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Abstract
Lung cancer is a prevalent cancer type worldwide that often remains asymptomatic in its early stages and 
is frequently diagnosed at an advanced stage with a poor prognosis due to the lack of effective diagnostic 
techniques and molecular biomarkers. However, emerging evidence suggests that extracellular vesicles (EVs) may 
promote lung cancer cell proliferation and metastasis, and modulate the anti-tumor immune response in lung 
cancer carcinogenesis, making them potential biomarkers for early cancer detection. To investigate the potential of 
urinary EVs for non-invasive detection and screening of patients at early stages, we studied metabolomic signatures 
of lung cancer. Specifically, we conducted metabolomic analysis of 102 EV samples and identified metabolome 
profiles of urinary EVs, including organic acids and derivatives, lipids and lipid-like molecules, organheterocyclic 
compounds, and benzenoids. Using machine learning with a random forest model, we screened for potential 
markers of lung cancer and identified a marker panel consisting of Kanzonol Z, Xanthosine, Nervonyl carnitine, 
and 3,4-Dihydroxybenzaldehyde, which exhibited a diagnostic potency of 96% for the testing cohort (AUC value). 
Importantly, this marker panel also demonstrated effective prediction for the validation set, with an AUC value of 
84%, indicating the reliability of the marker screening process. Our findings suggest that the metabolomic analysis 
of urinary EVs provides a promising source of non-invasive markers for lung cancer diagnostics. We believe that 
the EV metabolic signatures could be used to develop clinical applications for the early detection and screening of 
lung cancer, potentially improving patient outcomes.
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Introduction
Lung cancer is the malignant tumor with the high-
est morbidity worldwide, and due to the lack of effec-
tive early diagnostic methods. Over 61% of lung cancer 
patients are diagnosed in advanced stages III and IV, 
with a bleak 5-year survival rate of only 4%. In contrast, 
early-stage cancer patients have a much more prom-
ising 5-year survival rate of approximately 50% [1, 2]. 
Therefore, finding a stable, repeatable, and non-invasive 
biomarker would be crucial for developing a screening 
method for early detection of lung cancer [2]. EVs are 
released by almost all living cells and can be isolated from 
various biofluids including urine. EVs, mainly includ-
ing exosomes (30–150  nm) and microvesicles (100-
1,000  nm), are membrane vesicles encapsulated with 
lipid bilayers bearing molecular markers of their paren-
tal tumor cells[3–5]. Numerous studies have identified 
tumor-related biomarkers in EVs, with their types and 
expression levels closely associated with the develop-
ment of certain cancers[6–12]. Earlier studies focused on 
urogenital-related cancers and led to the identification of 
protein, RNA, lipid and metabolite biomarkers in pros-
tate cancer [13–15], bladder cancer [16, 17] and kidney 
cancer [18, 19]. The advantages of urinary EVs include 
their non-invasiveness, high stability, and ease of pro-
cessing. Importantly, urinary exosomes are found geneti-
cally related to multiple cells and tissues, and may be 
harnessed as a potential marker source for noninvasive 
liquid biopsy in cancer diagnostics[20]. A previous study 
screened non-small cell lung cancer (NSCLC)-associated 
proteins by comparing the urinary exosomal proteome 
of normal controls and NSCLC patients, suggesting that 
LRG1 may be a candidate biomarker for NSCLC diagno-
sis in urine[10]. Thus, urinary EVs isolates were able to 
detect disease-specific molecules undetectable in urine, 
either because of their low concentration in the bulk 
fluid or because of their location on EVs [21]. In fact, EVs 
could serve as a more specific source for biomarker dis-
covery than unfractionated urine, and provide precision 
diagnostic information without invasive [22, 23]. Previ-
ous studies have shown that the biomolecules change 
at EVs level occurs earlier than that in body fluids [24]. 
Thus, EVs are expected to serve as biomarkers for disease 
diagnosis, target therapy, drug carriers, and prognostic 
analysis [25, 26].

