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Abstract 

Nanobiotechnology, as a novel and more specialized branch of science, has provided a number of nanostructures 
such as nanoparticles, by utilizing the methods, techniques, and protocols of other branches of science. Due to 
the unique features and physiobiological characteristics, these nanostructures or nanocarriers have provided 
vast methods and therapeutic techniques, against microbial infections and cancers and for tissue regeneration, 
tissue engineering, and immunotherapies, and for gene therapies, through drug delivery systems. However, 
reduced carrying capacity, abrupt and non‑targeted delivery, and solubility of therapeutic agents, can affect 
the therapeutic applications of these biotechnological products. In this article, we explored and discussed the 
prominent nanobiotechnological methods and products such as nanocarriers, highlighted the features and 
challenges associated with these products, and attempted to conclude if available nanostructures offer any scope 
of improvement or enhancement. We aimed to identify and emphasize the nanobiotechnological methods and 
products, with greater prospect and capacity for therapeutic improvements and enhancements. We found that novel 
nanocarriers and nanostructures, such as nanocomposites, micelles, hydrogels, microneedles, and artificial cells, 
can address the associated challenges and inherited drawbacks, with help of conjugations, sustained and stimuli‑
responsive release, ligand binding, and targeted delivery. We recommend that nanobiotechnology, despite having 
few challenges and drawbacks, offers immense opportunities that can be harnessed in delivering quality therapeutics 
with precision and prediction. We also recommend that, by exploring the branched domains more rigorously, 
bottlenecks and obstacles can also be addressed and resolved in return.
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Graphical Abstract

Introduction
Background
Concepts of nanotechnology or nanobiotechnology are 
not old, but originated from Richard Feynman’s vision 
of building objects from bottom up at CIT in 1959 [1]; 
however, his concept was not taken seriously for next 
two decades until 1986 with publication of “Engines 
of Creation” by Eric Drexler mentioning approaches 
and vision of controlled manufacturing of products 
at molecular scale [2]. Nanotechnology is the design 
and fabrication of structures at atomic, molecular, or 
macromolecular levels by manipulating or modifying 
basic structure of materials efficiently in order to 
augment, modulate, or change the properties; due 
to the functions of cellular components at nanoscale 
level [3]. Nanotechnology was very suitable to be 
applied in biological sciences and conceptualised the 
term of nanobiotechnology. Nanobiotechnology came 
into existence as a novel and more specialized field 
or branch of science by amalgamation of methods, 
techniques, and protocols from other branches of 
science like nanotechnology, biology, and biochemistry; 
and amalgamation of these branches have resulted 
in formulation of unique and new methodologies as 
well as materials [4]. As a multi-strategic technique, 

nanobiotechnology was developed by amalgamation of 
nanotechnology and biotechnology in order to modify 
or improve the dynamics or properties of nanomaterials 
or nanoparticles (NPs); one of the prominent examples 
is target delivery of biomolecules or drugs through 
functionalized-nanoparticles (FNPs) to target tissue or 
organ [3].

Rationale of nanobiotechnology
Due to extremely small size, NPs and other nanostructures 
can enter cells, interact with organelles, and yield distinct 
effects [4–6]; and due to that, nanostructures contribute 
significantly in drug-delivery system, contrast agents, 
photothermal effects, and imaging [3, 4, 7]. Prototypical 
features of nanostructures including NPs have given 
advantageous edge over conventional methods for 
theranostics of carcinomas and tumors; such leverages 
are due to the ability of NPs to reach target cells or tissue 
without diffusing to the adjacent areas [4]. Such typical 
features are not enjoyed with conventional diffusing or 
anti-cancer therapeutic agents and usually precipitate 
unwanted after-effects and cytotoxicity to normal healthy 
cells. Conventional contrast or therapeutic agents can 
target both cancerous as well as healthy cells, however 
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targeted-NPs are formulated only to reach cells-of-
interest [8]. Methods of nanobiotechnology might help 
in understanding the cellular pathways, signalling, and 
disease progression through identification of novel 
biomarkers and mechanisms of drug action efficiently; 
additionally, modification of nanomaterials has enabled 
scientists to conjugate bioactive molecules such as 
enzymes, photosensitizers, therapeutic drugs, and 
even nucleic acids with modified biomaterials [4]. Such 
advancements have opened new untapped potentials of 
nanobiotechnology in the areas of cancer diagnosis and 
prevention, antimicrobial therapies, and prevention of 
morbidities.

Nanobiotechnology in general
Nanobiotechnology is the design, fabrication, 
modulation, and uses of nanomaterials including 
nanoparticles (< 100  nm) and appliances made from 
these nanomaterials mainly nanocarriers or other 
drug delivery systems; this enables many conventional 
therapeutic agents to be used through repurposing [3]. 
As a prominent product of nanobiotechnology, NPs can 
protect therapeutic agents from enzymatic degradation 
and reticuloendothelial system (RES); also enhance 
the circulation time, thereby improve the chances for 
reaching target sites [4]. Nanobiotechnology (illustrated 
in Fig.  1) is the smart assimilation of techniques and 

methods from nanotechnology, biology, pharmacology, 
and physics for the development of novel nanomaterials 
and devices for therapeutic purpose with improved 
efficiency and applications; few of these nanomaterials 
applied in drug delivery systems, imaging, antimicrobial 
and anticancer therapies, in-vitro diagnostics with 
progressive improvements are nanoparticles, nanotubes, 
and nanofibers among others [3].

Nanoparticles
Nano means dwarf in Greek, 1000th of micrometre 
(1  µm = 1000  nm). Animal cell is about 10–30  µm and 
protein structure is approximately 1  nm. Generally, 
nanoparticles are solid colloidal particles in nano size 
(< 100  nm) (Fig.  2) [9], and due to their exemplary size, 
they possess special optical and other physiochemical 
characteristics distinct from their powder, plate or 
sheet forms as they are able to confine their electrons. 
Their sizes can be compared with bacteria of 200 to 
5000  nm (0.5 to 5  µm) in diameter and average size of 
1000  nm; whereas, the subcellular bacterial vesicles are 
5 to 10 nm in diameter. The largest known bacterium is 
Thiomargarita with a size of 500  µm, whereas smallest 
known bacterium Mycoplasma genitalium is between 
200 to 300 nm in diameter.

Fig. 1 Nanobiotechnology and its applications. (Parts of the figure reproduced with permission from all the authors) [5, 6]



Page 4 of 32Dutt et al. Journal of Nanobiotechnology          (2023) 21:148 

Synthesis
Nanomaterials or nanostructures can be synthesized 
from inorganic (silica, quantum dots, and metal 
nanoparticles) or organic (liposomes, micelles, 
dendrimers, polymeric nanoparticles) materials through 
physical, chemical, or biological approaches (illustrated 
in Fig.  3) [5, 10, 11]. Based on the applications and 
biological effects, nanostructures in diverse shapes, sizes, 
or chemical compositions can be synthesized with the 
intention of conjugation with drugs of choice, controlled 
dispersity, target delivery, and functionalization in 
therapeutics [12, 13]. If functionalized with appropriate 
biomolecules or drugs, NPs are able to bypass the 
immune cells, stay in the system for longer period, higher 
distribution, reach target tissue in higher concentration, 
avoid diffusion to adjacent tissue, release therapeutic 
agents or drugs on specific stimuli to longer duration at 

a specific rate, and yield desired effect that can be used as 
imaging or contrast agent [4].

