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Abstract 

Background One-third of the world’s population has anemia, contributing to higher morbidity and death and 
impaired neurological development. Conventional anemia treatment raises concerns about iron bioavailability and 
gastrointestinal (GI) adverse effects. This research aims to establish how iron oxide nanoparticles (IONPs) interact with 
probiotic cells and how they affect iron absorption, bioavailability, and microbiota variation.

Methods Pointing to the study of the literature and developing a review and critical synthesis, a robust search meth-
odology was utilized by the authors. The literature search was performed in the PubMed, Scopus, and Web of Science 
databases. Information was collected between January 2017 and June 2022 using the PRISMA (Preferred Reporting 
Items for Systematic Review and Meta-Analysis) protocols for systematic reviews and meta-analyses. We identified 122 
compatible research articles.

Results The research profile of the selected scientific articles revealed the efficacy of IONPs treatment carried by 
probiotics versus conventional treatment. Therefore, the authors employed content assessment on four topics to 
synthesize previous studies. The key subjects of the reviewed reports are the characteristics of the IONPs synthesis 
method, the evaluation of cell absorption and cytotoxicity of IONPs, and the transport of IONPs with probiotics in 
treating anemia.

Conclusions To ensure a sufficient iron level in the enterocyte, probiotics with the capacity to attach to the gut wall 
transport IONPs into the enterocyte, where the maghemite nanoparticles are released.
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Graphical Abstract

Background
Iron deficiency anemia (IDA), which is character-
ized by a hemoglobin level of < 10.0 g/dL, is associated 
with learning issues, weakness, and an increased risk 
of comorbidities, such as contracting infections and 
mortality [1, 2]. The World Health Organization esti-
mates that approximately 24.8% (1.62 billion people) of 
the world’s population has anemia [3], with children, 
adolescents, and young/pregnant women most prone 
to the condition [4, 5]. IDA has several etiologies: (i) 
inadequate iron consumption, (ii) insufficient patho-
logical assimilation, and (iii) chronic blood loss [6]. 
Genetic iron overload, characterized by iron accumu-
lation and induced oxidative damage, can lead to life-
threatening conditions [7, 8]. Foods fortified with iron 
can help decrease IDA incidence [9, 10]. However, the 
most bioavailable water-soluble medicines in this set-
ting, particularly ferrous sulfate  (FeSO4), sodium iron 
ethylene diamine [3, 4], and ferrous bis-glycinate che-
late [11], introduce unpleasant sensory modifications to 
the food and impact the gut microbiota [12, 13]. Most 
of the ingested iron, especially from oral supplements, 
remains unabsorbed in the intestinal lumen after enter-
ing the colon [12, 14], where it can produce free radicals 
[4]. Intensification of the pathogenic Enterobacteriaceae 
and additional intestinal inflammatory markers are sug-
gested to reduce the proportion of beneficial bacteria, 
including Bifidobacterium and Lactobacillus species, in 
infants receiving iron supplementation [15].

Recently, newly generated iron oxide nanoparticles 
(IONPs) have been recommended as innovative sup-
plements compared with conventional IDA treatments 
because of their low reactivity, high bioavailability [12], 
physical stability, biocompatibility, and ecologically 
friendly nature [16, 17]. In general, IONPs of < 10  nm 
exhibit superparamagnetic behavior [18]. Conversely, 
iron oxide (predominantly magnetite) is hydrophobic 
and rapidly oxidized in air [19]. External coatings sta-
bilize IONPs in biological environments while limiting 
magnetism loss [20, 21]. The biodistribution, pharma-
cokinetics, and suitability of the particles for various bio-
medical applications are affected by their composition, 
size, shape, and interference chemistry; these proper-
ties are mainly determined by the method of synthesis 
applied [22, 23].

To better understand the effects of IONPs, cellular end-
points, including apoptosis, mitochondrial viability, and 
oxidative stress rates, have been studied [24–26]. IONPs 
have been shown to lead to local and systemic inflamma-
tion, oxidative damage, and genotoxicity [26–28]. IONPs 
induce lower oxidative stress than  FeSO4 because of their 
lower absorption [29], which might be explained by the 
high exposed amounts of  Fe2+/Fe3+ on the prominent 
surface of IONPs [26, 29, 30]. “Iron overloading” in the 
intestinal tract may have a significant impact on the spe-
cies and abundance of the microbial components of the 
digestive tract [12, 31].
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Probiotic bacteria are essential for maintaining a nor-
mal microbiota and can generate a variety of antioxi-
dants and immunological stimulants [32]. The European 
Food Safety Authority recently reported that probiotics 
improved iron absorption [33]. L. fermentum and B. breve 
have been discovered as platforms with a dense distribu-
tion of small IONPs on their exterior surfaces [34]. Treat-
ment with these bacteria together with iron supplements 
can improve the bioavailability of the nanoparticles [35] 
and lead to survival from stomach diseases [8, 36].

For many years, side effects to IDA treatment have 
been discussed without focusing on the solutions of these 
effects [37–39]. This review aims to understand the inter-
action between IONPs and probiotic cells, the impact 
of these interactions on iron absorption, bioavailability, 
microbiota balance, and their dynamic side effects, and 
study the emerging nanobiotechnology solutions using 
new and innovative approaches for IDA prevention and 
treatment.

