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Abstract 

It is essential to develop ultrasensitive biosensors for cancer detection and treatment monitoring. In the development 
of sensing platforms, metal‑organic frameworks (MOFs) have received considerable attention as potential porous 
crystalline nanostructures. Core‑shell MOF nanoparticles (NPs) have shown different diversities, complexities, and 
biological functionalities, as well as significant electrochemical (EC) properties and potential bio‑affinity to aptamers. 
As a result, the developed core‑shell MOF‑based aptasensors serve as highly sensitive platforms for sensing cancer 
biomarkers with an extremely low limit of detection (LOD). This paper aimed to provide an overview of different strat‑
egies for improving selectivity, sensitivity, and signal strength of MOF nanostructures. Then, aptamers and aptamers‑
modified core‑shell MOFs were reviewed to address their functionalization and application in biosensing platforms. 
Additionally, the application of core‑shell MOF‑assisted EC aptasensors for detection of several tumor antigens such 
as prostate‑specific antigen (PSA), carbohydrate antigen 15‑3 (CA15‑3), carcinoembryonic antigen (CEA), human 
epidermal growth factor receptor‑2 (HER2), cancer antigen 125 (CA‑125), cytokeratin 19 fragment (CYFRA21‑1), and 
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other tumor markers were discussed. In conclusion, the present article reviews the advancement of potential biosens‑
ing platforms toward the detection of specific cancer biomarkers through the development of core‑shell MOFs‑based 
EC aptasensors.

Keywords Core‑shell, Metal organic framework, Aptasensors, Cancer biomarkers

Introduction
Biomarker detection plays a major role in the timely diag-
nosis of a wide range of disorders, including neurodegen-
erative, autoimmune and cancer diseases. The discovery 
of cancer biomarkers may lead to the early detection of 
cancer, which in turn will significantly impact reducing 
cancer-related mortality. Also, monitoring the treatment 
process, diagnosis, and application of an appropriate 
strategy for cancer therapy, assessment of disease status, 
drug production, and prescription of appropriate drugs 
can be done with the help of biomarkers.

As a result, biomedical researchers are increasingly 
focused on developing a feasible and accurate approach 
that will result in the sensitive detection of biomark-
ers. Currently, multiple analytical analyses have been 
applied for detecting cancer-related biomarkers including 
spectrophotometry [1, 2], electrophoresis [3, 4], liquid 
chromatography [5, 6], and sensor [7–9]. For example, 
surface-enhanced Raman spectroscopy nanoprobes have 
been widely used for the detection of cancer cells [10], 
exosomes [11, 12], and protein biomarkers [13].

Furthermore, two-dimensional differential gel electro-
phoresis has been demonstrated as a promising platform 
for the detection of various types of cancer biomarkers 
with high reproducibility and sensitivity [14]. Further-
more, liquid chromatography coupled to mass spectrom-
etry has been broadly utilized for the potential detection 
of cancer biomarker peptides [15], plasma lipid profile 
[16], splicing biomarkers [17], and modified nucleosides 
[18]. Also, different types of biosensors including EC-, 
optical-, and mass-based techniques have been used to 
detect cancer biomarkers [7, 19, 20]. EC-based biosens-
ing assays stand out among different types of analytical 
methods and biosensors due to their fast reactivity, high 
sensitivity, easy operation, and cost-effectiveness. In the 
recent years, different types of nanomaterials including 
iron oxide NP bioconjugates [21], gold (Au) NP deco-
rated multiwall carbon nanotubes- [22], sandwiched 
silver (Ag) NPs in N-doped graphene- [23], AuNPs/gra-
phene quantum dots (QDs)/graphene oxide (GO) film- 
[24], and hierarchical flower-like molybdenum disulphide 
 (MoS2) NP- [25] modified EC electrodes have been used 
to detect cancer biomarkers. However, some major 
drawbacks including narrow linear range and limited 
sensitivity still hinder their potential application in the 

biomedical field. Hence, it is inevitable to develop new 
electrocatalysts with high sensitivity and selectivity for 
the detection of cancer biomarkers.

Nonenzymatic-based biosensing approaches show sev-
eral advantages in comparison with enzymatic-based bio-
sensing strategies including a lower LOD, faster reactive 
times, improved long/short-term stability, and cost-effec-
tiveness [26–28]. One of the most important strategies 
for promoting EC detection activity relies on the appli-
cation of potential materials presenting high conductivity 
along with a large reactive surface area.

Following the introduction of metal-organic frame-
work (MOF) with 3D periodic infinite network architec-
tures fabricated through the coordination of metals and 
organic materials as ligands [29, 30], a large number of 
studies have been published on the synthesis and utiliza-
tion of colloidal-sized MOF nanostructures [31–33]. In 
comparison to zeolite- and carbon-based materials, MOF 
NPs as porous materials exhibit several novel superiori-
ties such as tunable pore dimensions, functionalized pore 
surfaces, ultralow density, and ultrahigh active surface 
areas [34], which endow MOFs with exclusive benefits in 
different applications, including biosensing [35, 36] and 
catalyst [37, 38]. Recently, there has been a lot of inter-
est in using MOF NPs to develop potential biosensors for 
the detection of different biological or chemical reactions 
[39, 40].

Several MOF-based architectures, including nanow-
ires, nanotubes, octahedral, and core-shell structures 
have been reported for application in different fields 
[41–43]. Among these structures, core-shell architec-
tures have demonstrated significant advantages due to 
their highly appealing topologies and potential chemi-
cal activities [34]. In comparison to other MOF struc-
tures, the presence of a shell can result in the formation 
of a proportionally stable and unaffected microenviron-
ment for catalytic reactions, as well as the combination 
of multiple properties via the synergistic feature between 
the core and shell units [34]. The primary core-shell MOF 
architectures are identified by a metal core covered with 
an MOF shell [44]. Nevertheless, there are several com-
mon core-shell structures, including metal and non-
metal NPs@MOFs, MOF@metal oxide NPs, and MOFs@
MOFs [34, 45, 46].
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As a result, because several materials exhibit synergis-
tic performance, the combination of different bio-func-
tional compounds has been a hot topic in the biomedical 
field. Because of the unique architecture of core-shell 
MOFs, the developed electrodes exhibit promising long-
term stability with boosted mechanical durability [47] 
and ultra-sensitive EC detection [48]. In fact, core-shell 
MOFs are used in a variety of biosensors with different 
detection methods, and have the advantages of exhibiting 
a rapid reactivity and reusability, as well as improved sen-
sitivity, increased selectivity, and a feasible assay strategy 
[49, 50].

To date, electrochemistry-based immune assays have 
been reported for detecting tumor markers with a poten-
tial sensitivity and accuracy, a significantly low LOD, 
and a pronounced signal augmentation [51]. Although 
this immunoassay has high sensitivity and efficiency, 
the need for complicated washing steps and heterogene-
ous responses in this assay cause diverse antibody (Ab)-
antigen interactions and diminished Ab performance [52, 
53], which affect detection sensitivity and experimental 
reusability [53]. Aptamers, on the other hand, have dif-
ferent significant advantages over antibodies, including 
their small size, low cost, increased chemical stability, 
and feasible design [54, 55]. These characteristics have 
received widespread attention and have shown promise 
in addressing the aforementioned immunoassay concerns 
[56]. Aptamers have also demonstrated some benefits for 
developing potential biosensors with improved selectivity 
and sensitivity [57–59].