There are certain distinctions in the genomes of cancer 
cells and tissues in different cancer patients. Due to the 
heterogeneity of cancer cells, the sensitivity and speci-
ficity of many genetic and protein diagnostic markers 
are greatly limited, which may be effective in identifying 
tumors in some patients but ineffective in others[27]. In 
contrast, cancer cell proliferation contains various meta-
bolic processes, of which metabolomics could provide a 
quantitative and qualitative method to screen metabolic 

biomarkers (molecular weight < 1,000 Da) in biologi-
cal samples[28]. EVs carry parent cell-derived bioactive 
substances and excrete small metabolic molecules and 
lipids into the circulatory system. These small molecules 
can participate in diverse physiological and pathological 
processes in a biological system. For example, lipids from 
EVs are thought to mediate extracellular communica-
tion, such as immune activation or inhibition, so they are 
highly related to many types of immune diseases[29].

Many studies have focused on the analysis of EV RNAs 
[30, 31] and proteins[32]. Metabolite changes occur 
downstream of gene and protein regulation, therefore 
are more likely to reveal dynamic changes in biological 
status. However, not much attentions have been paid to 
small molecule metabolites, especially the investigation 
of cancer biomarkers via urinary EVs. As autonomous 
metabolic reactors, EVs are capable of delivering spe-
cific and functional metabolites into the tumor micro-
environment [33]. Additionally, metabolic lipids have 
a crucial function in exosome biogenesis and interact 
with the tumor microenvironment (TME) to influence 
tumorigenesis and progression[34]. With the increase 
of specific enrichment and normalization methods, EV 
metabolomics could be used to gain novel biomarkers[35, 
36]. In this study, metabolomic analysis based on liquid 
chromatography-tandem mass spectrometry (LC-MS/
MS) is performed to assess the metabolite profile of uri-
nary EVs from different stages of lung cancer and to dis-
cover specific novel biomarkers for early detection and 
non-invasively screening of lung cancer. This study fills a 
gap in finding and validating urinary EV metabolites as 
diagnostic biomarkers for lung cancer in a larger cohort 
of patients.

Materials and methods
Clinical samples and EV isolation
All urine samples were obtained from the Tongji Hospital 
in the Tongji Medical College at Huazhong University of 
Science and Technology for research upon informed con-
sent from corresponding ethics committee. Table 1 shows 
the information of lung cancer patients and healthy indi-
viduals. All patients with lung cancer were diagnosed by 
pathology, imaging, and cytology, which were staged as 
stage I, stage II, stage III, and stage IV according to the 
Union for International Cancer Control criteria. Stage I 
and stage II are classified as early lung cancer, and Stage 
III and stage IV are classified as advanced lung cancer. 
The criteria used to classify each stage include the size of 
the tumor, the extent of tumor spread to nearby lymph 
nodes, and the presence of metastasis. The control sub-
jects were from people who came to the hospital for reg-
ular check-ups and were identified without tumors and 
urinary tract infections. Since urine values vary consid-
erably during a 24-hour period, the midstream specimen 
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of the first-morning urine was collected for all patients.
The urine was collected in a 50-mL tube, and then cen-
trifuged at 2,000 × g for 10 min, and the supernatant was 
immediately frozen at − 80 ºC. The frozen urine samples 
were thawed on ice and then filtered through a 0.22 μm 
filter (Sigma-Aldrich Chemie GmbH, Taufkirchen, Ger-
many). The urine sample was then loaded into the EXO-
DUS device[37] to acquire highly purified EVs.

