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Abstract 

Extracellular vesicles (EVs) have emerged as a promising platform for gene delivery owing to their natural properties 
and phenomenal functions, being able to circumvent the significant challenges associated with toxicity, problem-
atic biocompatibility, and immunogenicity of the standard approaches. These features are of particularly interest for 
targeted delivery of the emerging clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associ-
ated (Cas) systems. However, the current efficiency of EV-meditated transport of CRISPR/Cas components remains 
insufficient due to numerous exogenous and endogenous barriers. Here, we comprehensively reviewed the current 
status of EV-based CRISPR/Cas delivery systems. In particular, we explored various strategies and methodologies 
available to potentially improve the loading capacity, safety, stability, targeting, and tracking for EV-based CRISPR/Cas 
system delivery. Additionally, we hypothesise the future avenues for the development of EV-based delivery systems 
that could pave the way for novel clinically valuable gene delivery approaches, and may potentially bridge the gap 
between gene editing technologies and the laboratory/clinical application of gene therapies.
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Graphical Abstract

Background
As a revolutionary genome editing tool, clustered regu-
larly interspaced short palindromic repeat (CRISPR)/
CRISPR-associated (Cas) genome editing systems have 
achieved rapid development and great success in the 
fields of biomedicine [1], agriculture [2], and manufac-
turing [3]. Compared with traditional gene editing tools, 
such as zinc finger nucleases and transcription activator-
like effect nuclease, CRISPR/Cas systems offer unique 
advantages, including targeted editing of multiple sites, 
rapid generation of mutants, and single-guide RNA 
(sgRNA) designability [3]. In particular, the CRISPR/
Cas9 RNA-guided endonuclease system is a power-
ful emerging tool that is the most thoroughly studied 
and widely applied and has been successfully employed 
for gene knock-in, knock-out, repair, and transcrip-
tional regulation [4]. Regardless of whether CRISPR/

Cas forms plasmid DNA (pDNA), transcribed mRNA, or 
pre-assembled ribonucleoprotein (RNP) complexes, its 
components must be delivered to the target cells by car-
riers with specific features, including high safety, stability, 
efficiency, and nontoxicity profiles. However, as the lead-
ing tool for delivering CRISPR/Cas in vivo, viral vectors 
have limitations related to packaging constraints, immu-
nogenicity, carcinogenesis, scale-up production, and 
the longevity of Cas expression. Nonviral carriers also 
face various challenges, including rapid clearance, prob-
lematic biocompatibility, toxicity/immunogenicity, and 
potential issues with therapeutic cargo release [5].

Nanosized extracellular vesicles (EVs), which can be 
categorised into exosomes (30–150  nm) and microvesi-
cles (MVs; 50–1000 nm), are released by all cell types into 
the extracellular milieu under various physiological and 
pathological conditions. Exosomes comprise intraluminal 
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vesicles formed via the invagination of multivesicular 
endosomes (MVEs) membranes and are released into 
the extracellular space upon fusion of MVEs with the 
cell membrane. In contrast, MVs are highly heterogene-
ous EVs that are characterised based on their origin and 
are secreted via outward budding of the plasma mem-
brane [1–3]. At the cellular level, particles of different 
sizes elicit unique uptake mechanisms; that is, particles 
smaller than 100 nm can be taken up via clathrin- or cav-
eolae-mediated endocytosis, whereas larger complexes 
may require macropinocytosis [4, 5]. Consequently, 
larger aggregates are commonly directed toward lysoso-
mal degradation or membrane recycling, whereas smaller 
vesicles may achieve higher rates of effective intracellular 
delivery [6]. However, their overlapping size and biomo-
lecular cargo can often hinder the efficient identification 
and isolation of specific EV types [2]. Due to the rapid 
evolution of EV nomenclature, herein, we apply the gen-
eral term ‘EVs’ to describe all cell-derived nanoparticles 

(NPs). Biochemical and proteomic analyses have effec-
tively characterised various proteins, nucleic acids, lipids, 
and other components carried by EVs [7]. These com-
ponents execute diverse pathophysiological functions 
by regulating myriad cell signalling pathways [8]. Thus, 
EVs have been used as potential biomarkers and natural 
therapeutic agents for diseases. In recent years, EVs have 
become increasingly popular in the ever-expanding field 
of gene delivery.