Therefore, developing potential core-shell MOF with 
unique structures and recruiting them as a solid support 
for the immobilization of aptamers can be used to detect 
different cancer markers. Indeed, when aptamer strands 
adsorbed onto the MOF platform interact with cancer 
biomarkers, the resulting conformational changes in the 
aptamer can be detected using various sensors, particu-
larly EC-based platforms. Additionally, various MOF 
architectures result in different surface and chemical 
capabilities, changing the sensing potency of aptamers 
by regulating the interaction of redox ions with the elec-
trode surface.

Application of core‑shell MOFs in the development 
of biosensing platforms
The application of core-shell MOFs in the development 
of biosensing platforms is increasing due to their unique 
functional and structural properties [60]. However, due 
to the use of the organic ligands and metal ion clusters in 
the fabrication of these structures, constructing a cohe-
sive and controllable structure remains challenging. In 
order to overcome some drawbacks such as fine adjust-
ment of the shell thickness, non-uniform growth of the 

shell, uniform distribution of NPs, reducing the toxicity 
of reagents, and commercialization by reducing synthesis 
steps, various methods have been developed to synthe-
size MOFs. Since different parameters such as tempera-
ture, reaction time, pressure, pH, and solvent all have a 
significant effect on chemical reactions for the synthesis 
of core-shell MOFs, reproducibility of synthesis param-
eters is a need for standardization [61, 62]. The most 
important and common production approaches to syn-
thesize core-shell MOF nanostructure are one-pot syn-
thesis, in  situ synthesis, self-assembly, and templating. 
For further information regarding the synthesis of core-
shell MOF nanostructures, the readers shall refer to [34, 
46].

Strategies to improve core‑shell MOF performance
The very high surface area and porosity of MOFs com-
bined with the multifunctional catalytic activities of 
metal compounds, have made these materials very sus-
ceptible to use in diagnostic platforms. Therefore, to 
increase the achievement of efficient electron transfer in 
core-shell MOF-based EC sensors, it is necessary to pay 
more attention to the selectivity, sensitivity, and repro-
ducibility of MOFs to modulate the LOD and signal 
amplification.

Enhancement of selectivity
Although surface modification of MOFs is a potential 
approach in the development of biosensors with high 
sensitivity and selectivity, structural optimization during 
the manufacturing process can contribute to improved 
biosensing capabilities. MOFs with tunable porous struc-
tures can be used for the potential detection of biomol-
ecules by developing pore sizes larger than that of the 
biomolecules. Therefore, by designing MOFs that (1) 
have pores larger than the size of the biomolecules, such 
as heterogeneous shell-core structures, or (2) have struc-
tural defects in the shell, such as porosities due to oxygen 
modulation, we can significantly improve the detection 
range of analysts. In this regard, Yang and coworkers 
[63] using  CuxO NPs@ZIF-8 containing pores with con-
trolled dimensions on the shell, were able to detect  H2O2 
molecules with high efficiency and selectivity. This high 
selectivity was achieved even in the presence of amino 
acids and biological compounds, whereas metal NPs had 
low selectivity. Also, Luo and coworkers [64] by creating 
structural defects in the shell of  CeO2-x/C nanorod with 
vacancies caused by oxygen modulation and increasing 
 Ce3+ ion as a catalytic active site, developed a platform 
for indirect determination of uric acid at very low work-
ing potentials in the presence of high concentration of 
glucose.
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Enhancement of sensitivity
It is well-known that decreasing the size of particles 
from microparticles to nanomaterials increases the sen-
sitivity of EC sensors/biosensors. In this regard, it has 
been reported that nano-sized MOFs, when compared 
to micro-sized MOFs, increase the accessibility of elec-
troactive sites and improve electron transport ability due 
to increased accessible surface area and higher poros-
ity [65]. In addition, Lopa and coworkers [66] showed 
that a nano-sized metal azolate framework on the glassy 
carbon electrode through non-enzymatic detection sig-
nificantly detected glucose in the dynamic range of 2 to 
50 µM and 100 to 1800 µM with a LOD of 0.6 µM com-
pared to bulk MOFs with a LOD of 1.46 µM [67]. In this 
field, it was recently determined that nano-sized urate 
oxidase-loaded MOF/boron nanosheets on carbon-glass 
electrodes improved the LOD of uric acid in the concen-
tration range of 0.1 to 200 µM to 0.025 µM compared to 
other common electrodes [68]. Nonetheless, it appears 
that the densely adsorption of MOFs on the electrodes 
reduces the number of active sites and the correspond-
ing sensor’s overall sensitivity. Hence, in order to effec-
tively increase the sensitivity of the biosensors, it is 
recommended to load a single layer of MOFs on the elec-
trodes [69]. Aside from nano-dimensions, the presence 
of interconnected pores can improve sensor sensitivity 
by facilitating electron transfer in the electrodes. For this 
purpose, it is necessary to investigate the chemical inter-
actions of ligands, their exchange and mixing to create 
interconnected mesoporous MOFs. For example, Wang 
and coworkers [70] designed highly interconnected 
porous Cu-MOFs using an evaporation-based heteroepi-
taxy and self-assembly process. In this method, after the 
deposition of copper nanowires on paper through evap-
oration of dichloromethane-containing nanowires, the 
paper was immersed in ligand solutions and heteroepi-
taxial growth was induced to form Cu-MOF crystals. 
Their results showed that the detection sensitivity of glu-
cose (35.9 µA/cm2/mm) and lactate (1690 µA/cm2/mm) 
increases significantly. However, due to the challenge of 
weak conductivity caused by chemical ligands and inap-
propriate aggregation of MOFs, the use of nano-hybrids 
could be a potential approach to increase the sensitivity 
of biosensors. In addition to increasing catalytic capabil-
ities, nanohybrids can cause enhanced electron transfer 
in the developed structure. In this regard, it was reported 
that the electrode engineered with ultra-thin 2D MOF 
M-TCPP (M = Cu, Co and Ni) nanofilms (1–3  nm) and 
2D MOF nanosheets with a thickness of 6–10 nm along 
with carbon nanosheets obtained from CNT and GO 
can effectively detect  H2O2 with improved LOD (5 nM) 
at the linear range of 0.01–3.75 µM and 3.75–377.75 µM 
compared to 2D MOF M-TCPP [71]. Recently, in order 

to increase the LOD of cancer cells by sensing the gen-
erated  H2O2, Huang and coworkers [72] by designing 
ultra-thin 2D MOF nanosheets based on hybridizing 
copper nanozymes with Au nanozymes in a non-aggre-
gative form with dual enzyme-like activity were able 
to remarkably improve the detection of colon cancer 
cells. They showed that the structural changes induced 
through the hybridization of Cu nanozymes with Au can 
improve the LOD of  H2O2 up to 5.6 nM with a high sen-
sitivity of 188.1 µA/cm2/mM [72]. It was also found that 
changing the morphology of 2D Zn-MOFs hybridized 
with Ag NPs stimulated greater electrocatalytic activ-
ity for  H2O2 detection compared to the 3D state [73]. 
Since Ag/2D Zn-MOFs were able to provide a large sur-
face area and well-dispersion of NPs in their structure, 
they provide greater electrical conductivity compared to 
Ag/3D Zn-MOFs. Under optimal conditions, electrodes 
fabricated with Ag/2D Zn-MOF improved the LOD of 
 H2O2 to1.67 µM with a wide range of 5.0 µM to 70 mM 
[73].