Western blotting
The protein concentration of EVs was measured by a 
Qubit Kit (Thermo Fisher Scientific Inc., MA, USA) 
and the protein mixture was then separated by sodium 
dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-
PAGE). Briefly, the proteins were separated using a pre-
cast polyacrylamide mini-gels (Tri-glycine pH 8.3) with 
a Mini Trans-Blot module (Bio-Rad Laboratories Inc., 
CA, USA). Then, the proteins on gels were then electri-
cally transferred onto polyvinylidene fluoride membrane, 
which were then blocked in PBST containing 5% fat-free 
milk powder. After that, the membranes were incubated 
with the primary antibody overnight at 4 oC. The follow-
ing antibodies were diluted by blocking liquid for western 
blot analysis, including anti-CD63, anti-CD9, anti-LRG1 
(Abcam plc, Cambridge, UK), and anti-CD81 (Santa Cruz 
Biotechnology Inc., CA, USA). Thereafter, the membrane 
has been washed incubated with the secondary antibody 
(HRP-conjugated anti-mouse IgG or HRP-conjugated 
anti-rabbit IgG). Finally, the secondary antibody was 
washed by PBST 3 times, we used the enhanced chemi-
luminescence for immunodetection (PeiQing Science & 
Technology Co. Ltd., Shanghai, China) for imaging.

Nanoparticle tracking analysis (NTA)
The Nanosight NS300 (Malvern Instruments Ltd., Mal-
vern, UK) instrument was calibrated with the known 
concentrations of 100 nm pure standards to obtain opti-
mum acquisition detector settings and post-acquisi-
tion settings. EV samples were diluted in PBS to obtain 
the ideal concentration (~ 20–60 particles per field of 
view) to achieve optimal counting. Perform NTA on the 
diluted samples according to the instructions provided 
by the manufacturer. Using the NanoSight NS300, each 
sample was recorded 3 times with a capture time of 30 s 

and analyzed with the camera level 15 and the detection 
threshold 5. Preferably, a syringe pump system (recom-
mended infusion rate: 30 arbitrary units) is integrated 
into the setup to increase the statistical power of the 
measurement.

Transmission electron microscope (TEM)
The EVs were fixed with 4% PFA and let stand for 30 min 
at room temperature. Use a pipette to place 20 µL of EV 
suspension on a clean Parafilm. In this case, the grids 
floated on the drop with their coated side facing the sus-
pension for 30  min. The grids (membrane side down) 
were transferred to drops of PBS with clean forceps for 
1  min. Fix the sample by incubating the grid with 1% 
glutaraldehyde for 5 min. Wash the grids eight times for 
1  min each in 20 µL of distilled water. The sample was 
loaded on the grid and stained with 2% uranyl acetate for 
30 s on ice. After air drying, imaging of the EVs was per-
formed by FEI Talos F200S TEM (Thermo Fisher Scien-
tific Inc., MA, USA).

Metabolites extraction
The 2.0 ⋅ 109 EV particles for each sample were applied 
for metabolomic analysis. The EV sample with a volume 
100 µL was mixed with 300 µL of extract solution (ace-
tonitrile: methanol = 1: 1, containing isotopically labeled 
internal standard mixture). The mixed samples were then 
vortexed and sonicated in an ice-water bath, which were 
left for 1  h at -40 oC to precipitate proteins. After that, 
the sample was centrifuged at 12,000 rpm for 15 min, and 
the supernatant was collected and stored at -80 oC until 
use. The quality control sample was prepared by mix-
ing an equal aliquot of the supernatants from all of the 
samples.

LC-MS/MS analysis
Liquid chromatography was performed using a UHPLC 
system (Vanquish, Thermo Fisher Scientific) with a UPLC 
BEH Amide column (2.1  mm × 100  mm, 1.7  μm), cou-
pled to a Q Exactive HFX mass spectrometer (Orbitrap, 
Thermo Fisher Scientific Inc., MA, USA). The mobile 
phase A was 25 mmol/L ammonium acetate and 25 
ammonia hydroxide in water (pH 9.75), and the mobile 
phase B was acetonitrile. The auto-sampler temperature 

Table 1 Clinical information of lung cancer patients
Disease status Clinical stage N Age, years

Median (range)
Gender
N (male/female)

Current or former smoker
N (Yes/No)

Pathological type
N (Adenocarcinoma/
Squamous carcinoma/unknown)