Inorganic nanoparticles
Due to their unique physio-biochemical properties like 
surface plasmon resonance (SPR), inorganic NPs, mainly 
MNPs (Fig. 2), have provided some extended applications 
in drug design and development; SPR is believed to 
be due to free electrons in outer shell of MNPs and 
responsible for zeta potential, biological activities, and 
interface with other charged surfaces or structures like 
biological cell [5]. Functionalized-iron oxide NPs carrying 
anti-cancer drug paclitaxel can yield superparamagnetic 
as well as receptor-mediated targeting effects [14]. Other 
effective inorganic NPs are nano-ceramide-GO NPs and 
black phosphorus nanosheet functionalized with polymer 
for enhanced circulation, biodistribution, superior 
delivery, and finally greater anti-cancer biological effects 

Fig. 2 Silver nanoparticles aggregates at different resolutions a–d Under VEGA3 TESCAN SEM. observed nanoparticles (d) are in nanometre size 
range (44.04 to 66.50 nm). (Reproduced with permission from all the authors) [5]
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Fig. 3 Methods of synthesis of nanoparticles. (Reproduced with permission from all the authors) [5]
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[15, 16]. Nanobiotechnological research has evolved 
with the development of array of inorganic NPs or small-
sized particles (Ag, Au, Cu, zinc oxide, manganese oxide, 
cadmium oxide, molybdenum, aluminium, iron oxide 
or tungsten) especially for the non-conventional drug 
candidates, thanks to the salient features associated with 
their dimensions [17–22]. Due to the distinct biological 
characteristics, silver (Ag) as an element has found its 
relevance in drug development and wider application 
in various biological assays. [23]. Because of physical 
dimensions [24], odds for penetrating skin, particularly 
damaged or wounded skin can be seen higher in case of 
nano-sized elements including silver [25]. The existence 
of biomolecules-capped NPs improves the affinity for 
microbial as well as animal cells [26]; also provides 
antimicrobial activities in biofilm mode [11, 27–31]. 
Among all elements, silver is believed to be the ideal 
especially for the development of NPs; and, as a result 
of higher affinity for microbial cells, AgNPs have been 
seen with higher bactericidal and fungicidal activities 
[11, 32]. Due to that, a wider application of silver-
based compounds has been seen in order to control 
inflammatory and microbial proliferation [33–35]. Apart 
from that, catheters, wound dressings, orthopaedic 
devices, and even dental implants have been coated 
with different silver nanomaterials in order to inhibit the 
microbial infections subordinated to them [36].

Organic nanoparticles
Biocompatible, biodegradable, and versatile polymeric 
NPs like chitosan nanoparticles (ChNPs) (Fig. 4), PEG, 
PLA, PCL, and PAA NPs are equally effective, however 
most of their synthesis requires either multiple 
chemicals or solvents [37–41]. In majority of cases, 
NPs have been either capped with polymers or peptides 
(like PEGylated NPs) (Fig. 5) in order to minimize their 
cytotoxicity to healthy cells, also, to enhance their 
therapeutic effects [40, 42]. Although, such procedures 
require multiple steps as well as resources. Not only 
polymers, NPs based on lipids, liposomes (Fig.  5), 
and nanoliposomes have been formulated through 
thin-film dispersion method to encapsulate or cargo 
drugs like brinzolamide within stabilizer hydropropyl-
beta-cyclodextrin to improve bioavailability and 
aqueous solubility; also, nanoliposome was prepared 
with mannose-cholesterol conjugation by PEG of 
diverse molecular weight [43, 44]. Unique structure of 
peptides in lipid-NPs would have properties of both 
polymer and liposomes; so, greater aqueous solubility, 
distribution, prolonged release, and pharmacokinetics 
can be achieved. Among organic NPs, liposomes 
are very unique in structure (Fig.  5) and apart from a 
variety of general manufacturing techniques, they can 
also be formulated with different sizes, composition, 
lipid molecules, loaded with drugs (hydrophobic drug 
in layer and hydrophilic in core), bioactive molecules, 
imaging agent, or photosensitizers [45]; additionally, 

Fig. 4 Organic nanoparticles and their complexes
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they can be coated with PEG, target ligands (antibodies, 
peptides, proteins, or carbohydrates) (Fig.  5), or left 
without any surface modification or functionalization 
[40, 46]. Such distinctive structural features make them 
ideal carrier for both hydrophobic (in lipid bilayer) 

as well as hydrophilic drugs (in aqueous core) (Fig.  5) 
[47, 48]; additionally, more than two types of drugs 
or combinations of drugs, contrasting agents, and 
photosensitizers can be carried or encapsulated within 
one liposome (multilammelar) [46, 49]. Such freedom 

Fig. 5 Liposomes and their functionalization with other biomolecules, drugs, or antibodies

Fig. 6 Dendrimer, fullerene, nanobody, and conjugate of polymer with drugs, imaging agent, and targeting moiety
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of carrying different biomolecules provides sequential 
release with dissolution of each layer.  

Dendrimers, fullerenes, and nanobodies
Dendrimers (Fig.  6) are highly organized, ordered, 
and defined artificially synthesized polymeric 
macromolecules with high number of functional groups 
in a compact molecular structure; due to their nano 
structure, homogeneous, and monodisperse structure, 
they have been considered in drug delivery systems for 
cancer and imaging [50, 51]. They are hyperbranched 
macromolecules with end-groups protruding out of the 
periphery (Fig. 6) and if functionalized, the physical and 
biological properties of dendrimers can be modulated. 
Their special characteristics have made them potential 
nanocarrier. Internal voids inside dendrimers provide 
enough sites for drug conjugation and due to this, 
dendrimers present special pharmacokinetics features 
like higher cellular uptake, target delivery, circulation, 
and retention [52, 53]. Fullerene (Fig.  6) are allotrope 
of carbon and can be found as a hollow sphere, tube, or 
even ellipsoid. They are made up of single- or double-
bonded carbon atoms in a partially or fully closed cage 
or mesh; and due to that, they are excellent drug delivery 
system with wide variety of applications like cancer.

A number of bioactive molecules and drugs can be 
carried and released from fullerenes in controlled way to 
target tissue; due to multivalency in fullerene structure, 
a number of drugs or biomolecules can be conjugated 
easily and ideal for various biological targets. One of the 
classical applications is the conjugation of antioxidants 
to fullerene and inactivation of multiple free radicals to 
avoid excess biological damage that could have initiated 
the disease progression due to uncontrolled free radicals.

Nanobodies (Fig.  6), unlike conventional antibodies, 
are smaller, single domain, and variable fragment of 
heavy-chain only recombinant antibodies [54]. They are 
greater soluble and highly stable, can penetrate tissue 
deeper and can be cleared from blood quickly [55, 56]. 
Just like their counterpart mAbs, nanobodies can bind 
to transmembrane receptors or epitopes with greater 
chances of novel targets, can have stronger binding than 
conventional antibodies; although, due to absence of Fc 
domain and subsequent lack of complementary toxicity, 
nanobodies are greater nanocarrier for therapeutic 
agents, toxins, peptides, or radionucleotides. As a result, 
nanobodies have been examined for high-quality imaging, 
theranostics, targeted delivery of bioactive molecules or 
drugs, anticancer therapy. Another kind of prominent 
nanocarriers are micelles (Fig. 5) with a unique structure 
of having both hydrophilic (cover or head) as well as 
hydrophobic (tail or core) parts; in its conventional setup, 
they are ideal for carrying hydrophobic drugs or bioactive 

molecules, however can also carry hydrophilic drugs if 
modified. Due to their cover or head, they are safe from 
phagocytosis and retained in the circulatory system for 
longer period; this is why micelles are hugely stable under 
physiological conditions while carrying and delivering 
hydrophobic therapeutic agents in its core. Hydrophobic 
tail of micelles can be conjugated with the biomolecules 
entrapped in core, thus transport of a larger amount 
of drug without any leakage before can be done with 
targeted delivery and targeting ligands. This exceptional 
feature of micelles makes them one of the dynamic drug 
delivery systems.

Apart from organic NPs, polymers can be conjugated 
(Fig.  6) with greater amount of low molecular weight 
drugs, imaging agents, or bioactive molecules; resultant 
conjugate are ideal and very reliable nanocarrier with 
higher solubility, stability, retention, and penetration 
to cancer cells. Polymer-drug conjugates often present 
targeted and prolonged delivery of drugs for an extended 
period; however, conjugation with drugs can impact the 
molecular weight and finally the distribution of drug 
intracellularly. Conjugates of polymer and drugs (Fig. 6) 
can be designed and synthesized for triggered-release 
of cargo, according to the environment of disease sites 
like more acidic tumor area; this way, the conjugated 
drug cargo can be released in a controlled manner. 
Due to polymeric structure of conjugates, a greater 
bioavailability as well as biocompatibility can be achieved; 
this was seen with the anticancer combination therapy of 
paclitaxel and doxorubicin.  Other effective nanocarriers 
in nanobiotechnology are virus-like-particles (VLP) and 
caged proteins (CP) (Fig. 7). VLPs are NPs with protein 
structure, identical to viral structure, but lacking the viral 
DNA/RNA; they are structurally and morphemically 
identical with virus-isolated structure. Whereas, CPs 
are also morphologically identical to viral structure but 
not taken from viruses and are self-assembled protein 
nanostructures. Just like other nanocarriers, CP and VLP 
are ideal effective and efficient drug-delivery systems 
especially against cancers due to their potential to start 
immune-response. Other organic NPs not derived from 
viruses or eukaryotic cells are self-assembled protein NPs 
(protein polymers) namely collagen, soy, gelatin, albumin, 
and elastin; however, with the help of nanobiotechnology, 
these protein polymers can be used as nanocarriers for 
carrying and delivering drugs with characteristics of 
polymer NPs. One of the prominent examples of protein-
polymer based DDS is albumin-based NPs (Abraxane) 
for the delivery of paclitaxel; whereas, virus-like-protein 
based vaccine has been developed against HIV. 