Enhancement of signal strength
The strategy of signal amplification is one of the vital 
approaches in improving the performance of sensors 
due to the very low concentration of analytes in biologi-
cal samples. Despite different strategies in electric signal 
amplification, the use of molecular biological technolo-
gies, enzymatic methods and nanohybrids have received 
much attention.

One of the signal amplification strategies is the use of 
molecular biological technologies such as rolling cir-
cle amplification, strand displacement amplification, 
hybridization chain reaction (HCR), and catalytic hair-
pin assembly. For instance, Chen and coworkers [74] 
designed an MOF-based EC aptasensor composed of 
MIL-101@AuNPs, hemin/G-quadruplex DNA enzyme 
(DNAzyme), and horseradish peroxidase (HRP) for the 
early detection of liver cancer, which improved the LOD 
of HepG2 cells up to 5 cells  mL− 1 with a wide range of 
 102 to  107 cells  mL− 1. In addition to selective diagnosis, 
the designed aptasensor induced significant electrical 
signal amplification through synergistic cooperation of 
hemin/G-quadruplex DNAzyme and natural HRP. The 
G-quadruplex DNAzyme was prepared though the HCR 
method via connecting the thiolated TLS11a aptamer 
sequence (at the 3′ end) to two other sequences with 61 
nucleotide bases. By the formation of hemin/G-quadru-
plex as a mimicking peroxidase the response of differ-
ential pulse voltammetry (DPV) improved significantly. 
Meanwhile, HRP by catalyzing hydroquinone in the pres-
ence of  H2O2 effectively reduced the noise-to-signal ratio 
and accelerated electron transfer to improve the electrical 
signal [74]. In another study, it was determined that the 
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use of a duplex hairpin probe in S1-AuNPs@Cu-MOF-
based EC aptasensors not only improved the LOD of 
miRNA-155 to 0.35 fM with a wide linear range from 1.0 
fM-10 nM but also raised hopes to amplify the electrical 
signal significantly [75]. In this research, it was revealed 
that after opening the hairpin1 (H1) structure in the 
presence of miRNA-155 (target) and binding to the hair-
pin2 (H2) structure and completing the cyclic process by 
miRNA-155, a significant amount of H1–H2 is formed. 
Then, H1-H2 duplex aggregation improved the electri-
cal signal based on the enhancement of electron transfer 
in the S1-AuNPs@Cu-MOF electrode [75]. Even though 
molecular biological technologies offer several significant 
advantages, including high efficiency, programmability, 
biocompatibility, non-toxicity, and non-immunogenic-
ity, they still suffer from several problems such as low 
HCR sensitivity and time-consuming processes. Hence, 
a group of researchers focused on the catalytic activity 
of enzymes and even pseudo-enzymes due to their con-
trollable function and high specificity. The functional 
mechanism of the enzymatic approach is focused on sub-
strate degradation like a  H2O2 and noise-to-signal ratio 
reduction, as well as faster electron transfer by enzymatic 
products. For example, Li and coworkers [76] by design-
ing glucose oxidase (GOx)/HRP@ZIF-90 as a sensor con-
taining ovarian cancer marker and creating a competitive 
reaction of ATP with  Zn2+ to break the structure of MOFs 
to release GOx and HRP, were able to amplify the electri-
cal signal through the enzymatic cascade reaction. The 
designed aptasensor increased the LOD of CA-125 up to 
0.05 pg  mL− 1 with a wide range of 0.1 pg  mL− 1–40 ng 
 mL− 1 along with high selectivity. In another study, it was 
reported that the combination of tyrosinase to calcined 
porous carbon-based ZIF-8 containing the PSA aptamer 
not only increased the LOD of prostate cancer to 0.01 ng 
 mL− 1 with a wide range of 0.01 to 50 ng  mL− 1 but also 
significantly improves the electrical signal based on the 
tyrosinase activity to catalyze the oxidation of electro-
inactive phenol to electro-active catechol and start the 
redox cycle under the influence of NADH [77]. Despite 
the timely and sensitive detection of biomarkers by the 
enzymatic approach in MOF-based sensors [78, 79], due 
to the complicated processes of enzyme immobilization 
on the electrodes and corresponding reduced enzyme, 
development of another strategy seems necessary. Elec-
troactive nanohybrids with different physicochemical 
properties can be potentially used for the development of 
potential biosensing platforms via accelerating the elec-
tron transfer for signal amplification. The biocompatibil-
ity along with the fast response of nanohybrids in signal 
amplification has made the use of this approach interest-
ing in the field. In this regard, Fu and coworkers [80] used 
AuPtRu trimetallic nanohybrids in Ce-MOF containing 

TSP-1 aptamer to boost the EC signal. In addition to 
 H2O2 catalysis, the AuPtRu nanocomposite can function 
as a signal probe in this sensor. Therefore, the designed 
aptasensor has an improved LOD up to 0.13 fg  mL− 1 with 
a detection range of 1 fg  mL− 1 -10 ng  mL− 1 [80]. Further-
more, by using Au@self-polymerized dopamine (PDA)@
Fe-MOF as a biocompatible EC aptasensor, Li and cow-
orkers [81] were able to increase the LOD of CEA up 
to 0.33  fg  mL− 1 with a wide range of 1  fg  mL− 1 −1  µg 
 mL− 1. The active sites in Fe-MOF and the combination 
of PDA-decorated AuNPs with this platform significantly 
accelerated the electron transfer on the electrode surface 
designed for signal amplification. Recently, an EC sen-
sor resulting from the interaction of a covalent organic 
framework containing nitrogen-doped graphene nano-
composite (COF-NG) with a Fe-MOF decorated with 
AuNPs as a capture/signal probe was designed, which is 
capable of high electron transfer for non-small cell lung 
cancer detection with LOD of 7.65 fM and a linear range 
of 100 fM to 100 nM [82]. Guo and coworkers [82] illus-
trated that although COF-NG is favorable for electron 
transfer due to its porous structure and good conductiv-
ity, the integration of Fe-MOF with NG-COF increased 
the electrical signal by inducing the reaction of  Fe3+ with 
 K4[Fe( CN)6].