Lung cancer I 19 (18.6%) 60 (49–71) 10/9 6/13 16/3

II 14 (13.7%) 59 (48–68) 12/2 10/4 10/4/0

III 28 (27.5%) 56 (31–79) 24/4 14/14 13/12/3

IV 14 (13.7%) 61 (47–77) 8/6 7/7 7/3/4

Normal control / 27 (26.5%) 61 (51–77) 14/13 / /
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was 4 oC, and the sample injection volume was 4 µL. The 
QE HFX mass spectrometer was used to acquire MS/MS 
spectra with an information-dependent acquisition (IDA) 
mode using acquisition software (Xcalibur V2.2, Thermo 
Fisher Scientific Inc., MA, USA). In this mode, the acqui-
sition software continuously evaluates the full scan MS 
spectrum. The ESI source conditions were set as follows: 
sheath gas flow rate as 25 Arb, Aux gas flow rate as 20 
Arb, capillary temperature 350 oC, full MS resolution as 
60,000, MS/MS resolution as 7,500, collision energy as 
10/30/60 in NCE mode, spray Voltage as 3.6 kV (positive) 
or -3.2 kV (negative), respectively.

Bioinformatics analysis
We performed OPLS-DA to identify differences between 
two groups of data. The data was processed by SIMCA 
(V16.0.2, Sartorius Stedim Data Analytics AB, Umeå, 
Sweden), and then analyzed with an OPLS-DA model 
with 7-fold cross-validation. We used a volcano plot to 
show the differential metabolites between the two groups, 
and the selection criteria were a p-value < 0.05 (Student’s 
t-test) and VIP > 1. We calculated the Euclidean distance 
matrix for the quantitative values of differential metabo-
lites and clustered the differential metabolites using a 
complete linkage method. The random forest model was 
created by randomly selecting a subset of features from 
the dataset and then building a decision tree model (ran-
dom forest 4.6–14), which was trained on the dataset and 
used to make predictions.

Data preprocessing and annotation
The raw data were converted to the mzXML format 
using ProteoWizard, which were then analyzed with an 
in-house program based on XCMS for peak detection, 
extraction, alignment, and integration. Then an in-house 
MS2 database (BiotreeDB, Shanghai Biotree Biotech Co. 
Ltd., Shanghai, China) was applied to metabolite annota-
tion. The cutoff for annotation was set at 0.3. P < 0.01 was 
considered statistically significant.

Results and discussions
Clinical characteristics of subjects
To investigate metabolic signatures of lung cancer from 
urinary EVs, we collected urine samples from patients 
with Lung cancer (n = 75) and healthy control partici-
pants (n = 27). The Lung cancer patients were diagnosed 
at different stages according to the Union for Interna-
tional Cancer Control criteria: stage I (n = 19), stage 
II (n = 14), stage III (n = 28), and stage IV (n = 14). The 
detailed clinical information is shown in Table 1.

Schematic workflow of this study via EV metabolomics
The abscission of cancer cells is essentially a manifesta-
tion of increased migration and invasion of tumor cells. 

Since it has been shown that the differential expression 
of contents of EVs is closely related to lung cancer metas-
tasis, which plays an important role in the multilink and 
multistep process (Fig. 1a). We chose urine-derived EVs 
as the study object for it is easily available and simpler 
composition than that blood. In the process of separation 
and purification, impurities such as protein fragments, 
lipids, and nucleic acids were filtered away through 
20  nm diameter pores via the EXODUS device, while 
EV particles were left in the device. Then, the purified 
EV samples were transferred to microcentrifuge tubes 
and stored at -80 oC (Fig. 1b). Subsequently, EV samples 
from normal individuals and lung cancer patients were 
subjected to metabolomic and bioinformatics analysis to 
discover differentially metabolized molecules that could 
navigate the early diagnosis of lung cancer patients and 
provide effective information for the development of lung 
cancer.