First, we designed a congruent study-extraction 
approach as a theoretical framework, comprising data-
base identification, keyword selection, actual search-
ing, and shortlisting of the relevant studies. Second, 
we developed a research assessment process to provide 
comprehensive data on the publication frequency and 
sources. Third, we applied a manual qualitative approach 
to distinguish the topics of these publications, and conse-
quently identified four themes were identified regarding 
IONPs: synthesis, metabolism and cellular absorption, 
cytotoxicity, and the carrying by probiotic bacteria. Then, 
we identified research gaps and suggested future direc-
tions. Finally, we explored the study’s theoretical and 
practical consequences and limitations when applying 
the findings.

Therefore, to support further study of this topic, sci-
entific literature has been assessed and the accumulated 
content synthesized so that future studies can be devel-
oped and ultimately improve the quality of studies con-
ducted in this field. We aimed to pursue the following 
research objectives (O): O1, examine the research profile 
of studies; O2, determine, comprehend, and appraise the 
focus areas of the current literature on the interaction 
among the probiotics of IONPs; O3, critically evaluate 
emerging approaches, purposely emphasize incongru-
ity in the present scientific literature, and propose prob-
able research questions; and O4, design a framework that 
researchers can use to comprehend the outline of IONPs 
probiotic systems.

Results
Study selection and characteristics
From the preliminary database search, 144, 140, and 160 
articles were retrieved from the Web of Science, Scopus, 

and PubMed, respectively. Of these, 152 were excluded as 
they were duplicate entries and 156 were excluded after 
examination of the title and abstract; 136 publications 
were selected for a comprehensive full-text analysis. After 
the full manuscript was read and in accordance with the 
established inclusion and exclusion criteria, 122 manu-
scripts pertaining to the relationship between probiotics 
and IONPs were selected for detailed assessment. The 
Preferred Reporting Items for Systematic reviews and 
Meta-Analyses (PRISMA) screening process is depicted 
in Fig. 1.

In addition, the VOSviewer program was used to pro-
vide an overview of the interaction between IONPs, pro-
biotics, and IDA by analyzing the main keywords of the 
included studies (Fig. 2).

Qualitative analysis
The authors examined the risk of bias using the Office 
of Health Assessment and Translation (OHAT) risk of 
bias rating tool for human and animal studies. Based on 
knowledge of the current human exposure levels, the 
OHAT risk of bias tool is designed to assess the method-
ological quality, sensitivity, and validation of techniques 
utilized, as well as the degree of variance in subjects, 
including mechanistic (e.g., in vitro and in vivo) studies.

The quality of evidence was based on the evaluation of 
the publications by their sustained conclusion, number of 
reported exposure conditions, and concordance across 
the results. Among the overall bias, 12.5%, 37.5%, and 
50% of studies were classified as having a high, medium, 
and low risk of bias, respectively (Fig. 3).

Quantitative analysis
IONP synthesis
The electronic, optical, and magnetic characteristics of 
IONPs confer good potential in many areas, such as bio-
medicine, nanobiotechnology, material science, chem-
istry, and physics [22, 40–42]. The beneficial effects of 
IONPs in  vitro, in  vivo, and in clinical trials have been 
demonstrated in 60 studies considered here for their syn-
thesis. However, the toxicity of IONPs is mainly estab-
lished from their physical and chemical characteristics, 
which are derived from their synthesis method [42, 43]. 
Various synthesis methods exist, including chemical, 
physical, biological (green), and hybrid strategies.

Physical methods Researchers have investigated the 
development of efficient methodologies for IONP syn-
thesis based on their controlled shape and size, biocom-
patibility, and monodisperse nature [41, 44–48]. The 
methods drastically affect the structural and morphologi-
cal characteristics of the IONPs; therefore, the magnetic 
and chemical surface properties significantly determine 
or tune their application in various multidisciplinary 
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Fig. 1 PRISMA flow diagram detailing the study screening and selection procedures

Fig. 2 Analysis of IONP synthesis and features using anemia-related keywords (VOSviewer version 1.6.17). The connecting lines highlight the 
relationship between the different properties of IONPs and their effect on the treatment of IDA
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areas. One example of a physical synthesis method is a 
laser-based method that applies aerosol organometal-
lic precursors [49]. By varying the concentration of the 
benzoic acid in the solution and employing pre-stabilized 
mannitol IONPs, nanoparticle size can be controlled [50]. 
Laser ablation synthesis, which occurs when a pulsed 
laser fascicle interacts with a target material immersed 
in a liquid solution; this route can produce metal nano-
particles without any chemical stabilizers, although the 
size and shape are difficult to control [51]. Recent experi-
ments revealed that colloidal dispersions of IONPs were 
generated when phosphonates were added as an abla-
tion medium [52, 53], with the composition and crystal-
line stability variations were observed as a function of 
the size of the nanoparticles and the laser wavelength 
[54]. A protective oxide coating was also designed using 
 Fe3O4 and/or  Fe2O3 [55]. This method is economical, 
simple, and environmentally friendly [52, 53]. IONPs may 
be a promising technology for producing oxide bimetal-
lic nanoparticles because they are generated directly in 
a liquid medium without contamination [54]. Several 
characteristics were examined, including the effect of pH, 
 H2O concentration, and recyclability. The 3D hierarchical 
nanostructures of the iron oxide coatings were shown to 
improve activity and mechanical stability. Stress-induced 
phase segregation was suggested to occur during thermal 
annealing as the growth process for nanostructures [53].

Chemical methods The chemical methods used for 
IONP synthesis, as detailed in Table  1, include precipi-
tation/coprecipitation, hydrothermal, microemulsion, 
combustion, and sol–gel reactions [56–59]. The associ-
ated research emphasizes the effects of various reaction 
conditions that would lead to the generation of nanoma-
terials with the smallest size, a high degree of dispersion, 
a well-defined structure, and achieve efficient control 
over the characteristics.