Electrochemical (EC) sensing strategies
The biological analyte detection by EC biosensors is 
mostly based on potential [voltammetry: DPV, square 
wave voltammetry (SWV), cyclic voltammetry (CV), and 
linear sweep voltammetry (LSV)], current (amperom-
etry), and conductivity (conductometry) assays. It seems 
that among the above strategies, voltammetry/poten-
tiometry has received the most interest in the field. In 
addition to the above findings, the use of impedance (EIS: 
EC impedance spectroscopy) as well as the integration 
of EC methods with luminescence [electroluminescence 
(ECL), photoelectrochemistry (PEC)] also is of a great 
interest. These techniques have unique features such as 
signal measurement, mass transfer, and specific target 
selection (Table 1).

Aptamers and aptamers‑modified MOFs
Aptamers
An aptamer is a single-stranded nucleic acid molecule 
with the ability to recognize specific targets and is clas-
sified based on origin, generating methods, and location 
of marker detection (on the tissue surface, biological 
secretions such as saliva, urine, and milk, and blood) [99]. 
Although various generating methods can be observed in 
the literatures [100], the use of the systematic evolution 
of ligands by exponential enrichment (SELEX) approach 
including 5 steps of binding, partitioning, washing, 
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amplification, and conditioning [101, 102] is of great 
interest. The use of cell-SELEX approach is highly rec-
ommended due to the binding of the generated aptam-
ers even with unknown membrane receptors on the cell 
surface [103]. In this approach, the positive selection 
steps include incubation, washing, and amplification 
of binding aptamers, while the negative selection steps 
remove sequences that bind to normal cells. However, 
the production of reliable and stable aptamers along with 
the aptamer selection method is still under discussion. 
Because some challenges of this approach, such as the 
complexity of some cancer cell lines, changes in protein 
expression, and choosing the appropriate cell line have 
not been fully addressed. Therefore, the clinical successes 
of aptamers are not comparable to those of antibodies. 
While, aptamers are more stable than antibodies against 
pH, temperature, and ionic changes [104]. Despite the 
wide range of aptamers produced for cancer diagnosis 
(Table 2), aptamers have not been notably used in clinical 
trials for cancer diagnosis and are being mostly studied in 
the laboratory. For instance, in the field of assays, Land-
man’s group (https:// clini caltr ials. gov: NCT02957370) 
conducted a clinical trial for bladder cancer diagnosis 
based on aptamers and EC assays combined with calo-
rimetry, the report of which is not available.

Functionalization of MOF with aptamers
Functionalized MOF NPs as structural analogue of MOF, 
could serve as excellent signal carriers for the develop-
ment of aptasensors. Indeed, abundant functional moie-
ties on the surface of MOF pores can result in selective 

absorption of a large number of metal ions [109–111]. 
Furthermore, modified terminated DNA can be eas-
ily adsorbed on functionalized MOF-NH2 via the cou-
pling and click reaction [112, 113]. For example, the 
first MOF developed NP-DNA biconjugate was medi-
ated with a click reaction between dibenzylcyclooctyne-
modified DNA and azide-modified MOF-N3 [114]. The 
fabricated bioconjugates with 3D spherical architecture 
displayed low cytotoxicity and improved stability. As 
a result, the stability of the signal transporters can be 
achieved through development of DNA-metal ions-MOF 
bioconjugates.

Also, Guo et  al. aimed to fabricate Apt-templated 
AgNPs bioconjugated with Zr-MOF aptasensors through 
establishment of Zr−O−P interaction between MOF 
and the DNA strands for bifunctional EC and SPR-
based detection of CEA biomarker [91]. In addition to 
improved biocompatibility and potential EC properties, 
the fabricated nanoplatform demonstrated favorable bio-
affinity and excellent reproducibility. It was also shown 
that the developed nanoconjugates had a LOD of 8.88 
and 4.93 pg·mL–1 derived EIS and DPV, respectively, over 
a wide linear range of the CEA concentration (0.01–10 
ng·mL–1).

In general it can be suggested that functionalization 
of MOF with aptamers can be done through formation 
of Au-S bond [115], streptavidin-biotin binding [116], 
coordination between  PO4

3− moiety and MOF [117], π-π 
interaction and hydrogen bonding [118], covalent bind-
ing mediated with click chemistry [119], and covalent 
interaction through EDC/NHS linking [120]. For further 

Table 2  A sample of aptamers used in the diagnosis of different types of cancers [105–108]

Nr. Aptamers Target Cancers

1 S2.1 MUC1 Breast, lung, ovarian, pancreatic cancers, etc.

2 AFP‑apt Alpha fetoprotein hepatocellular carcinoma

3 HB5, A30 HER2/HER3 Breast, gastric, lung, colorectal, esophageal, ovarian cancers, prostate, 
pancreatic, etc.

4 ESTA E‑selectin Breast, some of metastasis

5 E0727, TuTu2231,
KD1130, CL428

EGFR Squamous cell carcinoma, breast, glioblastoma multiforme, lung, etc.

6 NOX‑A12, NOX‑E‑36 CXCL12 Multiple myeloma, leukemia, glioblastoma multiforme

7 SYL3, EpDT3‑DY647 EpCAM Bladder, breast, colon, lung, ovarian, pancreas, prostate, etc.

8 NX‑191, NX‑213, Vap7, V7t1 VEGF Lung, breast, brain, colon, pancreatic, melanoma, myeloid, gastric, etc.

9 PSMA‑4‑1BB CD137 Prostate

10 xPSM‑A10, A9g PSMA Prostate, bladder, kidney, etc.

11 ARGO100 NF‑kB Prostate, cervical, lung, breast, etc.

12 AS1411, FCL‑II Nucleolin Leukemia, lung, renal, breast, pancreatic, etc.

13 PNDA‑3 Periostin Breast

14 ARC126, AX102 PDGF‑B Vessel, endothelial cells, retinal

15 CD40apt CD40 Bone marrow

https://clinicaltrials.gov
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information the readers are referred to a comprehen-
sive review reported by Liu, and coworkers [121], which 
described functionalization of MOF with DNA and 
amino acids for different applications.

Core‑shell MOF‑based aptasensors
By conjugating EC aptasensors with different metallic 
signal tags, it has been possible to detect different biolog-
ical or chemical reactions with high sensitivity [122, 123]. 
The development of metals-tagged aptamers is classified 
into two main categories: the application of pure metal 
NPs [124, 125], and the development of a core-shell plat-
form with integration of metal ions into MOF NPs with a 
highly specific surface area [126]. Relative to the former 
strategy, the latter one could be utilized to develop more 
different types of metals-tagged aptamers owing to the 
modification of MOFs with multiple electroactive metal 
ions, including  Pb2+,  Cd2+,  Cu2+, and  Zn2+ [49].