Characterization of EVs
The EVs were isolated from 5 mL urine depending on 
the EXODUS device. According to the guidelines of 
ISEV[38], Western blotting, NTA, and TEM were used 
to characterize urinary EVs (Fig. 2). The membrane pro-
teins CD9, CD63, CD81 (common EV markers), and LRG 
1 (Lung cancer-associated protein) were detected via 
western blotting. UMOD was used as a negative control, 
which showed no or very shallow bands. In general, the 
EV markers showed higher levels of lung cancer than that 
in healthy controls. Furthermore, lung cancer patients 
show a higher level of LRG 1 in EVs compared to healthy 
controls, indicating urinary EVs display close relations to 
lung cancer[12] (Fig. 2a). Additionally, the size distribu-
tion was compared by NTA analysis showing that EVs 
are more abundant in the patients’ group (Fig. 2b-c). The 
mean and mode size of EVs in the two groups are no sig-
nificant difference (Fig. 2d). TEM images showed that the 
EVs ranged between 40 and 140 nm and have a cup-like 
morphology (Fig. 2d-f ), and no significant difference can 
be seen regarding vesicle morphology beween the patient 
and helathy control. Since cancer cells exhibit enhanced 
production of EVs, the EV level is increased in the body 
fluids of cancer patients compared with healthy controls. 
Thus, EVs could perform as a rich source of non-invasive 
biomarkers for the diagnosis and prognosis of cancers, as 
well as therapeutic targets[39–41].

Differential metabolic profiles of lung cancer and healthy 
control
We utilized high-resolution Q Exactive Orbitrap and 
quantitatively profiled the metabolites of urinary EVs 
derived from 75 lung cancer patients (33 early lung can-
cer and 42 advanced lung cancer) and 27 normal subjects 
to screen early diagnostic markers for lung cancer. Note 
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Fig. 2 Characterization of EVs isolated from lung cancer patients and healthy doners. (a) Western blotting analysis of EV protein markers (CD63, CD9, 
CD81) and lung cancer-specific signature (LRG1) carried by urinary EVs. UMOD used as a negative control. An equal protein amount of 2 µg was loaded for 
all samples. (b) The distribution profiles of particle size from lung cancer at different stages, and healthy control in (c). (d) Characterizations of particle size 
from the lung cancer at different stages and control group, indicating that EVs are more abundant in patients with lung cancer. (e) Transmission Electron 
microscopy (TEM) analysis showing typica cup shape morphology of EVs from a lung cancer patient and (f ) a healthy doner

 

Fig. 1 Illustration of workflow. (a) EVs are secreted by cells and released into the blood, and circulated in urine through hematuria exchange. (b) Urinay 
EVs are purified by EXODUS, followed by metabolomics and bioinformatics analysis for discovering potential biomarkers
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that we applied particle number normalization in order 
to directly compare the metabolic differences in EVs 
between the control and lung cancer groups. The path-
ological status may significantly change the metabolic 
compositions of urinary EVs, and this composition varia-
tion might be accurately reflected when using the same 
number of EV particles for analysis. The metabolic differ-
ence between the control and lung cancer groups caused 
by variations in vesicle numbers will not be shown in this 
analysis.

A total of 698 metabolites were identified in metabo-
lomics (Table S1). These detected metabolites were 
Organoheterocyclic compounds (18.0%), Organonitro-
gen compounds (1.1%), Organic acids and derivatives 
(24.0%), Organic compounds (0.1%), Nucleosides, nucle-
otides, and analogues (3.6%), Alkaloids and derivatives 
(1.9%), Organosulfur compounds (0.4%), Organooxygen 

compounds (2.2%), Phenylpropanoids and polyketides 
(3.9%), Organic oxygen compounds (8.3%), Organic nitro-
gen compounds (2.4%), Benzenoids (11.0%), Hydrocar-
bons (0.3%), Lipids and lipid-like molecules (22.7%), and 
Organophosphorus compounds (0.1%) (Fig.  3a). Among 
all metabolite categories, organic acid and its deriva-
tives are the most abundant metabolite types accounting 
for 24%. Orthogonal Partial Least Squares Discriminant 
Analysis (OPLS-DA) was performed to give a snapshot of 
the metabolite characteristics of lung cancer and healthy 
control samples. The application of OPLS-DA aims to 
establish the relationship model between the metabolite 
expression and the sample category, to achieve the pre-
diction of lung cancer. OPLS-DA t[1]P (abscissa) shows 
the predicted principal component from the first princi-
pal component, indicating the difference between sample 
groups; while the t[1]O (ordinate) shows the orthogonal 