EVs represent a promising alternative delivery vec-
tor for the CRISPR/Cas9 components that circumvents 
the limitations of other carriers (Fig.  1). EVs have high 
biocompatibility and stability because they shield the 
cargo in phospholipid bilayer membranes or by express-
ing signalling molecules at high levels on their surfaces. 
Therefore, the coated cargo is not taken up allowing it to 
achieve a low clearance rate and long-term circulation 
[6–8]. Owing to their strong modifiability and efficient 
internalisation with few undesirable immune reactions, 

Fig. 1 Advantages of extracellular vesicles (EVs)-based CRISPR/Cas systems delivery system
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EVs are safe and feasible for the delivery of diverse car-
goes [9, 10]. Indeed, targeting membrane-anchored 
ligands, or portions inherently expressed on the EVs sur-
face, can achieve specificity [11]. When responding to 
internal or external stimuli, the intelligent release of EV 
cargo can be spatiotemporally controlled [12]. A wide 
range of cellular adhesion molecules facilitate EV pene-
tration through biological barriers and migration into tis-
sues or areas with no blood supply, thereby significantly 
improving the bioavailability and targeting of the EV 
cargo [13, 14]. Hence, natural EV carriers may represent 
an effective tool for the delivery of CRISPR/Cas9 com-
ponents. Nevertheless, their transportation into target 
sites remains insufficient, owing to many exogenous and 
endogenous barriers. Many reviews have elucidated the 
design characteristics of each CRISPR/Cas system [15, 
16], including the advantages, disadvantages, and unique 
physicochemical and physiological features. Hence, this 
review provides a comprehensive review of the cur-
rent status of EV-based CRISPR/Cas delivery systems. 

Additionally, various emerging/prospective strategies and 
methodologies to improve the loading capacity, safety, 
stability, targeting, and tracking of design/modification/
engineering of EVs to targeted delivery the CRISPR/Cas 
system, including pre-isolation or post-isolation modi-
fication and artificial EVs (Fig. 2). Finally, we dissect the 
current challenges and prospected future outlooks for 
EV-based CRISPR/Cas delivery to improve its editing 
efficacy and expand its practical applications in various 
fields.

Loading
Generally, the loading approaches of active molecules 
in/on EVs can be divided into three categories, (1) pre-
loading methods (cell-based loading, or the pre-isolation 
approach) involve loading cargo into EVs, which is then 
secreted in an EV-carrying manner from parent cells 
using transfection [17] or co-incubation [18] approaches. 
Although these methods are highly repeatable and rela-
tively simple, the loading efficiency is typically low and 

Fig. 2 Modification strategies for the preparation of engineered EVs. EVs can be modified by indirect methods such as pre-loading cargo and 
genetic manipulation (A), or direct methods, including post-loading cargo (B), EV membrane modification and artificial EVs (such as hybrid EVs 
(HEs) and biomimetic EVs). As for cargo loading, there are three main approaches, including the pre-loading method, the post-loading method, and 
others. Created with Biorender.com
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highly dependent on the parent cell types, as well as cargo 
characteristics and concentration gradients (Fig. 2A). (2) 
Post-loading methods (direct loading, or post-isolation 
approach) harvest EVs from distinct sources and intro-
duce cargo into EVs via co-incubation [9], electropora-
tion [19], sonication, extrusion [20], transfection reagents 
[21], or freeze–thaw cycles [22] (Fig. 2B). This strategy is 
more customisable than the former and minimises the 
inclusion of other unnecessary substances. (3) Other 
loading methods include cellular nanoporation biochips 
[7], enveloped protein nanocages (EPNs), and artificial 
EVs.