Indeed, in order to develop aptasensors, it’s crucial to 
utilize appropriate substrates to tag aptamers and load 
sufficient metals for signal intensification. Because of 
its excellent adsorption properties and diverse amine 
and carboxyl grafting moieties, the porous MOF may 
be an ideal candidate for promoting the co-adsorption 
of substances [127, 128]. Particularly suitable candi-
dates for the development of aptasensors are MOF NPs 
with good colloidal stability and a large reactive sur-
face area. Several MOF -based aptasensors have also 
been developed for optical cancer biomarker detection 
[129–131]. Nevertheless, the application of MOF NPs 
to develop potential core-shell sensitive EC aptasensors 
for the detection of cancer biomarkers is still consid-
ered as a new area of research.

Furthermore, metal ion leakage is a significant disad-
vantage of metal ion adsorption on MOF as signal tags. 
Indeed, the interaction between metal ions and MOFs is 
almost entirely mediated by weak non-covalent forces, 
resulting in significant metal ion leaching and the inevi-
table generation of background (false positive) signals, 
reducing the specificity of this approach. Although sev-
eral sensitive EC aptasensors using metallic nanotags 
with MOFs as carriers were developed for the detection 
of cancer biomarkers in recent years, it is difficult to 

remove the metal ion leakage mediated by MOF NPs-
supported metallic signal tags. Metal ion incorporation 
into the MOF could be one possible approach, which is 
expected to result in a stable core-shell structure and 
low metal leakage. Indeed, when compared to tradi-
tional catalysts, MOF-based derivatives reduce metal 
leakage due to the protection of carbon atoms in the 
core-shell structure [132, 133]. Furthermore, the depo-
sition of MOF-based nanostructures with polymers and 
various porous materials could be an effective method 
for addressing metal leakage [134].

Application of core‑shell MOFs in the detection 
of tumor antigens
Prostate‑specific antigen (PSA)
The tactics by utilizing synergetic core-shell MOF nano-
structures as signal probes furnish a potential platform 
for expanding uncomplicated, rapid, and ultrasensitive 
dual-channel uniform aptasensors, which display an 
excellent prospective as promising platforms in cancer 
diagnosis.

Bhardwa et  al. developed tetracyanoquinodimeth-
ane (TCNQ)- doped Cu-MOF,  Cu3(BTC)2, adsorbed on 
Au electrodes, an immune-EC biosensing system, for 
exceptionally sensitive sensing of a PSA with a LOD of 
0.06 ng  mL− 1 and wide linearity of antigen between 0.01 
and 150 ng  mL− 1 [90]. Based on the published reports 
for PSA detection by other platforms, including  SiO2 
NPs (LOD = 0.76 ng  mL− 1 ) [135], microwell SWCNT 
(LOD = 0.001 ng  mL− 1) [136], graphene-modified GC 
(LOD = 0.008 ng  mL− 1) [137], graphene/methylene blue 
nanocomposite (LOD = 0.013 ng  mL− 1) [138],  MoS2 
(LOD = 0.001 ng  mL− 1) [139], graphene/Au (LOD = 0.59 
ng  mL− 1) [140], GOQDs (LOD = 0.0003 ng  mL− 1) [141], 
MXene-Au-MB (LOD = 0.00008 ng  mL− 1) [142], DNA 
tetrahedron structural probes (TSPs)-Au nanoflow-
ers (NFs)-modified screen-printed electrodes (SPEs) 
(LOD = 0.2 ng  mL− 1) [143], the LOD of this MOF-based 
biosensor is comparable with others. However, other 
platforms, such as carbon QDs-AuNPs with a LOD of 
2  fg  mL− 1 [144] and hierarchical  SiO2@MoS2 nano-
structures with a LOD of 2.5 fg  mL− 1 [25], have recently 

Table 3 Core‑shell MOF‑based EC apta/sensor for ultrasensitive PSA detection

Platform LOD Linear range Detection type Refs.

AgNC@Apt@UiO‑66 8.88 and 4.93 pg·mL–1 0.01–10 ng·mL–1 EIS and DPV [91]

Au‑hemin‑Mil‑DNAzyme 0.058 ng  mL− 1 0.5 to 500 ng  mL− 1 EIS [147]

PdNPs@Co‑MOF 0.03 pg  mL− 1 0.01 fg.mL–1 to 50 ng.  mL–1 EIS [148]

Pd@hollow Zn/Co core–shell ZIF67/
ZIF8

0.78 pg  mL− 1 5 pg  mL− 1 to 50 ng  mL− 1 EIS [149]
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demonstrated significantly lower LOD than that of 
TCNQ- doped Cu-MOF. Therefore, optimization of fab-
ricated core-shell platforms may be a potential strategy 
for biomarker detection [145, 146].

Table  3 also summarizes the application of core-shell 
MOF NPs in the design of apta/biosensor for ultrasensi-
tive PSA detection.

Carbohydrate antigen 15 − 3 (CA15‑3)
CA15-3 could represent a potential tumor marker in sev-
eral types of cancers such as ovarian, lung, and prostate, 
as well as benign breast cancer. Xiong and and cowork-
ers [150] developed an ECL immunoassay for CA 15−3 
detection by using Ru(bpy)6

2+-functionalized amino-
coated UiO-66 MOF NPs. Ru derivatives were used as a 
luminescent probe, with UiO-66-NH2 acting as a carrier 
and Nafion as a fixer (Fig. 1a). Also, the covalent conju-
gation of CA 15 − 3 Ab was mediated by amide reaction. 
It was discovered that the ECL signal was apparently 
quenched after the CA15-3 marker interacted with the 
immunosensor, and the LOD was in the range of 5 ×  10− 4 
to 5 ×  102 U  mL-1 and a LOD of 1.77 ×  10− 5 U  mL-1, 
which was applicable in real samples [150]. Also, a sig-
nal amplification procedure mediated by initiated radical 
polymerization activated with coupling cascade cataly-
sis was introduced for ultrasensitive sensing of CA15-3 
through EIS immune-based assay [151]. As immune-
based probes, Cu-MOF as a peroxidase-mimic enzyme 
in combination with Ab and GOx, generation of  H2O2, 
was able to initiate radical polymerization via cascade 
catalysis. Indeed, resistance values improved following 
the interaction of  H2O2 with acetylacetone catalyzed by 
Cu-MOF and the formation of acetylacetone radicals-
based poly N-isopropylacrylamide (Fig. 1b). This biosen-
sor detected CA15-3 at detection ranges ranging from 10 
µU  mL− 1 to 100 mU  mL− 1 with a low LOD of 5.06 µU 
 mL− 1 for CA15-3 [151]. It should be noted, however, that 
both platforms serve as immunobiosensors that rely on 
Abs, which present some challenges in biosensor devel-
opment, such as partial denaturation and orientation. As 
a result, the drawbacks of Ab-based biosensors can be 
addressed by using another strategy, aptasensors, which 
needs further investigations in the future studies.