Fig. 3 Analysis of metabolic profles of EVs from patients and controls. (a) Overall metabolic category of all identified metabolites. (b) Score scatter plot 
of OPLS-DA model for lung cancer and healthy control. Red dots represent the lung cancer group and blue dots represent healthy controls (c) Heat map 
showing the expression level of common metabolites in Control and lung cancer
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principal component, indicating the difference within 
groups. Each scatter Dots represent a sample, in which 
red dots represent the lung cancer group and blue dots 
represent healthy controls. The OPLS-DA scores plot is 
based on the 698 metabolites (Fig.  3b) and the samples 
of lung cancer were clustered well away from the healthy 
control, indicating that the metabolic composition of 
lung cancer patients was remarkably different from 
those of healthy control. The most significant differen-
tial metabolites were shown in the heat map (Fig.  3c). 
We found 105 differential metabolites (Variable impor-
tance in projection  (VIP) > 1 and Fold change (FC)> 1.2) 
including 83 up-regulated metabolites and 22 down-reg-
ulated metabolites of early lung cancer patients (Table 
S2). The KEGG enrichment analysis based on differential 
metabolites was engaged in Lysine degradation, Nico-
tine addiction, Neuroactive ligand − receptor interaction, 
Purine metabolism, Pyrimidine metabolism, Taurine and 
hypotaurine metabolism, D-Amino acid metabolism, 
Nicotinate and nicotinamide metabolism, ABC trans-
porters, Steroid hormone biosynthesis, Metabolic path-
ways, Protein digestion and absorption, Glyoxylate and 

dicarboxylate metabolism, Glycine, serine and threonine 
metabolism, Arginine and proline metabolism (Figure 
S1a). The differential metabolites expression signature 
of urinary EVs holds great potential for the diagnosis of 
lung cancer. We subsequently assessed the ability of dif-
ferential metabolites to distinguish lung cancer patients 
from healthy individuals by receiver operating character-
istic (ROC) curve analysis. The area under curve (AUC) 
values corresponding to individual metabolites were 
listed (Table S3).

Detection of lung cancer at early stages via EV metabolic 
signatures
Urinary-derived EVs metabolites were not only capable 
of identifying lung cancer but also showed great potential 
in the identification of early-stage lung cancer. Accord-
ing to the results of the OPLS-DA score plot, the two 
groups (28 early lung cancer and 22 healthy controls) 
were significantly distinguished within a high confidence 
interval (Hotelling’s T-squared ellipse) (Fig. 4a). We then 
performed differential analysis and discovered 125 differ-
ential metabolites (VIP > 1 and FC > 1.2) for the patients 