EV‑loading pDNA
Among the three formats (pDNA, mRNA, or RNP), 
pDNA is the most widely used for CRISPR/Cas system 
delivery. Owing to their multi-drug loading capacity, 
biological barrier crossing, and targeting ability, EVs can 
be utilised as natural carriers for targeted CRISPR/Cas 
plasmid delivery, circumventing the underlying immu-
nogenicity and toxicity of cationic materials [23]. How-
ever, repeated expression of Cas9 and sgRNA increases 
off-target risks and undesired mutations. Moreover, 
compression of more than 10  kb of pDNA into EVs, as 
well as its translocation to the nucleus, is difficult [24]. 
Nevertheless, various approaches, including transfec-
tion of donor cells [17], electroporation [19], and trans-
fection kits [21], facilitate the loading of pDNA into EVs, 
which is then delivered to target cells. Table 1and Table 2 
shows the outcomes and characteristics of each strategy 
for engineered EV-mediated delivery of CRISPR/Cas9 
components. When the pDNA of CRISPR/dCas system 
be loaded into EVs, plasmid size or sequence determines 
the delivery efficiency of EVs to a certain extent [17, 25]. 
For instance, a delivery system, comprising engineered 
minicircle DNA loading EVs, that has greater efficiency 
in loading minicircle DNA and lead to significantly pro-
longed and higher transgene expression as compared to 
their parental plasmid counterparts [26, 27]. Because 
the high-speed centrifugation may destroy vesicles and 
reduce sample quality [21], the engineered EVs-mediated 
delivery of CRISPR/Cas9 imparted only a moderate edit-
ing efficiency (∼58% suppression) on the target cells, 
which requires separation and purification of EVs before 
and after transfection.

Hybrid EVs (HEs) with liposomes have offered a prom-
ising prospect for application in gene loading [9, 18]. 
More specifically, HEs are formed via freeze-thawing 
EVs and incubating them with a mixture of liposomes 
and plasmids for 12 h at 37  °C. As such, HEs are larger 
and more stable than EVs; however, they retain the same 
surface proteins, which can significantly enhance their 
loading, targeting efficacy, and cellular uptake efficiency, 

without affecting their native functions or integrity. 
Liposomes alone cannot effectively transfect or express 
encapsulated genes. Thus, the development of engi-
neered EVs through nanobiotechnology holds promise 
for CRISPR/Cas delivery with the combined advantages 
of native EVs and synthetic NPs.

EV‑loading mRNA
Compared to the pDNA format, mRNAs have the advan-
tages of a smaller molecular structure, rapid onset of 
action, and minimal off-target effects. Additionally, EV-
based mRNA can provide high biostability and cellular 
uptake efficiency with negligible cytotoxicity. However, 
their application is limited by the fragility of the single-
stranded structure Cas9 mRNA, which must be resolved 
for RNA protection during systemic shuttling. Direct 
encapsulation of donor cells represents the most com-
mon strategy for loading nucleic acids into EVs and is 
suitable for expressing high molecular weight molecules; 
however, this strategy has a relatively low loading effi-
ciency [28]. To enhance RNA loading, the EVs mem-
brane protein CD9 has been fused with human antigen 
R (HuR, RNA-binding protein) to generate an domain 
on the inner surface of EVs. In fact, addition of three 
AU-rich elements to the Cas9 mRNA sequence-rich ele-
ment, CD9-HuR and AU facilitates the efficient loading 
of Cas9 mRNA that could be transfected into donor cells. 
Engineered CD9-HuR-EVs have considerable potential 
for ARE-modified Cas9 mRNA encapsulation [29]. One 
study reported that approximately 22.3 ± 8.5 copies of 
Cas9 mRNA were found in 100 engineered EVs, indicat-
ing a tenfold increase in loading efficiency.

