vector network,“ which 
was a kernel-based supervised learning algorithm. For 
regression issues, the SVM calculated a hyperplane and 
fit training data to the hyperplane using a kernel function 
to project input data onto a higher dimensional space. The 
kernel function for this work was linear.

Extreme gradient boosting (XGBoost) The XGBoost 
algorithm was an upgraded library of the GBRT algo-
rithm, which significantly increased data processing 
effectiveness and lowered the risk of overfitting. Because 
it employed a sparse-aware algorithm for sparse data and 
trained the weighting function using first- and second-
order derivatives, it was more scalable than GBRT. Simi-
lar to GBRT, XGBoost also employed a forward stepwise 
algorithm, and XGBoost chose the parameters for the fol-
lowing decision tree by minimizing structural risk.

 
Θ̂m = argmin

Θm

∑N
i=1 L(yi, f(m−1) (Xi) + Ω(Xi; Θm))

 (5)
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where Ω(Xi; Θm) represented the regularisation term of 
the regression tree, which was an important difference 
between XGBoost and GBRT. Similar hyperparameters 
were used by XGBoost and GBRT.

Multilayer perceptron (MLP) MLP was a forward-
structured artificial neural network that mapped a set of 
input vectors to a set of output vectors. The backpropaga-
tion algorithm, a supervised learning technique, was fre-
quently used to train MLPs, which mimicked the human 
nervous system’s learning and data prediction processes. 
It first learned, then stored the data with weights and 
employed algorithms to modify the weights and lessen 
bias in the training process or the difference between 
the actual and predicted values. The input, hidden, and 
output layers were the three types of network layers that 
made up an MLP. Each layer was made up of a specific 
number of nodes, which were neurons with non-linear 
activation functions. Each layer was fully connected to the 
one before it. The input layer was used to receive data, the 
hidden layer was used to process the data, and the output 
layer offered the final prediction. A single network layer’s 
output was depicted as

 
f (x) = f

(∑M
i ωixi + b

)
 (6)

where x represented the input to the node, w represented 
the node’s weight, b represented the bias, and f(x) repre-
sented the activation function. If each neuron’s activation 
function was linear, an MLP with multiple layers could be 
compared to a single-layer neural network. Rectified lin-
ear unit (ReLU) was a non-linear activation function used 
in this work.

Convolution neural network (CNN) The convolutional 
neural network was a feed-forward neural network with 
artificial neurons that responded to a portion of the sur-
rounding units in the coverage area. CNN comprised 
three layers: the input layer, the hidden layer, and the out-
put layer, with the hidden layer containing various types of 
networks such as convolutional, pooling, fully connected 
(similar to classical neural networks), and normalization 
layers. The convolutional layer was the core of the CNN 
and performed the dot product of the convolutional ker-
nel and the layer input matrix, this product was usually 
the Frobenius inner product, and the activation function 
was ReLU. The convolution operation produced a feature 
map as the convolutional kernel moved along the layer’s 
input matrix. This feature map then became part of the 
input for the subsequent layer. CNN was a desirable deep 
learning structure because it required fewer parameters 
to be considered than other deep neural networks.

Metrics
MAE (mean absolute error) of these n samples was given 
by

 
MAE = 1

n

∑n
i=1

∣∣∣y(i)
true − y

(i)
pred

∣∣∣ (7)

RMSE (root mean squared error) of these n samples was 
given by

 
RMSE =

√
1
n

∑n
i=1

(
y

(i)
true − y

(i)
pred

)2
 (8)

Coefficient of determination (R2) of these n samples was 
given by

 
R2 = 1 −

∑n
i=1 (y(i)

true−y
(i)
pred)

2

∑n
i=1 (y(i)

true−
1
n

∑n
j=1y

(j)
true)

2  (9)

Hyperparameters
We employed Bayesian optimization to identify each 
model’s ideal hyperparameters during model train-
ing[54]. This step was crucial because it has been dem-
onstrated that properly tuned hyperparameters could 
produce predictions with better accuracy than those 
selected by hand.

10-fold cross-validation
The data were randomly divided into ten equally sized 
mutually exclusive subsets, each keeping the data distri-
bution as consistent as possible. Nine subsets were taken 
at a time for the training set and one for the test set. This 
yielded ten training and test sets, and the final result was 
the mean of the outcomes of the ten tests.
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