Fig. 4 Investigation of metabolic markers for lung cancer detection and screening. (a) The OPLS-DA score plot model for differentiation of early lung can-
cer and healthy control. (b) Volcano plot showing expression levels of differential metabolites. (c) The top ten metabolites with the largest mean decrease 
accuracy value and mean decrease Gini value in the random-forest model. (d) The ROC curve was derived from the training set, testing set, and predicting 
set using four metabolites selected by the random-forest model, respectively. (e-g) Heat map showing the expression level of four metabolic markers in 
early lung cancer and control samples, including training set, testing set, and predicting set. “+” represents lung cancer patient, and “-” represents control.
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with early lung cancer compared with healthy controls 
(Table S4), including 101 up-regulated metabolites and 
24 down-regulated metabolites. The expression levels of 
differential metabolites were shown in the volcano plot 
(Blue and red dots representing the down- and up-regu-
lated differential metabolites, respectively) (Fig. 4b). The 
differential abundance (DA) analysis showed that the dif-
ferential metabolites were involved in the KEGG pathway 
including Purine metabolism, beta-Alanine metabolism, 
Nicotinate, and nicotinamide metabolism, Pantothenate 
and CoA biosynthesis, ABC transporters, Steroid hor-
mone biosynthesis, Carbon metabolism, Metabolic path-
ways, Bile secretion, Protein digestion and absorption, 
Butanoate metabolism, Glyoxylate, and dicarboxylate 
metabolism, Central carbon metabolism in cancer, Gly-
cine, serine and threonine metabolism, Tyrosine metabo-
lism (Figure S1b). Subsequently, we established a random 
forest model to discover early lung cancer based on all 
differential metabolites. According to the principle that 
the larger value of mean decrease accuracy and mean 
decrease Gini have the greater contribution to the ran-
dom forest mode, a metabolic panel was selected com-
posed of four metabolites with the largest contribution 
(Fig.  4c). AUC of the combination of Kanzonol Z, Xan-
thosine, Nervonyl carnitine, and 3,4-Dihydroxybenzalde-
hyde was up to 1 and 0.96 in the training set and testing 
set, respectively (Fig. 4d). The AUC of individual metab-
olites is shown in Figure S2. Xanthosine, the initial pre-
cursor of purine alkaloid synthesis, could also be used to 
differentiate normal sperm males from fertile individuals, 
which is a potential biomarker to assess normal sperm 
infertility[42]. In addition, Xanthosine can distinguish 
childhood asthma subtypes, and can be conducive to a 
deeper understanding of the underlying mechanisms of 
childhood asthma [43]. Nervonyl carnitine is one of the 
indicative metabolites for Aflatoxin B1 exposure. Studies 
have shown that the neuroprotective and anti-inflamma-
tory effects of 3,4-Dihydroxybenzaldehyde are associ-
ated with selective modulation of microglial polarization 
and reduced production of inflammatory mediators and 
cytokines by inhibiting MAPK and NF-κB activation[44]. 
Thus, 3,4-Dihydroxybenzaldehyde might be a potential 
treatment for ischemic stroke and other neuroinflamma-
tory diseases[45].

Expression levels of the selected metabolic signa-
tures between lung cancer patients with early stages and 
healthy individuals are shown in Fig. 4e-f for the training 
set (n = 36) and testing set (n = 14), respectively, showing 
a clear difference between the two groups. Additionally, 
a validation set (n = 10) was included, and the AUC was 
achieved at 0.84 for the prediction of lung cancer at its 
early stages (Fig.  4d). The expression levels of signature 
metabolites are shown in Fig. 4g, in which 7 samples were 
correctly predicted out of 10 samples, including 4 lung 

cancer patients and 3 controls, indicating a good predic-
tion potency.

Conclusion
Precision diagnosis of lung cancer in its early stage is 
vital to improve treatment outcomes and increase patient 
survival rates. In this work, we present a non-invasive 
method based on metabolites carried by urinary EVs 
for early detection of lung cancer with high accuracy 
and specificity. We have systematically compared the 
metabolomic profiles of urinary EVs from lung cancer 
patients and healthy controls and identified a diagnostic 
panel composed of Kanzonol Z, Xanthosine, Nervonyl 
carnitine, and 3,4-Dihydroxybenzaldehyde. This diag-
nostic panel has been applied to the training set, testing 
set, and validation set, which can distinguish and predict 
lung cancer patients in early stages with high AUC values 
(AUC > 84). Our method offers great potential for preci-
sion and early diagnosis of lung cancer in a non-invasive 
way based on urinary EVs towards clinical translations.

Abbreviations
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EVs  Extracellular vesicles
IDA  information-dependent acquisition
LC-MS/MS  liquid chromatography-tandem mass spectrometry
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ROC  receiver operating characteristic
SDS-PAGE  sodium dodecyl sulfate-polyacrylamide gel electrophoresis
TME  tumor microenvironment.
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