Electroporation is another effective method for intro-
ducing Cas9 mRNA into EVs and utilises an external 
electric field to generate pores on the surface of EVs to 
transfer mRNA [6, 30]. Electroporated EVs have a higher 
antisense oligonucleotide delivery efficiency and lower 
toxicity than commercial transfection reagents. How-
ever, electroporation is not suitable for all RNA cargoes, 
such as modified microRNA and short hairpin RNA 
[31]. Electroporation can lead to EV aggregation, which 
decreases the loading efficiency and impairs their deliv-
ery properties. To mitigate this issue, membrane stabilis-
ers, such as sucrose and trehalose, are used to maximise 
the colloidal stability of EVs and minimise the aggrega-
tion caused during electroporation [32, 33]. Hence, the 
electroporation conditions must be optimised on a case-
by-case basis depending on the type of payload and EV 
source. Additionally, other post-loading approaches, such 
as sonication, extrusion [20], freeze-thawing [18], and 
chemical transfection [34], are used to incorporate RNA 
into EVs. Despite their simplicity and ease of implemen-
tation, these methods share the limitation of poor cargo 
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capacity, particularly for encapsulating hydrophilic mol-
ecules. This issue may be due to EV size, zeta potential, 
or polydispersity index, which could subsequently alter 
the pharmacokinetic properties of EVs. To overcome this 
issue, a highly-efficient cargo loading method designated 
‘sonication and extrusion-assisted active loading’ (SEAL) 
has been developed. Through the combination of sonica-
tion and extrusion, SEAL has exhibited an approximately 
tenfold enhancement of drug encapsulation efficiency in 
case of doxorubicin-loaded EVs [20]. Additionally, a cel-
lular nanoporation biochip allows plasmids to shuttle 
from the buffer to source cells through a series of electric 
pulses [7]. Compared to conventional methods, this strat-
egy provides a 50-fold increase in EV yield and a 1000-
fold increase in the loading of intact mRNA transcripts. 
Given that nanoporation-stimulated EVs are highly inde-
pendent of source cells and transfected vectors, minimal 
cell death or activation of apoptotic pathways occurs in 
parental cells.

EV‑loading RNPs
As the most straightforward and efficient format, func-
tional ribonucleoprotein complexes (RNPs) are localised 
inside the nucleus of host cells through minimal intra-
cellular processing. Based on the RNP format, the deli-
cate sgRNA molecules are significantly protected from 
degradation, and the occurrence of off-target mutations 
is reduced. As RNP delivery cannot trigger a cellular 
immune response and also offers control over stoichiom-
etry, it helps set up dosage parameters in disease therapy 
[5, 24]. By genetic engineering, RNPs can be co-packaged 
into EVs without requiring additional modification of the 
producer cells [35–40]. However, the ability of non-trans-
formed cell lines to package CRISPR/Cas components is 
unknown, and this method is limited by its cytotoxicity, 
poor specificity, and low load efficiency.

Optimising this platform with engineered EVs may be 
an effective means of improving the loading efficiency 
of RNPs. For instance, SpCas9/sgRNA RNPs have been 
shown to be selectively and actively packaged into engi-
neered virus-like particles (eVLPs) to enable exon skip-
ping in muscular cells. In every endogenous genomic 
locus test, the results have confirmed that EV-loaded 
RNPs outperform pDNA transfection with 32.5–50% 
indels and an exon skipping efficiency of over 90% [23]. 
However, those engineered EVs are more likely to be VLPs 
than typical EVs, which may directly affect the approach 
of gene editing. In view of the similarity between EVs and 
VLPs, the viral proteins, such as vesicular stomatitis virus 
glycoprotein (VSV-G), were incorporated into EVs that 
exploits the tissue targeting advantages of viral delivery, 
but avoid the risks associated with viral genome integra-
tion and prolonged-expression of the editing component 
[35, 36]. Rather than using adeno-associated viruses or 
tumour cell-derived EVs, loading RNPs into hepatic stel-
late cells [41] and serum-derived [42] EVs with electropo-
ration and protein transfectants will enable the rapid and 
safe delivery of CRISPR/Cas components.