Briefly, the salts of  Fe2+ and  Fe3+ ions are exposed to 
either a basic solution (precipitation) [43], a constant 
isotropic solution of oil and water (microemulsion) [60], 
or vapor in a sealed container (hydrothermal) [57] under 
specific temperature and pressure conditions. The effi-
cacy of the precipitation method has extensively studied 
because of the toxicological effects and health hazards 
caused by nanoparticles [43]. Glycyrrhizic acid (GA)-
coated IONPs, which are produced via oxidative pre-
cipitation, are suggested to be anticancer agents with low 
cytotoxicity and increased biocompatibility [47]. How-
ever, chemically prepared IONPs using precipitation were 
found to be more toxic to the kidneys and epithelial cells 
of Wistar rats compared with nanoparticles prepared via 
the green synthesis method, because of inadequate crys-
tallinity [43]. Thermal decompositions can also be used 
to adjust the size of magnetic IONPs [61]. The reaction 
involves a pressurized system to heat the solvents above 
their boiling points [62]. This process requires signifi-
cantly more expensive and toxic precursors and organic 
surfactants [46]. Hydrolysis, particle growth, condensa-
tion, and particle agglomeration are the four key steps 
in the sol–gel procedure, which achieves connectivity in 
the continuous liquid phase by colloidal suspension (sol) 
and gelatin (gel) [57]. This is the most straightforward 
method, in which constant monitoring of the reaction 
parameters can be used to control the particle size and 
shape [30]. Microemulsion methods are ideal for produc-
ing crystalline inorganic nanoparticles [60]. For example, 
simple synthetic conditions at (near)-ambient tempera-
tures and pressures facilitate the synthesis of a large vari-
ety of nanomaterials, with reasonable control over size, 
shape, and composition. Owing to their superparamag-
netic properties and biocompatibility, magnetic hybrid 
nanogels constituted from magnetic nanoparticles and a 
polymer of hydrogel matrix have attracted attention [63]. 

Fig. 3 Diagram indicating the risk of bias of the included studies
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Lower critical solution temperature-driven self-assembly 
and the cross-linking of IONP-grafted polymers were 
employed to cluster the IONPs inside the fluorescent 
polymer nanogels [64]. However, despite its efficiency, it 
is difficult to scale up this approach because of the large 
solvent volumes required [56].

Biological methods Biological interfaces provide a 
promising new path for synthesizing environmen-
tally friendly multifunctional IONPs [17, 22, 23, 43, 
65–72]. Figure 4 shows the number of articles that were 
retrieved from the Scopus database (2017 to 2021) using 

the keywords “fungi,” “bacteria,” and “plants” related to 
IONPs in the title, keywords, or abstract. The most prev-
alent size-reducing intermediaries used to develop nano-
particles are plants (48%), followed by bacteria (45%) and 
fungi (7%). The approaches are based on the utilization 
of plant extracts or microbial-derived compounds with a 
reduced ability to connect with iron precursors [41, 42, 
73, 74]. For example, the use of leaf extracts of Ruellia 
tuberosa [16], Moringa oleifera [66], Sageretia thea [41], 
and Petroselinum crispum [75] in IONP synthesis could 
assist in killing pathogens (Escherichia coli [76], Kleb-
siella pneumonia [77], and Staphylococcus aureus [78]) 
and enhance the biodegradability of industrial wastewa-
ter [16, 79]. These methods are economical if precipita-
tion is the primary procedure [41, 43, 80].

Reports on IONP biosynthesis are shown in Table 2. 
IONP synthesis from hydroponically generated spin-
ach extract yielded an iron concentration of 40.34% 
compared with only 0.0007% ppm in the comparable 
plant extract. This process yielded spherical nano-
particles with a diameter of 10–50  nm [71]. Smaller 
IONPs (6.22–9.7  nm) were obtained by chemical syn-
thesis compared with the IONPs synthesized using 
Petroselinum crispum leaves extract (64–68  nm) [75]. 
The peel extract of Punica granatum fruit reduced the 
size of IONPs to < 11 nm and IONPs containing 2–4% 

Table 1 Synthesis of IONPs via (a) precipitation, (b) hydrothermal, (c) microemulsion, and (d) sol–gel methods

Chemical synthesis method Characteristics of the synthesis Size distribution Shape Ref.

Precipitation Simple method, fast reaction, high yield
Possible risks to the environment and living 
organisms

Reduced control Irregular shape [17, 43, 46, 72, 75]

Hydrothermal Elevated temperatures in an inert atmos-
phere
High degree of crystallinity
Long reaction time

Uncoated nanoparticles; 
tendency toward agglom-
eration

Spherical shape [40, 58, 132]

Microemulsion Ambient temperatures for the reaction, low 
yield, highly uniform morphology
Large quantity of solvent

Narrow size distribution Spherical shape [56, 60]

Sol–gel Simple method, high yields
Fast preparation, formation of safe byprod-
ucts

Narrow size distribution Quasi-spherical shape [57, 59]

Fig. 4 Publication rates (2017 to 2021) including the terms “fungi,” 
“bacteria,” and “plants” connected to IONPs. (Source: Scopus, searched 
on 10 January 2022). IONPs iron oxide nanoparticles
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peel extract had significant anticancer activity against 
the HONE1 nasopharyngeal carcinoma cell line [81]. 
Iron-reducing bacteria, such as Aspergillus niger [74], 
Trichoderma asperellum, Phialemoniopsis ocularis, 
Fusarium incarnatum [23], Bacillus subtilis [80], L. 
casei [67], and L. fermentum [33], can be used for IONP 
biosynthesis. Some extracellular enzymes have excel-
lent redox properties in bacteria, thereby serving as a 
biological nanoreactor and acting as an electron shut-
tle in the reduction of metal ions to form nanoparticles 
and stabilizing them with a covering agent [80].  Fe3O4 
nanoparticles are not stable during biosynthesis con-
ditions; they can be rapidly oxidized to  Fe2O3 or dis-
solved in acidic media, resulting in the control of the 
surface charge by the pH [45]. An L. casei extract was 

used for producing very small, spherical IONPs [67]. 
Synthesis methods for IONP production by bacteria are 
biologically safe, low-cost, simple, and environmentally 
friendly [33].