One of the prominent polymers in DDS especially in 
tissue regeneration and wound healing biomaterials are 
nanogels; they are gels but nano in size (< 100  nm) and 
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retain the properties of gels for being non-fluid colloidal 
or polymer network. Gaining fluid from adjacent 
environment and increase in dimensions are due to their 
cross-linking network made up of natural or synthetic 
polymer (or polymers); initially, nanogels were prepared 
through self-assembly or aggregation of polysaccharide 
polymers. As compared to other DDS, nanogels provide 
huge benefits or convenience like ease of preparation, 
carrying capacity of diverse biomolecules, therapeutic 
agents, photosensitizers, and contrast agents, negligible 
efflux of cargo before target, and application routes. 
Although nanogels have been examined and applied 
in bioelectronics, DDS, biochemistry, antimicrobial 
therapy, and anticancer therapy among others, but their 
applications in vaccines, delivery of nucleic acids, and 
immunotherapy are most studied.

Mechanisms of action
NPs are capable of nucleic acid denaturation, to induce 
disorder of mitochondrial membrane potential, 
damaging lipids, proteins, and mitochondria (Fig.  8) 
by production of ROS for oxidative stress [11, 57]; and 
expression of cytochrome-c in order to induce apoptosis, 
intracellular deposition of cations, and induction of 
inflammation have been demonstrated [11, 58, 59]. 
NPs act by compromising cellular integrity [60, 61], 
inactivation of metabolic enzyme of transport chain 
by interacting with sulfhydryl group [62], and affinity 
for plasma membrane protein as well as phosphorus 

moieties of DNA in order to inactivate replication [63–
65]. At the same time, displacement of  Zn2+ and  Ca2+ 
have also been suggested for biological characteristics of 
AgNPs [66]. NPs can disrupt biofilm framework (Fig. 9) 
and microbial structures [5, 11]; as leading drug carriers, 
NPs are competent in delivering drug to target site or 
tissue, can provide extended permeability and retention 
(EPR) effect, and induce endocytosis [35, 67–71]. In our 
previous article, we had explained and discussed the 
mechanism of action of MNPs in details [11].

Therapeutic applications of nanobiotechnology
Antimicrobial therapy
All sorts of NPs have been examined and tested against 
microbial infection including multidrug resistant 
bacterial (MDR) strains; polymer-based NPs, immune 
cell-based nanoformulations [72], and liposomes are 
some of the most successful NPs-based drug delivery 
systems applied for sustained release of conventional 
antibiotics without enhancing the concentration. Best 
example for that is ciprofloxacin-loaded liposomes 
(Lipoquin) for respiratory infection, capable to release 
antibiotic for extended period without causing any 
adverse effects; this way, the liposomal formulation can 
abolish the need of repurposing (reposition/reprofiling), 
high concentration, or combination. Due to its structure 
and characteristics (explained in Sect.  "Nanoparticles"), 
liposomes are excellent nanocarrier for anti-fungal 
drugs like amphotericin B for reduced cytotoxicity; for 

Fig. 7 Virus‑like‑particle (VLP), virosome, and protein cages
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that, it has been used for neutropenia, histoplasmosis, 
or even viral infections. Organic NPs like chitosan 
nanoparticles (ChNPs) prepared with ionic gelation 
method (193 to 530  nm) [73] and electrospray method 
(average size of 200  nm) from low molecular weight 
chitosan have been found to be effective against MDR 

pathogens like Neisseria gonorrhoeae, planktonic and 
biofilm state of oral microbes including Staphylococcus 
spp., Enterococcus spp., and Candida spp. [74]. Being the 
potent antimicrobial agent against MDR microorganisms 
[5, 11], AgNPs have been used in developing implant 
materials by incorporating them with polymers [75], an 

Fig. 8 Mechanisms of action of nanoparticles. (Reproduced with permission from all the authors) [11]

Fig. 9 Anti‑biofilm actions of nanoparticles. (Reproduced with permission from all the authors) [11]
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antifungal [76], anti-inflammatory [77], antimicrobial [5, 
11], and antiviral agents [78]. In various forms, AgNPs 
have also been widely applied for controlling wound 
infection [33–35]. Some of the NPs-based methods used 
or applied in treating microbial infections are Silverline, 
Verigene, Acticoat, and Endorem. Nanocomposites of 
silver, fluoride, and chitosan synthesized using chemical 
method have also showed effective antimicrobial effects 
against pathogenic Enterococcus spp. and Candida spp.; 
however, nanocomposites of less than 10 nm were more 
toxic (mouse macrophages) than nanocomposite of more 
than 10 nm [79]. Polymeric NPs formed with conjugation 
of chitosan with microcin J25 AMPs have demonstrated 
dose-dependent bactericidal effects against tetracycline-
resistant pathogenic E. coli K88 and MRSA, with no 
cytotoxicity to Caenorhabditis elegans [80, 81].

Tissue regeneration
Due to delayed wound healing coexisting with MDR 
microbial infection (Fig.  10) and immunocompromised 
state, scientists have shown much dedication and 
interest in this field of tissue engineering (TE) and 
regeneration (TR), tissue transplantation, and alternative 
biological approaches to repair or reconstruct the lost 
or diseased area of tissue, skin, or organ [6]. Rather than 
conventional bandages or drugs, functionalized-NPs can 
act and interact with underlying cells, environment, and 
microbes more efficiently [82–85]. Therefore, NPs-based 
biomaterials and TR methods provide an environment 
to speed up the TR by interacting with cells and oxygen-
deprived microenvironment [86–89]. Underlying stem 
cells and enzymes respond to the microenvironment, 
initiation, and materials crucial for the TR and 
remodelling efforts [90]. Thereby, a number of fabrication 
techniques (like electrospinning and coaxial) (Fig.  11) 
and biomaterials have been investigated for TR [90], 
nanofibrous scaffolds, nanogel, hydrogel scaffolds, 
thread-based patches, and sponge scaffolds are few of 
them (Fig.  12) [6, 91]. This method uses the principles 
of chemistry and physics by applying electrical potential 
with continuous supply of biopolymer to obtain a thread 
or filament [91]. By an improved or modified method 
called coaxial electrospinning, drugs, enzymes, or cells 
can also be injected along with biopolymer through a 
common injection system. Drug or enzyme in core and 
biopolymer as shell or sheet of the nanofibers (Fig.  12) 
or filaments can be obtained through advanced coaxial 
system. Through electrospinning or coaxial methods, a 
number of fabrications of nanofibers have been applied 
and investigated in TR mainly for wound healing, ulcers, 
and lesions [92–95]. We had reviewed few of them 
previously. Manufactured skin-substitutes, patches, or 
scaffolds primarily act as barrier (like skin) and initiate 

faster wound healing with the help of incorporated 
drugs, growth factors, enzymes, or cells (fibroblasts, 
keratinocytes, or osteoblasts) [5].

Scaffolds or substitutes fabricated for soft tissue are 
different and impractical for regeneration of hard tissues 
like bone and dentine, also, biomaterials need to provide 
hardness, strength, porosity, and texture identical to hard 
tissues. Calcium phosphate-based hydroxyapatite (Hap) 
matrix is one of the widely used biomaterials or bone 
substitute due to its similarity with the bone matrix [96, 
97]. Additionally, it is found to be biocompatible enough 
to induce osteoblasts to initiate bone formation when 
used by incorporating into nanofibers [97, 98]. On the 
other hand, due to lack of continuous remodelling and 
other physiological processes, several tissues including 
cartilages are hard to regain or repair post inflammation 
or damage, faulty presentation of progenitor cells is 
believed to be the main reason for this. Therefore, 
incorporation of either undifferentiated (MSC) or 
differentiated (chondrocytes) cells can be investigated for 
cartilage regeneration and TR methods can be exploited 
in this regard [99]. Nanofibrous scaffolds or cartilage 
matrices of different formulations incorporated with 
abovementioned cells have been observed with improved 
tissue regeneration [100, 101].