To further improve load efficiency, EV-loading RNP 
leverages the high binding affinity between green fluores-
cent protein (GFP) and GFP nanobodies [43] or the spe-
cific interaction of RNA aptamers and aptamer-binding 
proteins (ABP) [44]. The former RNPs into engineered 
EVs by fusing GFP to EVs enriched protein CD63, and 
fusing single-chain GFP-binding antibody to Cas9 [43]. 
While in the latter, CD63 was modified by appending 
the aptamer-binding protein Com to both the N- and 
C-termini of the protein and replaced stem loop 2 of the 
sgRNA with aptameric RNA com. Com-com interaction 
allows for the recruitment of Cas9 to EVs via sgRNA. 
This system demonstrated a 2 to 5 times more efficient 
recruitment of Cas9 with com relative to spontaneous 

Table 2 EV modifications for loading CRISPR/Cas components

Modification strategy of EVs Loading mechanism Disassembly mechanism Model References

Bioengineering GFP-CD63 fused with Cas9-antiGFP nano-
body

/ In vitro [29, 177]

CD63-com fused with ABP Com-sgRNA / In vivo [40]

ARRDC1 fused with WW-Cas9 / In vivo [47]

CD9-HuR and ABE-AU-mRNA interaction / In vitro, in vivo [29]

VSV-G-assisted Spontaneous release In vivo, in vitro [35, 50]

split GFP complementation / In vitro, in vivo [48]

chemical-induced incorporation / In vitro, in vivo [36]

CD9-CIBN and Cas9-CRY2 interaction, light Removal of the light In vivo [46]

Physical method (Freeze–thaw, sonication) TDNs-EVs / In vitro, in vivo [22]

Physical method (Freeze–thaw, co-incuba-
tion)

Multivalent electrostatic interaction / In vivo [9, 18]
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loading and co-packaged RNPs showed 10 times higher 
than the combination of the individually packaged RNPs 
for multiplex genome editing [40]. These features make 
engineered EVs an ideal delivery tool for multiplex 
genome editing. Cas9 RNPs can be efficiently loaded into 
tetrahedral DNA nanostructures (TDNs) engineered EVs 
with a tenfold improvement of binding affinity. Mean-
while, sonication or freeze–thaw cycles increased the 
loading efficiency of RNPs into TDNs (15.34% vs. 37.62%) 
[22]. In addition, enhancing RNP escape, optimising 
RNA copy numbers, and selecting appropriate EV source 
cells may improve the delivery efficiency of engineered 
EV-based CRISPR/Cas systems [40].

EV‑loading Cas9 protein and sgRNA alone
Packaging Cas9 protein into EVs through transfected 
donor cells is often inefficient, cumbersome, time-
consuming, and incompatible with certain EV sources, 
such as human plasma and bovine milk [37, 39]. Several 
attempts have been made to load specific target proteins 
into EVs, including the fusion of target proteins with a 
constitutive EV protein [45–48], reversible protein–pro-
tein interactions [49, 50], fusion of the EV peptide [51], 
and EPNs [52, 53]. Through the interaction between 
the WW domain (~ 40 amino acids each) of neural pre-
cursor cell-expressed developmentally downregulated 
gene 4 family proteins and arrestin domain-containing 
protein 1(ARRDC1), WW domain modified-Cas9 and 
sgRNA were co-transfected into cells and then WW-
Cas9-sgRNA were loaded into EVs [47]. In a similar way, 
signal peptides were selected to construct the optimized 
editing system CRISPR/Cas13d plasmids and engineered 
EVs were extracted from HEK293T cells, the Cas13d‐
gRNA complex delivered by EVs successfully disrupted 
the RNA of both exogenous and endogenous genes in a 
short‐acting manner and ultimately reduced the expres-
sion of target proteins [51]. However, these strategies 
do not provide a clear releasing mechanism for editing 
complexes in the target cells. Thus, the regulation of pro-
tein–protein interactions seems more attractive. Through 
the fusion of Cas9 with EV transmembrane fluorescent 
protein, induced reversible hetero-dimerisation results 
in efficient loading with aCas9 into EV [36]. By contrast, 
through optically reversible protein–protein interactions, 
Cas9 have been loaded into EVs through the interaction 
of CD9-cryptochrome 2 (CRY2) and CRY-interacting 
basic-helix-loop-helix 1 (CIBN) when activated by light. 
The chemical dimerization system performed a less effi-
ciency than that of the CIBN-CRY2 photosystem [46]. 
Furthermore, the fusion of octapeptide onto the N-ter-
minus of Cas9 proteins promotes Cas9 myristoylation 
and encapsulation into vesicular stomatitis VSV-G-mod-
ified EVs, which increases the transfection potential with 