Carcinoembryonic antigen (CEA)
A high level of CEA could indicate several types of can-
cer, including colorectal, prostate, ovarian, lung, thyroid, 
and liver cancer. Zhou and coworkers [152] described a 
GOx-mediated cascade catalysis for the development 
of an ultrasensitive EIS aptasensor catalyzed by Pt@
MOF NPs and hemin/G-quadruplex (hGq) as perox-
idase-mimic enzyme for the oxidation of conductive 

3,3-diaminobenzidine (DAB) and the generation of insol-
uble precipitates with minimum conductive properties, 
with a low LOD of 0.023 pg  mL− 1 toward CEA (Fig. 2a) 
[152]. Guo and coworkers [91] also reported an AgNP@
Apt@Zr-MOF platform for the development of bifunc-
tional EC and optical aptasensors toward CEA with 
LODs of 4.93–8.88 pg·mL–1 and 0.3 pg·mL–1, respec-
tively and a broad linear range of the CEA concentration 
(0.01–250 ng·mL–1) [91]. Therefore, the synthesis route 
of MOF, structure, and type of MOF can play a key role 
in the sensitivity of MOF-based biosensors in detection 
of biomarkers. Also, by using MOFs as a nanocarrier of 
EIS active materials (methylene blue) along with con-
trollably assembled DNA, gatekeeper, a smart platform 
based on target (CEA)-guided cascade boosted release of 
methylene blue was developed which was able to detect 
CEA with a LOD of 16  fg  mL− 1 and broad linear range 
of 50 fg  mL− 1 to 10 ng.  mL-1 [153]. Furthermore, Li and 
coworkers [81] developed an EC aptasensor composed 
of self-polymerized dopamine modified Au coordinated 
with Fe-MOF (abbreviated as: Au@PDA@Fe-MOF) for 
the detection of CEA with improved sensitivity, several 
active sites, good biocompatibility, and potential selectiv-
ity derived from several − COOH groups and  Fe3+ sites in 
porous and on the surface of Fe-MOF, respectively. Then, 
 NH2-modified CEA-selective aptamer and redox PDA 
along with Fe-MOF could accelerate the electron transfer 
for dual signal intensifying [81]. The developed aptasen-
sor had a broad antigen detection range from 1 fg  mL-1 to 
1 µg  mL-1 with a LOD of 0.33 fg  mL-1. Moreover, a label-
free ECL aptasensor for ultrasensitive detection of CEA 
was developed based on CdS QDs-modified MOF and 
triethanolamine-modified AuNPs as bi-coreactants of 
Ru(bpy)3

2+ ECL platform, as well as a carrier for aptamer 
(Au–S bond) (Fig. 2b) [154].

Human epidermal growth factor receptor‑2 (HER2)
Approximately 20–30% of breast tumors upregulate the 
expression of HER2. The bimetallic ZrHf-MOF embed-
ded with carbon dots (abbreviated as CDs@ZrHf-MOF) 
was used as a potential systems for the detection of HER2 
in MCF-7 cancer cells through EC aptasensor with a 
LOD of 19 fg  mL−1 (Fig. 3a) [155]. It was seen that LOD 
of other biosensors for HER2 detection including Au 
nanostructured screen-printed graphite [156], CuO NPs 
[157], AuNP-based rolling circle amplification [158], fer-
rocene-labeled DNA/Au [159], polycytosine DNA [160], 
aptamer-based interdigitated electrode [161], antiHER2/
APTMS-Fe3O4 [162] were 6.0 pg  mL− 1, 0.956 pg  mL− 1, 
80 fg  mL− 1, 4.9 ng  mL− 1, 0.5 pg  mL− 1, 0.1 ng  mL− 1, 0.02 
pg  mL− 1, respectively.

Also, a magnetic  Fe3O4@ TMU-21-MWCNT with 
redox activity toward  H2O2 was used as a potential 
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Fig. 1 a Schematic illustration of an ELC immunoassay for CA 15−3 detection by using Ru(bpy)6
2+‑functionalized amino‑coated UiO‑66 MOF NPs 

[150]. Reprinted with permission from Ref. [150], copyright 2019, Elsevier. b Schematic illustration of immune‑based MOF EIS biosensors for cascade 
catalysis‑initiated radical polymerization‑stimulated signal intensification for CA15‑3 detection [151]. Reprinted with permission from Ref. [151], 
copyright 2019, Elsevier.  GOx Glucose oxidase, ACAC  acetylacetone, PNIPAM poly (N‑isopropylacrylamide)
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immunosensor against HER2 [89]. Indeed, with HER2 
biomarker the amperometric current of  H2O2 changes, 
which could be a sign of antigen–Ab interaction on the 
electrode with a linear range of 1.0 pg  mL− 1-100 ng 
 mL− 1 and LOD of 0.3 pg  mL− 1 (Fig. 3b) [89]. Although 
the detection of HER2 is well-correlated with human 
serum samples, the use of immune-based biosen-
sors due to some challenges such as low stability and 

sensitivity may limit their clinical application. For 
example, it has been reported that aptasensors outper-
form immunosensors in terms of sensitivity, reusability, 
and storability against HER2 detection [163].

It was shown that the LOD of  Fe3O4@TMU-21-
MWCNT for the detection of HER2 via ampero-
metric method was significantly lower than those 
of Hyd–AuNP − Apt (SWSV, 37 pg  mL− 1) [124], Au 

Fig. 2 a Schematic illustration of core‑shell MOF‑based EIS aptasensor for cascade catalysis‑initiated radical polymerization stimulated signal 
intensification for CEA detection [152]. Reprinted with permission from Ref [152], copyright 2017, Elsevier. b Schematic illustration for the 
fabrication of CdS QDs@MOF and TEOA@Au aptasensor for CEA detection [154]. Reprinted with permission from Ref. [154], copyright 2022, Elsevier. 
IPs Insoluble precipitates, DAB 3,3‑diaminobenzidine, TEOA triethanolamine
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NPs-modified disposable screen-printed carbon elec-
trodes (impedimetric, 0.01 ng  mL− 1) [164], inkjet 
printed Au working 8-electrode array (amperometry, 
12 pg  mL− 1) [165], streptavidin-alkaline phosphatase 
(LSV, 0.16 ng  ml− 1) [166], Ab2-PbS QDs (SWV, 0.28 

ng  mL− 1) [167], and CdSe@ZnS (DPV, 2.10 ng  ml− 1) 
[168]. However, some other biosensor platforms 
have been reported to outperform  Fe3O4@ TMU-21-
MWCNT sensor for the detection of HER2 such as 
anti-HER2 conjucated mesoporous ZnO nanofibers 

Fig. 3 a Schematic illustration of the synthesis of CDs@ZrHf‑MOF‑based aptasensor for the detection of HER2 [155]. Reprinted with permission 
from Ref. [155], copyright 2019, Elsevier. b Schematic illustration of the synthesis of  Fe3O4@TMU‑21‑MWCNT‑based immunosensor for the detection 
of HER2 [89]. Reprinted with permission from Ref. [89], copyright 2020, Elsevier. CDs Carbon dots, BSA bovine serum albumin
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(EIS, 185  fg  ml− 1) [169], hierarchical composite of 
porous graphene and  TiO2 nanofibers (EIS, DPV, 
185  fg  ml− 1) [170], and  Fe3O4–Au NPs–AgNPs (DPV, 
20 fg  ml− 1) [162].