Collagen/chitosan scaffolds containing AgNPs (at 
10  µg/ml) (Fig.  12) has been found to promote wound 
healing with anti-inflammatory effects [102]. AgNPs 
and their complexes are widely utilized for antimicrobial 
and wound healing actions [6, 103]; the incorporation 
of metal and silver containing compounds into gels [25, 
104], hydrogel or gelling fibre [102, 105, 106], mesh or 
polymeric membranes (Fig.  12) mentioned as one of 
the effective solutions for the development of unique 
bandages for the wound dressings with antibacterial 
activity [106, 107]. Functionalized nanogel and nano-
mesh containing AgNPs, growth hormone, antibiotics, 
and enzyme (Fig.  12) are widely examined wound 
dressings system for enhancing immune response [108]. 
AgNPs embedded in wound dressing polymers, alginate, 
cotton fabrics, cellulose, or chitosan promote wound 
healing and control MDR microbial growth [109–111].

To avoid unwanted cytotoxicity and for improving 
efficacy, therapeutic agents or drugs need to be delivered 
at the desired or target site (targeted delivery or active 
targeting) (Fig.  13) and this has given the concept of 
‘controlled’ and ‘sustained’ release of drugs [112, 113]. 
Polymeric or liposomal formulations have played 
significant roles, in targeted delivery of enzymes [114], 
anticancer drugs [115, 116], and antimicrobial drugs, 
through ligands at a dedicated rate [112, 117, 118]. 
As describes previously, entrapment or encapsulation 
of bioactive molecules requires a cavity or casing to 
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Fig. 10 Wound healing process and application of nanobiotechnological products. (Part of the figure reproduced with permission from all the 
authors) [5]
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be avoided by reticuloendothelial system or leakage; 
structural features of polymeric nanocarriers serve 
the purpose by carrying greater quantity of enzymes, 

proteins, or even nucleic acids [119]. Another effective 
nanocarriers such as nanofibers, fabricated by a number 
of techniques including electrospun method, are known 

Fig. 11 Co‑axial electrospinning method. (Part of the figure reproduced with permission from all the authors) [6]

Fig. 12 Biomaterials and nanobiotechnological products in tissue regeneration and tissue engineering. (Reproduced with permission from all the 
authors) [6]
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to have ECM like structure to incorporate or trap 
bioactive molecules; additionally, drugs can be embodied 
directly through solution or emulsion [91].

Using co-axial electrospinning (Fig. 11), nanocapsules, 
nanotubes, nanochannels and nanowires carrying drugs, 
enzymes, or bioactive molecules (Fig.  11) can also be 
fabricated for releasing them at target sites; also, growth 
factors like EGF, FGF, TGF, bone morphogenetic protein 
(BMP), neurokines, and neurotrophins can be delivered 
for wound healing or tissue regeneration [91, 120]. Under 
organic nanostructures, PLGA, PVA, polyamide, PMMA, 
and PEVA are some of the widely investigated polymers 
for entrapping and co-delivering diverse therapeutic 
drugs, enzymes, or photosensitizers [91]; due to that, 
organic nanoparticles mainly liposomes can deliver 
hydrophobic (in sheet) as well as hydrophilic (in core) 
drugs at the same time (Fig. 4) [118, 121]. Consequently, 
co-delivery of drugs or bioactive molecules of totally 
different purpose and structure (therapeutic agent and 
imaging) (Fig. 4) becomes feasible especially in the field 
of theranostics, for treating bacterial and viral infections, 
inflammation, and cancers [115, 116]. Co-delivery is very 
significant as adjuvant (lipophilic in nature) delivery 
system for cancer vaccines (Fig.  4) also for delivering 
bioactive molecules [118, 122].

NPs especially AgNPs are also very potent vehicle for 
enzymes [24], peptides, antibodies, proteins, dyes, drugs, 
and biomolecules [123, 124]. Biologically synthesized 
AgNPs by Setaria verticillate extracts have also been 

examined for carrying anti-neoplastic drugs [125]. 
Doxorubicin and Alendronate dual delivery using AgNPs 
was effective against HeLa cells with IC50 value of 27 µM 
[123]. Delivery of nucleic acids can be done using AgNPs 
[126]. AgNPs (60–80 nm) can be equipped for triggered 
delivery of UV-photoactivated molecules for gene 
silencing [124]. Such nanocarriers can be used in gene 
expression as well as genetic therapy (to be discussed in 
Sect. "Anti-cancer therapies"). Aerva javanica synthesized 
and gefitinib-conjugated AgNPs showed 50% more 
effectiveness against MCF-7 cancer cells as compared to 
gefitinib alone [127].

Anti‑cancer therapies
One of the extensively examined organic NPs are PEG-
PLA and PEG-PLGA based nanostructures (Figs. 4, 5, 14) 
for anticancer activities and used for carrying bioactive 
molecules or drugs (Table  1) [37, 128–130]. Whereas, 
due to the dimensional properties, other nanomaterials 
like carbon-based GO, QD, and nanotubes have also 
been examined for anticancer effects [131, 132]. Among 
the conventional or self-assembled NPs for anti-cancer 
effects, PEG-based NPs like PEG-platinum or PEG-Ag 
nanostructures have been designed and formulated 
precisely; such formulations have both hydrophilic as 
well as hydrophobic parts [133–135]. Whereas, PEG-
PLA copolymer-based NPs have also been formulated 
and developed through co-assembly to cargo anticancer 
drug Capecitabine as well as hydrophobic platinum 

Fig. 13 Active targeting. (Reproduced with permission from all the authors) [5]
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Fig. 14 Nanobiotechnology based anti‑cancer therapeutic strategies

Table 1 Nanoparticles against different cancer types

Nanoparticles Size (nm) Zeta potential (mV) Cancer References

AgNPs 44.04 to 66.5  − 55.3 Breast, Colon [5, 6]

AuNPs 14 ± 4  − 18 mV Breast [150]

AuNPs 49.8 ± 6.6 − 11.3 Breast [151]

Liposomes 244.3 ± 16.7 22.9 ± 1.7 Lung, Ovarian [152]

HSA 143.4 ± 0.7 − 5.6 ± 0.8 Breast [153]

PTX‑HAS 170.2 ± 1.4 − 17.4 ± 0.5 Breast [153]

NHA 50.3 ± 6.2  − 21.5 ± 2.7 Breast [154]

PLGA 210 27 Lung [155]

PLGA 330 ± 3 − 3.9 ± 03 Colon [155]

PLGA 204 − 5.6 Liver [155]

PLGA 240 ± 1 − 19.5 Ovarian [155]

SEB 389.7 ± 16.49  − 13.5 ± 12.1 Lung, Breast [156]

PLGA‑PEG‑HA 265.6 ± 3.8 − 30.4 ± 0.1 Ovarian [157]

PLGA 429.26 ± 41.53 − 11.2 Liver [158]

LTZ‑PLGA 64.0 ± 15.4 − 25.0 ± 0.4 Breast [159]

PEG‑PLA 140 ± 15 − 14 ± 4 Prostate [129]

PEG‑PLGA 114–335  − 2.8 to − 26.2 Breast [130]

HA‑GEM/CH‑Pt 187 − 21 Lung [160]

HA‑CS 210  + 25 Breast [161]

POM‑CS 105 ± 6  + 52.0 ± 5.2 Cervical [162]

MNP‑GEM‑PTX 152 ± 4 − 4.15 ± 1 Pancreatic [163]
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[136]. Likewise, PEG conjugated with beta-Cyclodextrin 
has been seen with improved carrying and delivery 
of anticancer drugs (Doxorubicin and Sorafenib) and 
multipurpose modified PEG-Cyclodextrin complex for 
immunotherapy as well as diabetic therapy [137] [138]. 
PEG-PCL (PEG conjugated with beta-Caprolactone) 
copolymer has been carefully formulated for delivering 
hydrophobic drugs or biomolecules (e.g. cytokines) 
against various types of cancers [139–142]. Also, PEG as 
shell and PAA as core as amphiphilic block copolymer 
assembled in aqueous solution has been seen with 
enhanced delivery of anticancer drug (doxorubicin) with 
EPR effects [143].