IONPs—Metabolism and cellular absorption
The term bioavailability describes to the ability of the 
human body to absorb a given compound [8, 82]. Iron is 
involved in vital biochemical activities, such as metabo-
lism, biosynthesis, replication, transport, and enzymatic 
reactions involving cytochrome, dopamine, and hemo-
globin [8]. Dietary iron has two forms: heme  (Fe2+) and 
non-heme  (Fe3+) [83]. The former, with high bioavail-
ability (25–30%), comprises hemoglobin and myoglobin 
[8, 83]; the latter, which can be obtained from plant and 

Table 2 Biosynthesis of IONPs

DPPH 2,2-Diphenyl-1-picrylhydrazyl, NPC nasopharyngeal carcinoma, APTT activated partial prothrombin time, IONPs iron oxide nanoparticles

Reducing agents Species extract Synthesis 
parameters

Shape Size (nm) Matrix Effects Ref.

Plant Stevia rebaudiana 
Bertoni

13 h at 170 °C Spherical 20–25 DPPH radical ↑ Antioxidant activity [68]

Punica granatum 45 min at 25 ºC
pH 11

Spherical 26.52–158.44 Cancer cell lines ↑ Purity and crystallin-
ity of IONPs
↑ Denaturation of the 
HONE1 NPC cell line
↓ Cytotoxicity of 
CCD112 and HEK293 
normal cells

[81]

Petroselinum crispum 2 h at 25 ºC Oval
cubic
spherical

64–68 Male albino rats ↓ Serum ferritin and 
iron concentrations
↑ Total iron-binding 
capacity, urea, and 
creatinine

[75]

Bacteria Paenibacillus polymyxa 5 h at 45 ºC
pH ± 4.8

Spherical 26.65 Maize seedling growth ↑ Seed germination, 
root development, and 
fresh weight

[70]

Enterobacteriaceae 10 days at 25 ºC
pH 7.4

Spherical 0.9–1.8 Hep-G2 hepatocarci-
noma cell lines

↑ Cell viability after 
24 h (500 μg/mL)

[2]

Sprague Dawley rats ↑ Content of iron in 
serum and tissue, as 
well as the expression 
of the ferritin L subunit

Pseudomonas aerugi-
nosa

48 h at 37 °C
pH 6.5

Spherical 23 Human plasma ↑ Anticoagulant activ-
ity in the final com-
mon pathway and in 
the intrinsic pathway 
of the coagulation pro-
cess (determination of 
APTT)
↓ Anticoagulant 
activity in the extrinsic 
pathway

[45]

Fungi Trichoderma asperellum 5 min at 30 °C
pH 3.2 ± 0.02

Spherical 25 Fungal cell filtrate ↑ Stability in nature
↑ Hydrolysis potential-
ity of iron chloride salts
↑ Extracellular nano-
particle formation

[23]

Phialemoniopsis 
ocularis

13.13

Fusarium incarnatum 30.56
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animal sources, differs in chemical structure, absorp-
tion methods, and uptake mechanisms, and has low 
bioavailability (1%–10%).  Fe3+ can only be absorbed if 
converted to ferrous iron  (Fe2+) in the presence of the 
duodenal cytochrome b reductase 1 (DCYTB) [83]. 
Reducing agents, such as ascorbic acid, citric acid, other 
organic acids, and amino acids (cysteine and histidine), 
may increase endogenous stomach acid production, 
thus stimulating iron absorption [84]. Dietary nutri-
ents such as ascorbic acid and meat improve non-heme 
iron absorption [85]; polyphenols, calcium, and phytic 
acid hinder it [8]. The duodenum and upper jejunum 
are significant areas for intestinal iron absorption (90%), 
whereas the stomach accounts for < 2% of this process 
[8, 86]. Duodenal enterocytes absorb the resulting iron 
 (Fe2+) through the divalent metal transporter 1 (DMT1), 
where it may be stored as ferritin, utilized to produce 
iron-containing proteins, or transported to the plasma 
through the membrane protein ferroportin [86]. More 
than 25% of the body’s iron is deposited in the liver, 
spleen, and bone marrow as a complex with hemosiderin, 
ferritin, and transferrin [87]. To increase iron absorption, 
many researchers highlighted the use of IONPs in the 
management of IDA [2, 5, 75, 88, 89]. Nanoparticles can 
cross the plasma membrane during in  vivo and in  vitro 
cell exposure using various distinct cellular entrance 
pathways; these can be classified into two groups: (i) 
endocytosis-based absorption pathways and (ii) nano-
particle direct cellular entrance [90]. Figure 5 shows the 
interaction between IONPs and biological cells. IONPs 
can destabilize homeostasis at different levels [91].