Cancer antigen 125 (CA‑125)
The CA-125 detection can be applied to detect early signs 
of ovarian cancer. Serval biosensors such as FA-HCl-
doped polyaniline-chitosan-Ag-Co3O4 nanosheets [171], 
 MoS2-Au-nanoflowers [172], Au NP-ZnO nanorods 
[173], graphene polyaniline [174], 3D Au electrode [175], 
benzothiophene derivative [176] have been developed 
for sensitive EC determination of CA-125 with an LOD 
ranging from 0.25 pg  mL− 1 to 2.5 ng  mL− 1. Regarding 
the apparent biosensing properties, advanced EC perfor-
mance, and exceptional biocompatibility of Fe-/Tb-MOF, 
as well as fluorescence properties of Tb-MOF, the hetero-
architectured core-shell bimetallic TbFe-MOF could be 
developed and recruited as an advance system to immo-
bilize aptamer strands for concurrently sensing cancer 
biomarkers and living cancer cells (Fig.  4a) with a LOD 
of 0.000058 U·mL− 1 via EIS detection method [177]. 
The developed biosensor showed a potential binding of 
aptamer with CA-125 biomarker evidenced by an appar-
ent decrease in current (preventing electron transfer 

at electrode-solution interface) and an increase in ΔEp 
[177].

It was found that other biosensors including micro-
fluidic origami device [178], mercaptopropionic acid/
AuNP@SiO2/CdSe QD [179], multi-functionalized 
g-C3N4 [180], Au nanostructures [181], phosphoserine 
imprinted CNT nanosensor [182], chitosan-AuNPs/
multiwall carbon nanotube/GO [183] with different 
detection methods show a LOD in the range of 0.0016 
to 5.5 U·mL− 1, which is not comparable with that of 
TbFe-MOF [177].

In another study, tricopper benzene-1,3,5-tricar-
boxylate (CuBTC) CuBTC@MoS2-AuNPs/CA125 
Ab-functionalized electrodes were developed, where 
 MoS2 and AuNPs were used for enhancing the electron 
transfer capability and attachment of Ab, respectively. 
Therefore, based on the significant synergistic effect-
derived EC signal, the modified CuBTC@MoS2-AuNPs/
CA125 Ab electrode was able to detect CA125 with a 
LOD of 0.0005 U  mL− 1 and a broad linear range of 0.5 
mU  mL− 1 to 500 U  mL− 1 by DPV [184]. It was shown 
that other EC immunosensors including mercapto-
propionic acid/AuNP@SiO2/QD [179] and chitosan-
AuNP/MWCNT/ GO [183] show LODs (U  mL− 1) of 
0.0016 and 0.002, respectively for CA-125, which were 

Fig. 4 Schematic illustration of core‑shell bimetallic TbFe‑MOF for the immobilization of the aptamer strands for concurrently sensing CA‑125 and 
living cancer cells [177]. Reprinted with permission from Ref. [177], copyright 2019, Elsevier
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significantly higher than that of CuBTC@MoS2-AuNPs/
CA125 Ab [184]. However, it has been reported that 
 Fe3O4@g-C3N4-based EC immunosensor with a LOD of 
0.0004 U  mL− 1 [180] shows comparable outcomes with 
CuBTC@MoS2-AuNPs/CA125 Ab [184].

Cytokeratin 19 fragment (CYFRA21‑1)
The CYFRA21-1 is known as an important tumor 
marker, particularly for lung cancer. Different EC-based 
platforms such as BSA/Anti-Cyfra-21-1/ncCeO2-RGO/
ITO [185], GCE/Fe2N/rGO/Au-HWR/Ab1/BSA/
CYFRA21-1/Ab2-apoFt@Ir (ppy)3 [186], Au-pThi/anti-
CYFRA21-1/CYFRA21-1/anti-CYFRA21-1/Au/3D-
G/GCE [187], and GCE/nafion-AuNPs/Ab1/BSA/
CYFRA21-1/Ab2-TB-AuNPs@MoS2@Ti3C2Tx [188] with 
LODs (pg  mL-1) of 0.625, 0.43, 180, and 0.03 have been 
reported for the detection of CYFRA21-1 marker. Lit-
erature survey showed that, although there is no report 
on the simultaneous use of aptamers and MOF for EC-
based detection of CYFRA21-1, there were several 
reports on the EC immunoassay. For example, Xu and 
coworkers [189] aimed to develop a feasible and ultra-
sensitive immunosensor based on complexation com-
petition reaction between  CaCO3 NP-Au modified with 
Ab, ZIF-8, and EDTA for EC detection of CYFRA21-1. 
Excessive EDTA was used in the complexation reaction 
with  CaCO3 NPs and for etching ZIF-8 and AgNPs (sig-
nal amplifier) and ZIF-8 (signal silencer) onto the elec-
trode surface. Because of the EDTA-based destruction 
of ZIF-8, the LSV signal of AgNPs was amplified (Fig. 5a) 
[189]. As a result, the amount of CYFRA21-1 modified 
with magnetic beads was quantified by analyzing the cur-
rent signal of AgNPs, with a LOD of 3.175 fg  mL− 1 and a 
broad detection range of 10 fg  mL− 1 to 1 µg  mL− 1. Also, 
a Ru(bpy)3

2+ encapsulated cyclodextrin-based MOF with 
good biocompatibility was developed for ultrasensitive 
ECL detection of CYFRA21-1 in serum and A549 lung 
cancer cells, with a LOD of 0.006 ng  mL− 1 and a broad 
liner range of 0.1–50, 50–200 (ng  mL− 1) (Fig. 5b) [190]. 
Furthermore, the sandwich-typed Tb-Cu-m-phthalic 
acid (PA) lanthanide MOF immunoplatform was used 
as a potential ECL-based platform for the detection of 
CYFRA21-1, where captured Ab was immobilized on Pd 
NPs functionalized Ni-Co layered double hydroxide (Pd-
ZIF-67@LDH) nanostructures with high electrocatalytic 
activity for intensifying the ECL signal (Fig. 5c) [191]. The 

developed platform showed a broad linear range of 0.01–
100 ng  mL− 1 and a low LOD of 2.6 pg  mL− 1 [191]. Com-
parison between ECL immunosensor and other strategies 
for CYFRA 21 − 1 detection indicated that ECL detection 
method provide a lower LOD (0.0026 ng  mL−1) in com-
parison with other EC detection methods with LOD in 
the range of 0.043–0.122 ng  mL−1 [192–194].

Other tumor markers
Zhou and coworkers [60] reported the synthesis of two 
types of bimetallic ZnZr-based MOFs through MOF-on-
MOF strategy and used them as a platform for immobi-
lization of aptamer to develop a sensitive aptasensor to 
detect the cell membrane PTK7 as a tumor marker. It was 
seen that the developed core-shell hybrid bimetallic MOF 
was able to detect PTK7 marker with a LOD of 0.84 pg 
 mL− 1 and 0.66 pg  mL− 1 with detection range of 0.001 − 1 
ng  mL− 1 through EIS and DPV, respectively.