Another copolymer, PEG-PPG-PEG can carry 
anticancer hydrophobic drug retinoic acid into its micelle 
structure [144]; similarly, nanoparticles functionalized 
with polydopamine has also been designed as aptamer 
and formulated for efficient anticancer effects of 
Docetaxel as well as photodynamic therapy (PDT) [145]. 
On the other hand, Docetaxel has been encapsulated 
in PEA-based hydrophobic NPs for biological effects 
against lung cancers [146]. Not only PEG or PLA, other 
polymers mainly polysaccharides like polygalactose, 
hyaluronic acid, and chitosan have been used for 
formulation of biomaterials [128]. Natural product 
quercetin with anticancer properties (component of 
Azadirachta indica) can be encapsulated in chitosan-NPs 
for dermatological purpose for protection against UV 
[147], whereas chitosan polymers have been observed 
to inhibit intrinsic coagulation pathway. For effective 
PDT against cancer, Hyaluronic Acid has been self-
assembled in micelles with hydrophobic photosensitizers 
like Chlorine-e6 [148]; such formulations have imparted 
enhanced and controlled delivery of cargo with greater 
redox-responsive kinetics [148, 149]. Apart from that, 
for carrying hydrophobic drugs, NPs functionalized with 
glycopolymers have been designed for greater triggered-
release of biomolecules or drugs to cancer sites [149].

Polymeric NPs or liposomes have been extensively 
utilized in majority of the commercialized NP-based 
anticancer drugs. Doxorubicin functionalized with 
PEGylated liposomes (Doxil and Caelyx) was one of 
the foremost anticancer drugs, usually formulated by 
sterically stabilization of phospholipids, cholesterol, and 
PEG [164]. Organic NPs especially liposomes are known 
to bypass the reticuloendothelial system, providing 
more time for circulation, reduced cytotoxicity to 
healthy tissue, and accumulation with EPR effect at the 
diseased target sites due to its smaller size (< 120  nm). 
Apart from that, several polymeric formulations, 
another liposomal-based anticancer drug Vincristine-
Sulfate is known for uses against lymphocytic 
leukaemia due to its formulation, mainly composed of 

sphingomyelin and cholesterol, enhance circulation 
time and accumulation [165, 166]. Different lipid-based 
and polymeric formulations are either in trial phases or 
have been approved for uses, like Lipoplatin, made from 
functionalization of Cisplatin by phosphatidylcholine 
(SPC-3), cholesterol, dipalmitoyl, phosphatidyl glycerol 
(DPPG), and methoxy-PEG-distearoyl phosphatidyl 
ethanolamine (mPEG2000-DSPE) [167–171]. Initial 
results have shown reduced cytotoxicity, therefore have 
been approved for treatment of rare type of cancers. 
Main purpose of functionalization of anticancer drug 
is targeted delivery to diseased or desired site also 
to reduce the leakage to adjacent tissues [128, 172]. 
Ligand or antibody targeting is one of the preferred 
functionalization (Figs.  4, 5, 15), increases the efficacy, 
like Kadcyla an antibody-targeted anti-breast cancer 
drug [172–174]. Kadcyla is an antibody–drug conjugate, 
formulated with Maytansine derivate (DM1) conjugated 
with Trastuzumab (Herceptin) by lysine residue of Mab, 
commonly target HER2 + receptor and induce cell death 
(apoptosis) through intrinsic pathway [173, 174]. Other 
nanobiotechnology-based anticancer drugs are Abraxane 
(albumin with NPs) and Rapamune (micelles with 
rapamycin) with reduced cytotoxicity to normal cells and 
improved anticancer effects [175].

Biogenic AgNPs (14  nm) synthesized from 
Podophyllum hexandrum Royle extracts are considered 
very effective against HeLa cells for inducing 
genotoxicity as well as caspase-3 mediated apoptosis 
[176]; likewise, AgNPs synthesized from Azadirachta 
indica extracts have been found to induce cytotoxicity 
and increased caspase-3 expression in HCT-116 
human colon cancer cells [6]. As mentioned earlier, 
with the enhancement in physical characteristics, 
the biological and chemical properties of NPs can be 
augmented [12, 177–179]. NPs are capable to diffuse 
into intracellular space of cancer cells to provide EPR 
effect (Fig.  15) [180]; as a result, detection via cell-
labelling and cytotoxicity to neoplastic cells have been 
seen with NPs [13, 123, 125]. Another type of MNPs, 
selenium NPs (SeNPs) have been observed to induce 
in-vitro cytotoxicity in oral squamous cell carcinoma 
(OSCC) cells and colorectal adenocarcinoma 
cells [181]. Recently, a number of nano-drugs like 
Genexol-PM® (polymeric micelle formulation), Doxil® 
(liposomal doxorubicin), and non-PEGylated liposomal 
doxorubicin Myocet™ have been authorized for 
anticancer therapy [182]. Recently, albumin-stabilized 
anti-cancer drug, Genexol-PM® (polymeric micelle 
formulation), Doxil® (liposomal doxorubicin), and non-
PEGylated liposomal doxorubicin Myocet™ have been 
permitted to be prescribed [182]. Among MNPs-based 
DDSs, AgNPs have been examined widely as vehicle 
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to transport or distribute enzymes [24], peptides, 
antibodies, proteins, dye, drug, and biomolecules [123, 
124]. AgNPs synthesized through Setaria verticillata 
extracts have been examined for efficiency to cargo 
anti-cancer drugs [125]. AgNPs-based dual delivery of 
Doxorubicin and Alendronate was very effective  (IC50 
27  µM) against HeLa cells [123]. AgNPs synthesized 
through Aerva javanica and conjugated with Gefitinib 
were 50% more effective against MCF-7 breast cancer 
cells as compared to Gefitinib alone [127]. Active 
targeting of cancer-cells by AgNPs-based DDS is not 
only feasible but also efficient [183]; additionally, 
distribution or supply of drug cargo in packets may also 
be modulated through vehicle redesign [184]. Sustained 
and long-term delivery (~ 30 days) of anti-cancer drugs 
have been seen by adjusting the basic structure of 
polymeric-NPs carrier [185]; such modulations have 
exhibited significant anti-cancer cytotoxic effects [185].

Apoptotic pathway can be prompted by MNPs, UV 
and gamma rays, or by oxidative stress by reactive 
oxygen species in order to release cytochrome-c by 
mitochondria and activating caspase-9 (Figs.  10, 15, 
16) [5, 186–188]. Apoptotic pathway is very much 
likely to be initiated by like AgNPs, anti-cancer drugs, 
or radiation through a series of events and can be 
tested through quantification of caspase-3 (Fig.  17) 
[5]. Previously, we had investigated AgNPs  (IC50 

744.23  µg/ml) for inducing apoptosis in HCT-116 
cancerous cells and found that caspase-3 expression 
in AgNPs-treated HCT-116 cells were 1.5-fold higher 
as compared to untreated cells (Fig.  17) [6]; also, our 
findings in coherence with few previous studies [186, 
189, 190]. AgNPs (10  µg/ml) synthesized with Rubus 
fairholmianus  extract have been found to induce 
apoptosis through intrinsic pathway and caspase-3 
expression (1.18-fold higher) in MCF-7 breast cancer 
cells [186]. Similarly, MNPs (12–41  nm) synthesized 
biogenically by Solanum trilobatum extracts 
upregulated the caspase-3 expression in MCF-7 
cancerous cells [187].

Biogenic MNPs are very effective against carcinoma 
cells to induce apoptosis. AgNPs (53 nm) synthesized by 
Beta vulgaris L root extracts can induce higher caspase-3 
activities at very lower concentrations (5 µg/ml, 20 µg/ml, 
and 40 µg/ml) in HuH-7 human hepatic cancerous cells 
as compared to CHANG normal human hepatic cells 
[191]. AgNPs at 40  µg/ml were able to induce elevated 
condensation of chromosomes and more than 26% and 
24% (respectively) of cells with early and late apoptosis 
[191]. AgNPs (7–20  nm) at very less concentration 
are capable to upregulate the apoptotic activities in 
cancerous cell lines [192]; AgNPs were able to induce 
apoptosis HT-1080 and A431 at 0.78 µg/ml and 1.56 µg/
ml respectively. Biogenic AgNPs (73.37 nm) synthesized 

Fig. 15 Nanobiotechnology based anti‑cancer actions of nanoparticles. (Reproduced with permission from all the authors) [5, 6]
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from Fagonia indica were able to induce caspase-3 in 
human breast cancer cells at concentration of 12.35 μg/
ml [193]. AgNPs alone can induce severe damage to 
intracellular structures or crucial cellular organelles by 
creating stressful environment. Stress or stimuli through 
endoplasmic reticulum damage,  Ca2+ efflux (Fig.  16), 
or injury to genetic materials are usually followed by 
initiation of apoptotic process [194]. Therefore, it is 
evident that biogenic AgNPs can induce apoptosis in 
cancerous cells more efficiently than healthy cells by 
activating caspase-3 intrinsic pathway.