encapsulated Cas9 accounting for 0.7% of total EVs [50]. 
However, more in-depth studies on the distribution and 
homing of designed EVs in vivo are needed [48].

Alternatively, passive incubation-specific modification 
of Cas9 provides a quick, versatile, and simple method 
for loading proteins into EVs [49]. After Cas9 proteins 
are bound to cationic lipids, they can be further com-
plexed with EVs via passive incubation. The resulting 
EVs retain native features following protein-loading and 
deliver Cas9 proteins with an efficiency similar to that of 
commercial transfection reagents; however, they exhibit 
less toxicity while outperforming electroporation [54]. In 
addition, the EPN method has been reported to signifi-
cantly increase EV-loading capacity, in which each EPN 
can be actively loaded with up to 60 cargo molecules. The 
EPN method demonstrated the significantly potential 
for Cas protein packaging in EVs [52, 53]. This strategy 
provides easy-to-modulate and low-cost machinery for 
rapidly enveloping protein cargo into engineered EVs and 
their precise delivery to target cells.

Another fundamental component in the RNA-based 
strategy is sgRNA, which can be generated either by 
in  vitro transcribed (IVT) or solid-phase synthesis. 
IVT sgRNA can induce immune responses and cause 
cell apoptosis [55, 56], whereas chemically synthesized 
sgRNA cannot, due to the lack of a 5′-triphosphate 
group. During sgRNA synthesis, the structurally well-
defined assembly enables high homogeneity and site-spe-
cific incorporation of modified sgRNA [57]. For example, 
synthetic sgRNA was flanked by self-cleaving ribozymes 
hammerhead and hepatitis D virus ribozyme, resulting in 
the sgRNA being selectively and actively packaged into 
EVs with at least a fourfold improvement [23]. Chemi-
cally modified sgRNAs can be developed to enhance 
enzymatic stability, editing efficiency, and specificity, and 
to reduce immunogenicity and off-target effects, such as 
2′-O-methyl-PS, 2′-O-methyl-3′-thiophosphonoacetate 
[58], and modified crRNA/tracrRNA nucleotides [59]. 
Additionally, other factors that determine the loading 
efficiency of EVs require thorough investigation, includ-
ing the kinetics of release, biodistribution, clearance, and 
intracellular fate after EV internalisation [54].

Although many methods for EV-mediated transfer of 
CRISPR-Cas systems have been established, there are still 
many challenges in delivering the functional CRISPR-Cas 
systems into the nucleus. Due to the scarcity of existing 
literature to the EVs load efficiency, it presents a chal-
lenge to conduct a comprehensive and systematic com-
parison of diverse loading methods. Hence, a thorough 
exploration of the release rate of EVs-loaded cargo and 
their translation efficiency is imperative. Next, the ambi-
guity of EVs definition has limited their application since 
the lack of unique markers to define specific subtypes in 
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various secreted vesicles [60, 61]. It is urgent to develop 
a approach to distinguish or isolate specific types of 
vesicles [62]. Moreover, the equimolar concentration 
between Cas proteins and sgRNA can maximize the for-
mation of their conjugates. But their accurate quantita-
tion in the cytoplasm is very difficult to conduct [63, 64]. 
Except that, due to relies on passive diffusion or complex-
ation of the molecule with a cell or organelle, pre-loading 
methods may rely on a number of factors such as pondus 
hydrogenii (pH), osmotic pressure, and electric charge 
or hydrophobicity. Therefore, more efforts are needed to 
optimize the existing techniques or to develop new way 
in the future.