Following oral administration, IONPs elevate iron lev-
els in the spleen and liver in  vivo, indicating that some 
particles pass the intestinal walls [24]. It is suggested that 
IONPs injected into the bloodstream are absorbed by 
macrophages in the organs of the mononuclear phago-
cyte system, resulting in their removal from the blood cir-
culation [92]. Endocytosis is the most common process 
of IONP absorption and allows access to endosomal divi-
sion, regardless of nanoparticle dose and exposure period 
[93]. This fact explains the cellular heterogeneity of nano-
particle distribution and permits the establishment of 
simple but strong probability distributions that correctly 
forecast the nanoparticle dosage to individual cells [94]. 
Endocytosis of nanoparticles mainly occurs via phagocy-
tosis, clathrin-mediated endocytosis, caveolin-mediated 
endocytosis, independent clathrin/caveolae endocyto-
sis, and micropinocytosis [95–97]. The strategy through 
which the nanoparticles enter a cell strongly relies on 
the cell type [98]. Initial endosomes connect with endo-
cytic vesicles, directing nanoparticles to specific cellular 
areas. The clustering and binding of nanoparticle surface 
ligands to homologous cell membrane receptors initiate 
clathrin-dependent endocytosis, a major mechanism for 
nanoparticle cellular entry [96].

After exogenous materials enter living organisms, 
the immune system responds differently; neutrophils 
either inactivate them by degranulation, generating 
reactive oxygen species (ROS), or immobilize them by 
producing chromatin with cytoplasmic granular pro-
teins as neutrophil extracellular traps (NETs) [95]. Bio-
compatible human serum albumin or dextran coatings, 
which are used for nanoparticle stabilization, decrease 

Fig. 5 Tentative schematic describing IONP-induced toxicity on the cellular level. ROS reactive oxygen species, IONPs iron oxide nanoparticles
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agglomeration and NET formation [95]. The nanopar-
ticles that follow direct translocation paths may break 
the cell plasma membrane by interacting with the lipid 
bilayer molecules that transport them directly into the 
cytoplasm [90]. Therefore, using the cell-penetrating 
peptides as nanoparticle surface ligands is an alterna-
tive technique [99]. When IONPs are inserted into living 
organisms and encounter biological fluids, their surface 
immediately interacts with proteins and other macromol-
ecules, producing a “protein corona” that can radically 
affect the aggregation state, nanomaterial size, and inter-
facial characteristics, thus influencing the uncontrollable 
biological behavior of IONPs [100]. Thus, this protein 
corona is primarily responsible for IONP disposition and 
is involved in slowing the nanoparticle degradation pro-
cess [101]. However, significant deviations in IONPs with 
a corona produced from human plasma were detected 
as a function of the lipid adsorption profile [102]. IONPs 
were reported to be associated with inflammation and 
pulmonary oxidative stress [103]. Severe exposure of lung 
epithelial cells to IONPs may modify the cell biomechan-
ical properties and potentially impairing the integrity of 
the epithelial barrier [28].

Cytotoxicity of IONPs
The unique qualities of IONPs has increased their promi-
nence as potential catalysts in the ongoing scientific 
and technological revolution [71, 80, 87, 102, 104, 105]. 
Despite their advantages, in  vivo and in  vitro toxic-
ity associated with IONPs has been reported in human 
cells [106, 107]. Therefore, it is critical to determine how 
IONP-based drug carriers are metabolized, degraded, 
and/or successfully eliminated after drug release at 
the target tissue [91]. The cytotoxicity of IONPs can be 
attributed to the high amount of  Fe2+/Fe3+ ions exposed 
on the large surface area of the nanoparticles, as well as 
their aggregation, which impacts their distribution and 
removal, and may lead to excessive cellular accumulation 
[30, 105]. The generation of ROS is a source of cellular 
oxidative damage in cells (lipids, proteins, and DNA) 
[108]. The principal factors that can impact the toxicity 
of IONPs are shape, size, hydrophobicity/hydrophilicity, 
surface charge, core composition, and coating [30, 105, 
106, 108] (Table 3). Particles smaller than 10 nm have a 
large surface area to volume ratio, resulting in a greater 
number of surface atoms that can quickly oxidize to  Fe3+, 
generating  Fe2O3 on the magnetic particle’s surface [92]. 
Biocompatible ligands, which include organic acids with 
a low molecular weight, natural amino acids, or tartaric/
adipic acid, can be used on the surface of the nanopartic-
ulate materials to generate biocompatible and nontoxic 
IONPs [29, 65]. Dextran, polyvinylpirrolidone (PVP), 
polyethylene glycol, and other coating materials have 

been utilized to modify the surface chemistry of IONPs 
[25, 26, 99, 107, 109]. For PVP coatings, dose-dependent 
cytotoxicity was detected [26, 110]. The hydrophobic 
surfaces of uncoated IONPs facilitate their aggregation 
owing to high surface-to-volume ratios [106]. In addi-
tion, magnetite-containing compounds  (Fe3O4) coated 
with pectin and bacteria exhibited the lowest decrease 
in viability in saliva and gastric media, owing to the lyo-
philization process, which allowed the magnetite–pectin 
layer to cover its entire surface, preventing the activation 
of dioxygen in the degradation process [111]. Apopto-
sis was associated with a dosage- and time-dependent 
administration [92], which might indicate the induction 
of ROS formation and DNA damage [112]. In vivo, IONP 
administration (0.15  mg/L) to fish yielded considerable 
histological alterations in the liver, including sinus hyper-
emia, hepatocyte vacuolization, psychosis, hepatic lobule 
disruption, and atrophy [104]. The detrimental effects 
of IONPs on carps were mitigated by the addition of L. 
casei to their diet, with a significant reduction observed 
in severe histopathological effects [113].