Therefore, it was assumed the Zn-MOF-on-Zr-MOF 
could serve as a potential platform to provide higher 
signal output relative to the Zr-MOF-on-Zn-MOF plat-
form [60]. Then, it was seen that Zn-MOF-on-Zr-MOF 
architecture decorated with aptamer can show higher 
sensitivity for the detection of PTK7 relative to structure-
switching aptamer [195], [Ir(pbi)2(5,5-dmbpy)]PF6 [196], 
DNA-AuNPs/aptamer/AuNPs/Nf [197], DNA-AgNCs 
[198] with fluorescence, luminescence, DPV, and fluo-
rescence detection methods, respectively. Indeed, it was 
discovered that the LOD of the above-mentioned method 
was in the range of 0.048-13 ng  mL− 1, whereas the LOD 
of Zn-MOF-on-Zr- MOF was in the range of 0.66–0.84 
pg  mL− 1. Also, early detection of platelet-derived growth 
factor-BB (PDGF-BB), an important protein marker 
upregulated in tumor cells, can provide useful informa-
tion for treatment of a broad range of cancers. Based on 
this theory, Li and coworkers [199] developed a poten-
tial core–shell nanostructure containing Cu-based 
MOF (Cu-MOFs) as well as COFs (TpBD) to be used as 
a potential platform for fabrication of an aptasensor for 
the detection of PDGF-BB. The Cu-MOFs (core) and 
TpBD (shell) were used in signal amplification and immo-
bilization of PDGF-BB biomarker with a LOD of 0.034 
pg  mL− 1 within the detection ranges of 0.0001 to 60 ng 
 mL− 1 [199]. Therefore, it was claimed that concurrent 
application of MOFs and COFs, as well as the adsorp-
tion of tumor marker-specific aptamer via different 

(See figure on next page.)
Fig. 5 a Schematic illustration of the complexation competition approach for the detection of CYFRA21‑1 based on ZIF‑8 [189]. Reprinted 
with permission from [189], copyright 2020, Elsevier. b Schematic illustration of the synthesis of the CD‑MOF@Ru(bpy)3

2+ nanostructure for 
detecting CYFRA21‑1 using an ECL strategy [190]. Reprinted with permission from Ref. [190], copyright 2021, Elsevier. c Schematic illustration 
of immunosensor and ECL detection of CYFRA21‑1 [191]. Reprinted with permission from Ref. [191], copyright 2022, Elsevier. CD Cyclodextrin, 
Pd-ZIF-67@LDH Pd NPs functionalized Ni‑co layered double hydroxide, MBs magnetic beads
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Fig. 5 (See legend on previous page.)
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hydrophobic and hydrophilic interactions, could result in 
the fabrication of a potential core-shell-based aptasensor 
that can be used as a productive strategy to fabricate a 
biosensor for the feasible, accurate, and selective deter-
mination of a specific biomarker in clinical settings.

Conclusions and future perspectives
Promising results of EC aptasensors based on core-shell 
MOFs have enabled us to detect cancer biomarkers in 
a more accurate and sensitive manner in comparison 
with standard approaches. This category of aptasensors 
with the high loading of probes due to the increase of 
the surface-to-volume ratio and interconnected cavities 
along with the resistance of probes against destruction, 
were able to improve the selectivity, sensitivity, LOD, 
mass transfer and signals amplification of MOFs-based 
EC aptasensors compared to other electrodes. There 
are, however, some challenges needed to be addressed 
to make core-shell MOD-based EC aptasensors effec-
tive in clinical settings, including:

A positive or false negative signals: Because MOFs 
have a porous structure with high accessible surface 
areas, non-specific adsorption of biomaterials can neg-
atively influence the assay. Thus, being able to manip-
ulate the pore structure of MOFs during growth is a 
crucial requirement. Increasing the binding sites of tar-
get analytes by modifying the functional groups on sur-
faces seems like an effective way to reduce the binding 
of other biomaterials.

Biocompatibility: The catalytic activity outcomes 
reveal a significant increase in the catalytic perfor-
mances of monometallic MOFs after incorporation of 
another metal or carbon atom in the same platform 
as well as an excellent enhancement in EC properties. 
However, commercializing this type of aptasensor is 
challenging because of biocompatibility and biodegra-
dability issues.

Controllable dimensions and shapes: As expressed 
in many reports, the effects of morphology and size of 
MOFs on their functions have not been studied analyti-
cally, which can limit their practical application. Since 
nanoscale dimensions with polyhedral morphology can 
affect the performance of sensors [200, 201], it appears 
that producing a core-shell MOF-based EC aptasensor 
with uniform distribution improves sensitivity and accu-
racy mediated by boosting electron transfer.

Complex and expensive production: One of the most 
important challenges in the development of core-shell 
MOF-based EC aptasensors is the costly, complicated 
production on large scale, as well as insufficient accu-
racy and efficiency of these platforms in clinical applica-
tions due to the use of various ligands and aptamers in 
one platform compared to standard biosensors. Because 

detecting cancer with a single aptamer is fraught with 
false positive test results, the use of multifunctional 
core-shell MOFs-based EC aptasensors with multiple 
aptamers to simultaneously detect two or three targets is 
currently considered a potential strategy to address this 
issue.

Reproducibility and stability: Due to a lack of com-
plete understanding of MOF growth mechanisms 
on electrode surface, designing electrodes with the 
controllable pores and structures that provide stabil-
ity, electron transfer, and uniform electrocatalytic 
performances for clinical diagnostics is not possible. 
The integration of multiple NPs in MOFs, which can 
improve electron conductivity and catalytic activities, 
may provide some merits to overcome this concern. 
However, due to the lack of complete understanding 
of the synergistic effect of NPs with MOF and their 
effect on the loading of aptamers along with the exces-
sive stability of NPs in the environment, it faces fur-
ther challenges when it comes to their use in clinical 
settings.

Large-scale production: Potential immobilization 
and conjugation of aptamers on core-shell MOFs is 
a critical concern that should be properly addressed 
for the clinical diagnostics of biomarkers. The lack of 
comprehensive studies on the stability of core-shell 
MOF-based EC aptasensors, as well as their effect on 
diagnostic accuracy, has rendered the large-scale pro-
duction of analogous sensors impossible. In fact, it is 
complicated to engineer the conformation, configura-
tion, density, and stability of aptamers upon conjuga-
tion with core-shell MOF NPs. While, the interaction 
of aptamers on the surfaces and probably their spatial 
structure changes are a function of the inherent behav-
ior of the nucleic acid sequences and their different 
interactions with the surface properties of the platform. 
It’s undeniable that these effects can greatly reduce, if 
not stop, the accuracy and sensitivity of diagnosis in the 
clinical applications. A theory-based approach com-
bined with computational methods can provide a more 
accurate assessment of the aptamer 3D configuration 
on the core-shell MOF NPs in the initial phase.

Overall, it appears that core-shell MOF-based EC 
aptasensors will become increasingly practical in 
clinical applications as a result of the efforts made to 
address the challenges.
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