Immunotherapy is intended to stimulate immune cells 
(innate or adaptive) to identify and attack cancerous/
tumorous cells (Fig. 15), whereas immunomodulation is 
the stimulate or supress (modulation) of immune system 
through natural or synthetic bioactive molecules or drugs 
to treat cancers or even infections [195–202]. Both of 
these therapeutic strategies are much effective in long-
term inhibition or eradication of cancerous cells than 
using anticancer (cytotoxic) drugs alone to kill cancerous 
cells. Nanobiotechnology has provided numerous 
immunotherapies (Figs. 14, 15) capable to induce immune 
responses against cancers and microbial pathogens, like 
macrophage-based nanoformulations [72], monoclonal 
antibodies [203–205], immune checkpoint inhibitors 
[206, 207], non-specific immunotherapy, cytokines [208, 
209], oncolytic virus therapy [210], NK Cell therapy 

[211–214], CAR T-cell therapy [215, 216], and cancer 
vaccines [217–219]. Cancer vaccines are intended to 
strengthen the recruitment and proliferation of native 
T-cell by antigen presentation to dendritic cells (DCs) 
(Fig.  15) [220–223]. Immunotherapies including cancer 
vaccines modulate (stimulate) the innate and adaptive 
immune systems at cellular level, whereas modulation 
of tumor microenvironment (TME) can cause the 
hindrance for  CD8+ T cells on suppression of immune 
system and allowing the active targeting [221, 223]. 
It is already discussed that nanobiotechnology based 
products like nanoparticles and nanofiber scaffolds are 
suitable and effective for targeted drug delivery for TR, 
cancer, and multidrug resistant infections; adaptation of 
these techniques can provide impactful developments. 
It has been learnt that immune cells and cancer cells 
act both in suppression as well as progression of cancer 
cells [224–226], therefore the interaction between them 
is significant to understand the immune behaviour 
against cancer in order to supress or contain. Immune 
cells with anticancer effects include CD8 + cytotoxic 
T-cells, effector CD4 + T cells, natural killer cells, 
dendritic cells, M1 polarized macrophages, and N1 
polarized neutrophils [195, 226]. Whereas, myeloid-
derived suppressive cells (MDSC), tumor associated 
macrophages (TAM), secreted cytokines like IL-6, TNF, 
IL-1β, IL-23, and regulatory T cells (Tregs) are cancer 

Fig. 16 Schematic representation of apoptotic pathway. (Reproduced with permission from all the authors) [6]
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inducing cells and immunoregulatory biomolecules 
[195]. On the other hand, depending upon the TME, cells 
like Th17, CD4 + , CD25 + , Foxp3 + , Tregs, and cytokines 
like TGF- β are considered to have dual role of promoting 
as well as supressing the tumor growth [223, 225, 226].

Novel anticancer techniques and methods have 
gained much traction in past decades. Out of them, 
phototherapies like PTT as well as PDT are minimum 
invasive methods known to exhibit potent anticancer 
actions with minimum systemic side effects; whereas, 
nanoparticles-based PTT and PDT (Figs.  10, 15) have 
expanded the efficacy of anticancer effects [227–233]. 
Apart from destruction of cancer cells with heat and 
reactive oxygen species  (H202,  O3

−), both PTT and 
PDT are known to induce a number of anticancer 
events (Fig.  15) [6, 227, 231, 234, 235]. A number of 
immunological events are triggered (Fig. 15) as a result of 
photothermal and photodynamic destruction of cancer 
cells, release of antigen and presentation to DCs, release 
of cytokines, and activation of cytotoxic CD8 + T-cells [6, 

234]; additionally, the killing efficacy of both the therapies 
can be improved with the help of checkpoint blockage 
(PD-1/PD-L1) or nanobiotechnological products like 
nanoparticles [206, 207, 228, 236, 237].

Apart from thermal ablation, cryoablation, ultrasound 
ablation, and microwave ablation are some of the newly 
discovered ablation techniques against cancer cells [228, 
238]. Most of these methods are developed and adopted 
due to their minimum collateral damage and abrupt 
cytotoxicity to normal tissues, improved targeting, 
manoeuvrability, and higher killing effects [228, 239, 240]. 
Under novel techniques, not only primary tumor but 
also secondary (metastatic) tumor can be targeted, such 
techniques involve the direct killing effects by thermal 
ablation and resultant immune response; killed or 
destructed tumor cells initiate a cascade, antigen release, 
presentation to immune cells, and activation (illustrated 
in Fig. 15) [228, 241]. Destructed or killed tumor cells act 
as a source of tumor-associated antigen (Fig.  15) which 
then trigger the immune response against secondary 

Fig. 17 Caspase‑3 expression induced by silver nanoparticles in HCT‑116 colorectal cancer cells. (Reproduced with permission from all the authors) 
[6]
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tumor cells by releasing a number of cytokines and 
activating the anti-tumor cells (cytotoxic  CD8+ T cells 
and NK cells) [6, 242, 243]. These techniques are more 
advanced and efficient than conventional anticancer 
therapies, NPs-based PTT and PDT are few of them. In 
addition to ablation effects and immune responses, the 
utilization of NPs with ablation can improve the overall 
anticancer effects [241, 244–246]. NPs-based PTT and 
PDT can provide numerous advantages, such as targeted 
killing, delivery of photosensitizers and therapeutic 
agents, functionalization [228, 247, 248]. Combined NPs-
PDT and NPs-PTT can target (and kill) the cancer cells 
directly along with initiation of immunological cascade to 
target secondary and metastatic cancer cells [6, 241, 249, 
250]. Such combined therapies are called photothermal 
immunotherapy and photodynamic immunotherapy, as 
they are using immunotherapy along with photodynamic 
and photothermal therapies [229, 249, 251, 252].

Among novel strategies in nanobiotechnology, 
gene therapy (Figs.  14, 15) has been developed as an 
independent therapeutic by deleting incorrect sequence, 
introducing correct gene or genetic sequence into 
defective or incorrect genetic sequence [253–255]. Gene 
therapies sometimes inducing virus in order to produce 
correct genetic products, treat congenital disorders, or 
sometimes treat viral diseases or cancers. Gene therapy 
can be performed through CRISPR/Cas9, plasmids, 
oncolytic virus, or naked nucleic acids (Figs.  4, 5, 14, 
15) [254–257]. Best way to bring the normal function of 
gene and to correct incorrect or faulty gene is done by 
introducing or inserting a correct sequence or normal 
gene at any non-specific location or at directly replacing 
faulty gene through selective mutation (Fig. 14) [254, 257, 
258]. Cell organelles are usually upto 10 µm, double helix 
DNA is 10  µm, and a typical animal cell is between 10 
to 100  µm in diameter; this has provided an advantage 
to nanoparticles (< 100 µm) to enter these cells easily as 
compared to other structure. NPs are known to interact 
cell wall of both eukaryotic as well as prokaryotic cells in 
order to induce biological changes [5, 6, 11]. Therefore, 
NPs have been used as nano-vectors or nanocarriers 
for carrying genetic materials (Figs. 4, 5), viral particles, 
or even whole virus [259–263]. Virosome (Fig.  7) is the 
best example for immune-therapy, also to replace induce 
immunogenic reaction against cancers or bacteria. 
However, the same nanocarriers are potential vector for 
replacing faulty genes by carrying the correct genetic 
sequence, but with negligible or no immunogenic 
properties [264–266]. Therefore, to introduce correct 
gene or to replace or swipe faulty gene with correct 
gene, NPs and other nanocarriers are the potential novel 
subjects in area of nanobiotechnology. NPs in gene 
therapy are some of the most valuable nanocarrier with 

significant benefits, by protecting encapsulated genetic 
materials from degradation, targeted delivery of genes, 
easy access to cells by passing cellular wall, and to sustain 
for extended period by staying in the circulation in order 
to deliver genes.