Histological investigations evaluated the toxic effects 
of biosynthesized IONPs at various doses (10–100  mg/
kg) in Wistar albino rats with IDA [71]. Conversely, 
the administration of IONPs at 1000  mg/kg to rats for 
28 days promoted hepatic portal system congestion with-
out affecting the kidneys or the brain [27]. The cytotoxic-
ity of metallic nanoparticles is associated with potential 
ion emission and oxidative damage properties [26, 96, 
99, 110]. Although there is limited knowledge on the 
toxicological status of IONPs, many factors, such as dose, 
structure, and physicochemical properties, can present 
danger to humans and animals.

IONPs carried by probiotics
Because iron is the principal component of hemoglobin, 
myoglobin, and several enzymes, iron deficiency is con-
nected to lower resistance to infection, reduced pro-
ductivity, fatigue, and fetal mortality [89]. Currently, 
oral  FeSO4, fumarate, or gluconate, in various doses 
and frequencies, are prescribed for the management of 
IDA [90, 114]. Moreover, 89.2% of women with anemia 
treated for 8  weeks with ferrous bis-glycinate (27  mg/
tablet) had hemoglobin levels of > 11 g/dL compared with 
71.3% in those treated with  FeSO4 glycine (100 mg/cap-
sule) [115]. Unfortunately, severe GI tract-related side 
effects can occur, such as constipation, diarrhea, and 
nausea. Iron salts also induce alterations in food color 
and taste [4, 115]. Conversely, chelated iron prepara-
tions, including amino acids, probiotics, and symbiot-
ics, produce fewer GI adverse effects and result in faster 
absorption [115]. IONPs have afforded considerable 
improvements in IDA treatment [5, 116]. Because of their 
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higher bioavailability and effectiveness in accessing tis-
sues, IONPs have emerged as potential iron supplements 
[10, 34]. In the treatment of IDA, compared with  FeSO4, 
IONPs led to a significant increase in erythrocyte (RBC) 
counts and indices, hemoglobin concentration, compact 
cell volume, ferritin, hematocrit (Hct), transferrin satu-
ration, and total iron-binding capacity (TIBC) [89]. The 
hemoglobin, RBC, and Hct values in IDA rats treated 
with a dose of 2.0  mg/kg/day astragalus polysaccharide 
core IONPs revealed the significant therapeutic impact of 
these agents [5, 9, 115, 116].

Binding mechanism IONPs have limited potential as 
fortifiers owing to their limited colloidal stability and 
high oxidation/aggregation rates in solution [20]. This 
can be resolved by surface modification (bio-organic) 
or introducing hydrophilic groups [10, 25, 26, 89, 107]. 
Among IONPs, polysaccharides offer the advantages 
of water solubility and stability [116]. Organ toxicity is 
thought to be reduced when nanoparticles are encap-
sulated in a liposome [89]. Conversely, many research-
ers have investigated the use of different probiotics to 
ameliorate the side effects of IDA therapy [12, 117]. An 
in vitro study of the effect of probiotics on intestinal iron 
absorption showed that the molecules released by these 
bacteria convert  Fe3+ to  Fe2+, which could imitate the 
action of DCYTB in the digestive system [8]. After release 
into the environment, IONPs more effectively interact 
with biological matrix/fluids because of their size, lead-
ing to high reactivity and changes in the environment 
and fundamental structure of the nanoparticles [102]. 
When IONPs, which are positively charged, approach 
bacterial cells, they promote electrostatic interactions 
with the negatively charged components of the bacterial 
cell membrane, such as lipopolysaccharides, lipoteichoic 
acids, proteins, and phospholipids via the positive charge 
of IONPs [36]. Moreover, IONPs can stimulate or inhibit 
microbial growth depending on the type of bacteria and 
the proportion of nanoparticles [118]. Even though iron 
is not a growth factor for lactic acid bacteria, high dos-
ages of IONPs tended to increase viability of L. rham-
nosus [36, 119]. As shown by TEM images, when  Fe2O3 
nanoparticles with different shapes were homogenized in 
S. thermophilus and L. acidophilus, most of the magnetic 
nanoparticles become connected to the exopolysaccha-
rides of bacteria. The presence of nanoparticles has no 
detrimental effect on the reproduction capacity of bacte-
ria; thus, this combination can be incorporated into fer-
mentative foods, for example, as an IDA treatment [118]. 
Probiotics can protect other organs by absorbing IONPs, 
which increase iron absorption in the small intestine [35, 
119] and decrease the risk of IONP-related toxicity [12, 
26, 36, 92].

Ingestion Nanoparticles may enter the body via differ-
ent routes, including oral intake, inhalation, dermal or 
ocular penetration, and injection [25, 29, 92, 95]. Oral 
intake is the best known, because of its easiness, low risk 
of adverse effects, and good patient compliance [25, 29]. 
However, the acidic stomach of medium reduces drug 
stability, and the digestive enzymes can degrade the drug, 
thereby reducing its bioavailability. In simulated saliva, 
 Fe2O3 was decreased by 35% nanoparticles/mL [120] 
when taken orally, whereas the IONPs pass through the 
GI tract, where the acidic stomach juice might cause their 
disintegration and release of ionic iron [24].

Transport Because of their small size, IONPs enable 
possible uptake in the liver, spleen, kidneys, and brain, 
causing cell damage and oxidative stress [24, 65, 105, 
106]; therefore, knowledge of their biodistribution and 
toxicity is essential [25, 27, 28]. As only a small propor-
tion of dietary iron is assimilated, high amounts are 
required, which requires the identification of useful 
transportation techniques [7, 82, 121]. Overcoming the 
stomach’s acidic environment remains difficult [10, 116]; 
in a simulated gastric fluid, IONPs (100–180  nm) were 
decreased by 72% particles/mL after 8 h [120]. The mis-
sion for ingested probiotics consists of surviving the gas-
tric environment to reach the large intestines [8, 121]. 
However, there are various limitations to the use of pro-
biotics in foods and beverages, such as their post-con-
sumption effectiveness, which is directly related to the 
survival rate of the probiotics [122]. Coating probiotic 
cells in a suitable material can help ensure their surviv-
ability during industrial processing and GI transit [123]. 
For a defined alternative equilibrium, adding probiotics 
is especially significant and intriguing because tailored 
microbiome interventions have emerged as a possible 
therapy [124]. The probiotic Roseburia intestinalis has 
the potential to biomineralize nanoparticles, suggesting 
that probiotic cells may be able to produce long-term 
tailored magnetic nanostructures and endogenous mag-
netism, indicating the potential to treat Crohn’s disease 
[124]. Garces et  al. [34] investigated small maghemite 
nanoparticles (10  nm) incorporated onto L. fermentum 
as novel iron supplements for treating rats with IDA; 
the results emphasized the significance of probiotics as 
potent oral carriers for IONPs. Maghemite nanoparticles 
can bypass the stomach’s acidic environment to reach the 
intestines, where they are taken up by enterocytes and re-
balance blood parameters [34, 121].

Absorption For therapeutic effectiveness, two critical 
processes of IONPs must be controlled: biodistribution 
and biodegradation [115]. IONPs are transported via 
probiotics toward the intestines, and protective coat-
ings can prevent their chemical degradation in the stom-
ach [2, 47]. Probiotics such as L. fermentum, Roseburia 



Page 13 of 19Ciont et al. Journal of Nanobiotechnology          (2023) 21:124  

intestinalis, and Enterobacter spp. serve as carriers with 
densely arranged magnetic nanoparticles on their exte-
rior surfaces [34, 118, 119, 124]. Some studies suggest 
that the green synthesis of IONPs by probiotics has a 
positive effect on iron absorption [69]. The biological and 
physicochemical features of a nanostructured iron–poly-
saccharide complex (nano-IPC) biosynthesized by Enter-
obacter sp. as a supplement to counter IDA confirmed 
that the iron content in animal serum and tissue and the 
expression of the ferritin L subunit were significantly 
higher than following  FeSO4 supplementation; in turn, 
its biochemical components and ferritin H subunit lev-
els remained constant, indicating its nontoxic effects [2]. 
Increased serum and tissue iron levels are vital in eryth-
rocytosis to achieve effective IDA treatment [69]. After 
4  weeks of feeding with yogurt fortified with IONPs (S. 
thermophilus, 7.09  log10 CFU/g; L. bulgaricus, 6.88  log10 
CFU/g; L. acidophilus, 6.98  log10 CFU/g; and B. bifidum, 
6.74  log10 CFU/g), the levels of iron, ferritin, hemoglobin, 
and total protein were restored, although consider-
able competition with calcium and zinc absorption was 
observed [9]. Supplementation with IONPs yielded a 
modest increase in iron alongside by no modification in 
hemoglobin concentration (P > 0.05), whereas the intake 
of IONPs–bacteria restored plasma iron and hemoglobin 
values, similar to  FeSO4 [34]. Interestingly, L. fermentum 
secreted compounds (including ferrireductase) that ena-
ble DCYTB activity, similar to the impact of administer-
ing IONPs–bacteria [8, 125]. To detect and examine the 
degradation of IONPs in biological tissues, the in-phase 
and out-of-phase temperature dependences of magnetic 
susceptibilities were investigated [34, 125]. Qualitatively, 
the IONP biodistribution appeared to be similar for 
ingested IONPs and IONPs–bacteria at first; however, 
further examination revealed greater accumulation of 
IONPs in the stomach and higher levels of IONPs–bac-
teria in the intestines, especially in the cecum, where 
IONPs may have decomposed faster or accumulated in 
a smaller proportion [125]. Because of the capacity of 
probiotics to interact with the intestinal walls, IONPs–
bacteria are incorporated into enterocytes, where nano-
particles are delivered, thus providing adequate iron 
content [4, 34, 36, 118].

Distribution The different sizes and shapes of nanopar-
ticles can be a factor in making the translocation from 
the absorption site to the circulatory and lymphatic sys-
tems, body tissues, and organs [26]. To assess the trans-
location process, various tissue samples were obtained at 
48 h after intravenous administration of IONPs; uncoated 
and coated IONPs with a negative surface potential accu-
mulated most significantly in the liver and the spleen. 
In contrast, the positively charged coated IONPs exhib-
ited the highest accumulation in the lungs, indicating 

an accumulation in the kidneys and the blood [126]. 
Although the total iron in the liver did not change signifi-
cantly compared with the control, TEM data confirmed 
the presence of the particles in the kidneys and the liver 
[29]. Similarly, IONPs associated with probiotics exhib-
ited the highest deposition in the liver, lungs, and spleen, 
without any damaging effects or structural changes, as 
shown by biochemical and histological analyses [9].