Other therapeutic uses
Nanobiotechnology has been implemented for the 
treatment of very prominent autoimmune as well as 
deadly viral diseases like rheumatoid arthritis (RA) and 
HIV/AIDS [267–272]. Long term effective therapeutic 
effects with sustained delivery have been observed with 
nano-Certolizumab pegol, a commonly used TNF-α 
inhibitor functionalized with PEG; nano-formulation can 
deliver anti-inflammatory drugs to the inflamed synovial 
membrane for upto 2 weeks [273, 274]. Apart from that, 
targeted delivery of NPs to the inflamed tissues (like 
synovial membrane) has been observed with reduced 
synovitis and slower bone destruction and resorption 
[275]. As a result of reduced efficiency of conventional 
anti-viral therapy (named HAART) of HIV/AIDS [276], 
liposomal and polymeric nano-delivery systems have 
been developed for delivering Efavirenz functionalized 
with Tuftsin; functionalized-nanocarriers are capable 
of targeted delivery in addition to sustained release of 
therapeutics, therefore minimizing the side effects on 
long term treatment [277, 278]. Efavirenz loaded and 
Tuftsin-functionalized popy(propyleneimine) dendrimers 
can recognize mononuclear phagocytic cells and result 
in significantly higher uptake by infected macrophages 
[278].

Factors affecting properties and applications
Method of synthesis of nanoparticles
Methods of synthesis can modulate and affect the surface 
chemistry of nanomaterials during bioreduction, can also 
stabilize the nanoproducts. However, the entire process 
is not fully controlled and may result with NPs of any 
size or surface chemistry, that can affect the applications. 
Additionally, loading or bioconjugation of drugs, 
enzymes, or photosensitizers might require another 
step (usually chemical) after biological biosynthesis 
as these biomolecules can be degraded easily by the 
phytochemicals (present in plant extracts) or microbial 
enzymatic actions during bioreduction. On the other 
hand, chemical method for synthesis of NPs is not only 
convenient but also versatile for functionalization and 
modulating the surface chemistry of nanomaterials, 
additionally it can be conducted at large scale. More 
bioactive molecules can be loaded through chemical 
method with accuracy and changes like addition of 
antibodies, targeted ligands, and photosensitizers. 
Biological methods are easy and do not require much 



Page 21 of 32Dutt et al. Journal of Nanobiotechnology          (2023) 21:148  

resources but inherit few limitations, whereas chemical 
methods are more convenient and versatile but may 
require a number of chemicals, reagents, and resources. 
Chemically synthesized nanomaterials have also been 
observed with weak biocompatibility, but with improved 
anticancer actions; additionally, their antimicrobial 
actions are noticeable. If synthesized in a controlled 
standardized manner, nanomaterials produced with 
chemical methods can render improved biological 
actions; also, their therapeutic applications are higher 
than other nanomaterials. Unlike others, physical 
methods of NPs synthesis are very complicated require 
heavy and sophisticated machinery like NAG laser 
(Fig.  3); also, for functionalization, a lot of additional 
steps are required to be followed. Despite the perquisites 
of convenience in addition to well-characterized 
and refined product through chemical and physical 
methods, associated higher cost as well as the potential 
environmental hazards cannot be dissipated entirely [26]; 
shortcomings of expensive armamentariums like NAG 
and 532 nm laser (Fig. 3) are always attached with these 
methods [279].

Functionalization of nanoparticles
The nano-bio interaction, biological fate, and targeting 
capacity of NPs are also dependent on the parameters 
of functionalization which is adding or improvement 
of physio-chemical properties either by addition or 
conjugation of biomolecules, reduction, or stabilization 
with different materials [12, 280]. Surface chemistry, 
chemical groups, or chemical composition can highly 
influence the antimicrobial activities, biological uptake, 
and cytotoxicity of NPs [12, 13]. Surface-functionalization 
of NPs is easily performed by addition of PEG on surface 
or coating of polymer, organic material like chitosan, 
antibodies, peptides, folic acid, biotin molecules, 
biomolecules from plant extracts, or deposition of NPs 
on such polymers (illustrated in Figs. 4, 5, 6, 7); however, 
the biological and physiochemical properties of NPs 
may vary on minor variation of surface chemistry [12, 
281]. Surface functionalization has been seen improving 
the biological actions of NPs modified with PEG [281], 
polysaccharide like dextran, or oligosaccharide like 
chitosan [12]. Improved stability and disparity of NPs 
modified with mesoporous silica [12]. Starch-capped 
copper NPs (S-CuNPs) have been observed for inducing 
moderately toxicity with no morphological changes 
in mouse embryonic fibroblast (3T3L1) cells [282]; 
although, higher cytotoxicity with uncapped CuNPs 
comparatively highlights the significance of capping or 
functionalization [282].

Chitosan-coated AgNPs (Cs-AgNPs) have shown 
significant toxicity as well as changes in cellular 
morphology to RAW264.7 macrophages at 10 µg/ml [60]. 
It was found that selenium-NPs (SeNPs) functionalized 
with PLL were highly cytotoxic also genotoxicity to 
TR146, HaCaT, and Caco-2 cells as compared to PAA- 
and PVP-coated SeNPs with no toxicity to E. coli, S. 
aureus, and S. cerevisiae BY4741 [181]. On the other 
hand, biogenic polyvinyl pyrrolidone‐coated (PVP) 
AgNPs (10 to 30 nm, average size 20.5 nm) synthesized 
with extracellular Lysinibacillus boronitolerans 
supernatant exhibited significant antimicrobial effects 
against microorganism like Fusarium graminearum, also 
synergistic effect in combination with norfloxacin; but 
significant cytotoxicity for 2C12 skeletal muscle cell at 
concentration of 4 to 15 µg/ml with IC50 5.45 µg/ml. It 
is evident that functionalization can modulate or affect 
biological properties extensively.

Host environment
Temperature, pH, oxygen, biochemistry, and presence 
of diverse pathogens or toxins can affect the biological 
properties and fate of NPs. Hypoxia (lack of oxygen) 
is a major hinderance in tissue regeneration (Fig.  12) 
and anticancer actions [283, 284]; also, DDS can also 
affect the availability of oxygen and moisture. Absence 
of moisture may result in the dryness, cellular death, 
chronic wound, and epithelialization over wound 
dressing material [285].  These factors restrict the 
applications of conventional DDS for wound healing 
but can be addressed with nanobiotechnological-based 
novel DDS for sustained delivery of drug by maintaining 
moisture and oxygen to the wound bed.

Complications and challenges
Cytotoxicity
Due to extremely small size (< 100  nm), nanomaterials 
can affect intracellular biochemical processes by 
interacting with biological structures like cell wall, 
organelles, and nucleic acids [5, 6]; this is one of the 
main concerns that can affect the normal healthy cells. 
In-vivo applications of nanomaterials have been seen 
as a matter of concern due to their physiobiological 
properties and ability to induce chemical changes in 
in-vivo cellular microenvironment; additionally, the end 
state of these nanobiotechnological products including 
NPs of different sizes and materials is not fully known. 
Recently, fullerene (4.7–9.5  nm) functionalized with 
hydroxyl group were investigated for cytotoxicity against 
human umbilical vein endothelial cells and found to 
induce cytotoxicity and morphological changes in a dose-
dependent manner; additionally, on longer exposure 
(> 7  days), endothelial cells were unable to attach with 
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delayed cellular growth. Such observations are significant 
to notice as hydroxyl-functionalized fullerenes were 
considered as neuroprotective if cytotoxicity to normal 
human cells are also found; same type of nanomaterials 
induce both beneficial as well as toxic effects or responses 
in biological systems.

NPs have been seen with a dose-dependent cytotoxicity 
for non-cancerous cells [286, 287]. AgNPs biosynthesized 
by Streptomyces sp. NH28 biomass exhibited low viability 
(82.9 ± 7.5%) in mammalian cells at 25  µg/ml  (IC50 
64.5  μg/ml) [288]. Starch stabilized AgNPs (20  nm) 
induced decline in viability of murine cells at 10  μM 
[31]. Starch-capped AgNPs induced genotoxicity in 
human lung fibroblasts cells IMR-90, although, the cells 
were unaffected beyond 100  μg/ml [289]. A significant 
toxicity in murine hepatocytes had been observed due to 
commercial AgNPs (15 nm and 100 nm, 5 to 50 µg/ml) 
as compared to NPs of manganese oxide, molybdenum, 
aluminium, iron oxide, or tungsten [290]. A dose 
dependent inhibition was also observed with significant 
cytotoxicity as well as changes in cellular morphology 
in RAW264.7 macrophages due to Cs-AgNPs [60]. 
Recently, we had found biogenic AgNPs biocompatible 
comparatively [5], but dose-dependent and cell-
dependent toxicity have been noticed in recent years 
[289, 291, 292]; also, AgNPs have been observed for 
causing in-vitro cytotoxicity considerably in a number 
of cell types [292]. Polymer-functionalized AgNPs had 
also been seen for causing significant amount of toxicity 
in non-cancerous IMR-90 and U251 cell lines [289]. It is 
very much evident that biological actions and behaviour 
of nanoparticles are established on array of factors like 
functionalization, materials used in fabrication, physical 
parameters, or the drug delivery method [291, 293].