Elimination IONP clearance requires at least 2  weeks 
to 6 months [92, 127]. In general, the reticuloendothelial 
system clears out IONPs of < 50  nm; blackfish required 
15  days to remove 50% of the sequestered iron from 
IONPs [104]. Furthermore, evidence of IONP redistribu-
tion was obtained in time- and dose-dependent excre-
tions in both urine and feces [128]. The clearance of feces 
and urine of rats was evaluated over a 5-month-period 
following after IONP injection. At first, the clearance 
profile in urine showed maximal excretion on the day 
after dug delivery, and was sustained until day 28, after 
which it declined gradually [127, 128]. Nevertheless, the 
iron concentration in feces remained high over the first 
3 days [128], with no significant decrease up to 3 months 
post-injection [128].

Limitations, controversies, and challenges
The emerging topics were critically evaluated to iden-
tify gaps in the literature regarding the medical applica-
tions of IONPs. Potential areas of study, which may be of 
interest to future researchers to fill in these gaps, are pre-
sented in Table 4.

Conclusions
We performed an analytical and exhaustive review of the 
interactions of IONPs with probiotics for increased bio-
availability and minimal side effects in the treatment of 
IDA. The required components of a systematic review 
consist of literature screening, search strategy, classifica-
tion, and the thorough and transparent recording of all 
stages of the process. The inventory contained elements 
that considered necessary to obtain relevant information 
in a systematic review. The flow diagram suggested by the 
PRISMA standards was edited to display the number of 
included identified records, eliminated publications, and 
included studies [129].

We performed a systematic literature review on the 
effects of IONPs and their interaction with probiotics 
on iron absorption, bioavailability, microbiota balance, 
and associated side effects. Despite the substantial body 
of literature studying IONPs, the qualitative analysis of 
the included studies revealed the presence of substantial 
heterogeneity with respect to nanoparticle absorption, 
cytotoxicity, interaction with probiotic bacteria, storage 
conditions, and sample manipulation. The correlation 
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between the nanoparticle synthesis strategy and their 
targeted morphological characteristics was also consid-
ered. The present work provides valuable theoretical and 
practical insights regarding IONPs, which were classi-
fied into four main topics. Based on the open-systems 
concept, we designed a framework for understanding the 
connection between probiotics and IONPs. This research 
not only summarizes the current state of knowledge, 
but also highlights the gaps and suggests potential novel 
approaches.

To the best of our knowledge, this is the first system-
atic study of the role of probiotics–IONPs in the treat-
ment of IDA, which is a major health issue. Dietary iron 
supplementation is challenging because the conventional 
fortificants  (FeSO4 and  FeCl3) alter the organoleptic qual-
ities of foods and induce GI distress, black stools, and 
other issues [130]. Barrier coatings applied to magnetic 
nanoparticles prevent chemical damage in the stomach, 
and using probiotics as transporters for intestinal deliv-
ery are options for increasing iron absorption and treat 
IDA [131]; however, this area of research requires further 
improvement. IONP-based diagnostics, medicines, and 
devices are expected to become common in clinical prac-
tice within the next two decades.

Methods
Data sources and searches
The literature search was conducted using the Boolean 
strategy for Web of Science, Scopus, and PubMed data-
bases with the following keywords: nanoparticles, iron, 
oxide, probiotics, and absorption. This review, includ-
ing reports between January 2017 and June 2022, was 
conducted as Preferred Reporting Items for System-
atic Reviews and Meta-analyses (PRISMA) guidelines. 
The PRISMA statement includes 27-item criteria and 
a 4-section flow diagram. The inventory contained ele-
ments considered necessary to obtain relevant informa-
tion in a systematic review. The flow diagram suggested 
by the PRISMA standards was changed to display the 
included number of identified records, eliminated pub-
lications, and included studies [129]. Articles written in 
English were exclusively considered. Systematic reviews 
are designed to be transparent and updatable, as well 
as to answer specific questions. The main question was: 
Can iron oxide nanoparticles transported by probiot-
ics significantly improve iron absorption in an organism 
with minimum side effects? Two authors independently 
screened titles at first, then the abstracts. In cases of 
doubt, the full text was examined to confirm suitability. 
For eligibility, search terms and inclusion/exclusion crite-
ria were used to select more relevant studies.

Inclusion criteria (1) Studies evaluating the synthesis 
characteristics of IONP properties; (2) in  vitro/in vivo 

studies investigating the effects of IONP-delivering drugs 
(efficacy and/or safety); and (3) articles with reports 
on the targeting and absorption of IONPs carried by 
probiotics.

Exclusion criteria (1) Studies without a control group 
to evaluate the effect of IONPs on the absorption rate; 
(2) studies that focused on the correlation between 
IONPs and other bacteria without a probiotic effect; (3) 
studies that focused on the probiotic effects of another 
nanoparticle; (4) duplicated research articles with iden-
tical authors, title, issue number, volume, and digi-
tal object identifier; and (5) thesis papers, conference 
reports, editorials, and theoretical publications.

Quality assessment Finally, authors examined the risk 
of bias with the OHAT (Office of Health Assessment 
and Translation) Risk of Bias Rating Tool for Human 
and Animal Studies. To determine if these materials 
may be of concern, given what is known about current 
human exposure levels, the OHAT risk of bias tool was 
designed to assess methodological quality, sensitivity, 
validation of techniques utilized, and degree of vari-
ance in subjects, including mechanistic (in vitro and 
in vivo) studies. The following categories are assigned:

 “Definitely low risk of bias,” direct indication 

of low risk of bias practices.

 “Probably low/high risk of bias,” circumstan-

tial/indirect evidence of increased risk of bias 
practices.

 “Definitely high risk of bias,” direct evidence 

of high risk of bias practices.
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