Starch-capped AgNPs exerted significant genotoxicity 
in human lung fibroblasts cells IMR-90 [289]. As 
mentioned previously, functionalization of NPs can 
affect the cytotoxicity as well as antibacterial properties; 
as, it was found that SeNPs functionalized with PLL 
are highly cytotoxic and genotoxic to TR146 (SCC), 
HaCaT, and Caco-2 cells as compared to PAA- and PVP-
coated SeNPs with no toxicity to E. coli, S. aureus, and 
S. cerevisiae BY4741 [181]. On the other hand, biogenic 
polyvinyl pyrrolidone‐coated AgNPs (PVP-AgNPs) 
(10 to 30  nm, average size 20.5  nm) synthesized with 
extracellular Lysinibacillus boronitolerans supernatant 
exhibited significant cytotoxicity in 2C12 skeletal muscle 
cell at concentration of 4 to 15 µg/ml with IC50 5.45 µg/
ml.

Functionalization
As discussed in earlier Sect.  "Functionalization of 
nanoparticles", biochemical interaction of nanomaterials 

including NPs with cell or cellular structures is very 
subjective to surface chemistry and availability of 
targeting ligands or antibodies on surface, presence 
of these ligands or biomolecules before target site are 
dependent on synthesis, type of biomaterials, and local 
microenvironment; therefore, modulating the surface 
properties becomes a challenge to keep the cargo until 
delivery site and protection from enzymatic degradation 
or reticuloendothelial system. Polymeric or organic 
nanomaterials and other nanobiotechnological products 
are easily surface-modified with antibodies, peptides, 
or other small molecules, they can easily encapsulate or 
carry therapeutic agents or photosensitizers; however, 
inorganic nanomaterials are not easily modified, also 
their carrying capacity is limited. Most of the inorganic 
NPs can only be surface-modified either chemically or 
biologically, however due to their own fixed size and 
solid structure, inorganic nanomaterials can’t carry 
drugs in their core; therefore, inorganic nanomaterials 
can only carry biomolecules or drug (on surface) if they 
are encapsulated with polymers like PEG or chitosan 
(e.g. PEGylated NPs) (Fig.  5). Also, any number of 
biomolecules can’t be attached on surface of NPs due to 
interaction among them, only limited kind and number 
of biomolecules can be conjugated on surface; however, 
a number of therapeutic or imaging agents can be loaded 
in core of liposomes at the same time (Fig. 4).

Delivery and targeting
Methods of synthesis, functionalization, local 
environment, and mode of administration can influence 
the delivery and targeting of therapeutic agents, 
photosensitizers, and ligands. NPs can reach target site 
passively (without targeting ligands) or actively (with 
targeting ligands or antibodies specific to cell) (Figs. 10, 
15). NPs without any surface-functionalized targeted-
ligands or antibodies (Fig.  4) are more prone to diffuse 
into healthy tissues without reaching target site or 
without attaching to target cells; as a result, untargeted 
NPs may induce unwanted cytotoxicity, compromising 
the therapeutic purpose. Delivery of therapeutic agents 
or anticancer drugs to the diseased site becomes a 
challenge if cargo is released or leaked before target 
site or destroyed by the reticuloendothelial system, 
this is more common with unprotective cargo or cargo 
without proper conjugation; polymeric nanomaterials, 
liposomes, or micelles are less prone to suffer from faulty 
delivery due to well defined and structural encapsulation. 
Despite conjugation of targeting ligands, delivery as well 
as targeting is not entirely guaranteed due to numerous 
factors of TME and intracellular biochemistry with no 
definitive features; results from one experiment involving 
one particular cell type or animal model can’t be reflected 
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or replicated exactly with other cell types or animal 
models. Consequently, thorough investigations are 
required to ascertain delivery capacity and biochemical 
interactions of drug with cellular structures.

Physical dimensions
The size of NPs can highly influence the cytotoxicity in 
mammalian cells [79, 294]. Biological interactions of NPs 
with cellular structures are dependent on their physical 
characteristics [177]; size dependent plasmon absorption 
is due to the size-dependent dielectric function of the NPs 
and any shift or fluctuation of plasmon band would affect 
the absorption bandwidth [32]. However, the parameters 
like geometry, size, or topographical features of NPs can 
also affect the plasmonic resonance [177, 179]. Although 
there are a number of confounding factors like local 
environment, presence of targeting ligands, and type of 
nanomaterial, but the biological actions of nanomaterials 
are heavily influenced by the physical parameters and 
dimensions of NPs [179]; and characteristics like SPR can 
modulate or affect the biological fate of NPs [295]. It is 
well known that zeta potential (ZP) corresponds to the 
stability and longevity of NPs in a medium, ZP of ± 25 mV 
or higher indicates NPs with improved stability for longer 
period [5]; weaker ZP would impact the stability of NPs 
due to interparticle attraction, ZP of less than ± 25 meV 
would aggregate altogether in a medium to cause higher 
cytotoxicity [296].

Conclusions
Nanobiotechnology has enabled the efficient delivery of 
therapeutic agents, such as drugs, growth factors, and 
genes, for cancer treatment, microbial infection, or repair 
of the diseased tissues, with the help of nanoparticles, 
nanotopological scaffolds, polymeric scaffolds, 
nanocarriers, or combination of them. We have observed 
that, for the controlled, triggered and effective delivery of 
bioactive molecules and loading and compartment of the 
cargo molecules, the physicochemical properties of the 
carrier materials can be controlled at the molecular level 
through nanobiotechnology based nanoscale tailoring 
approach. Features and characteristics of nanocarriers 
can be improved, manipulated, modified, and enhanced, 
with higher the capabilities and efficiencies, through 
capping, encapsulation, or functionalization. Focus must 
be on the research and development of novel methods, 
techniques, nano-biomaterials, and devices. Apart 
from few inorganic nanostructures, polymer-based 
novel nanostructures and nanocarriers can provide 
structural versatility, biodegradability, bioavailability, 
and biocompatibility; and with a number of ways, such 
nanostructures can be designed and fabricated efficiently 

with the help of nanobiotechnological methods and 
techniques.

Developed nanocarriers, especially polymeric and 
biodegradables, offer an immense space for further 
enhancements, due to their versatile structure and 
characteristics. Cargo capacity of these carriers can 
be further improved, by modifying their structure, 
for delivering greater amounts of therapeutic agents. 
Polymeric nanocarriers can also be designed and 
developed, for delivering multiple cargo, such as 
anticancer drug and imaging agent, with greater 
precision. Targeted delivery and precision delivery 
can be achieved with existing nanocarriers, through 
conjugation of targeting moieties. Nanocarriers, such 
as liposomes, can be further improved by incorporating 
other polymers or by changing the proportion, for 
delivering phytochemicals. Existing polymeric or organic 
nanocarriers can be improved further, for carrying and 
triggered delivery of phytochemicals with unfavourable 
solubility but greater therapeutic properties. Polymeric 
nanocarriers are some of the exclusive options presently 
available, with higher capacity of improvements 
and enhancements. Conventional therapeutic 
methods have numerous inherited limitations, but 
nanobiotechnological products, such as nanocarriers, 
can be handled, enhanced, and modified, despite having 
few drawbacks and limitations. One of the utmost goals 
of nanobiotechnological research are to explore existing 
methods and techniques and identify the ones with 
higher capacity for improvements and enhancements.

Future perspective
Nanobiotechnology, despite having few challenges 
and drawbacks, offers immense opportunities that can 
be harnessed in delivering quality therapeutics with 
precision and prediction; by exploring its branched 
domains (like immunotherapy or gene therapy) more 
rigorously, bottlenecks and obstacles can also be 
addressed and resolved in return. By viewing the current 
trends, it is clear that nanobiotechnology is progressing 
towards multi-directions at very fast pace, with cutting-
edge research at universities, laboratories, and industries. 
It can also be expected that nanobiotechnology would 
deliver novel methods, techniques, and materials to 
provide more reliable, sensitive, and efficient tools and 
analytical systems for theranostics. It can also be seen that 
nanomaterials and other nanobiotechnological products 
offer numerous potential applications, but attention 
must be focused only to the ones capable of improving 
efficiency, scientific methods and understanding, and 
quality of life; also, understanding for the interactions 
of nanomaterials with biological systems, organelles, 
ecology, and animals must be developed further.
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