Safety
Before being used to deliver CRISPR/Cas9 components, 
EV biosafety and the associated adverse effects must be 
evaluated to ensure that EVs do not have deleterious roles 
(as outlined in the limitations section of Table2) [9, 18, 
38, 65]. EV characteristics inherently depend on donor 
cells; therefore, choosing the proper cell source, such as 
autologous or non-autologous sources, is critical for safe 
and effective EV-based delivery. An autologous source 
presents the same host cells and guarantees ideal mate-
rials while avoiding mismatched antigens and the risk of 
host immune responses [66]. However, EV preparation 
from autologous sources offers challenging and time-
sensitive availability. By establishing homologous/identi-
cal donor cell banks, large-scale reserves can be obtained 
conveniently and promptly, for dendritic cells (DCs) [67], 
serum [42], and RBC-derived EVs [30]. Non-autologous 
sources are preferred due to the regulatory/commercial 
desirability of a streamlined, exceptionally well-qualified 
product. Indeed, non-autologous sources have been used 
as safe, economic, and practical sources for EV produc-
tion [68, 69]. Selecting appropriate major histocompat-
ibility complex (MHC) cell sources will reduce or prevent 
unnecessary immunogenicity. The desired cargo and 
molecular attributes must also be selected before EV 
preparation [54].

Several modification strategies have been proposed 
for reducing the immunogenicity of EVs. To further 
improve delivery and safety, a strategy combining engi-
neered EVs with antibodies, liposomes, or EPNs has been 
adopted [52, 70, 71]. For example, chimeric protein (pre-
miR-199a-3p)-modified EVs display low immunogenicity 
and minimal evidence of changes in immune markers, 
thus, expanding the application scope of EVs in cargo 
delivery [66]. EV immunogenicity has excellent potential 
for exploring novel vaccines or vaccine vectors. Through 
gene and chemical modifications, bacterial membrane 
EVs can be endowed with more functions, which can be 
used in immunotherapy for infectious and non-infectious 

diseases [72]. Additionally, engineered EVs can be used 
for anti-infection [73] and anti-systemic inflammation [9] 
purposes. For instance, by fusing ACE2 or chondrocyte-
affinity peptides, engineered EVs can inhibit viral infec-
tion [73] or attenuate the progression of osteoarthritis 
[9]. Decreasing the immunogenicity of CRISPR/Cas com-
ponents by deleting specific genes encoding unwanted 
immunogenic proteins [74], removing Cas9 epitopes 
[75], and using suitable Cas proteins or orthologues [76], 
is another effective strategy for ensuring safe and effec-
tive targeted delivery.

Stability
To deliver the gene/genome-editing component to the 
target site, it is crucial to safeguard it from degradation 
or neutralization by the complex physiological microen-
vironment in  vivo, which includes mechanical, biologi-
cal, and immunologic barriers [77]. However, exogenous 
EVs can be rapidly cleared owing to macrophage engulf-
ing associated with the reticuloendothelial system (RES) 
[78]. Avoiding the RES effect is an effective strategy for 
increasing EVs’ stability and accumulation in target sites 
[79]. When EVs are ≤ 100 nm, their stability in the target 
tissue can be enhanced by improving the permeability 
and retention effect [78, 80, 81]. In addition, by decreas-
ing/masking prophagocytic molecules or introducing 
anti-phagocytic signals on EV surfaces, such as polyeth-
ylene glycol (PEG), CD47 protein, glycans, phosphatidyl-
serine (PS), and lipid fusion, multiple strategies have been 
developed to reduce non-specific phagocytic uptake.

Stability modification of EV membranes
PEG: PEG is a commonly used polymer for improving 
the stealth performance of EV delivery systems. By form-
ing a hydration layer around EVs, PEG sterically hinders 
the interaction of EVs with opsonins and decreases the 
recognition of macrophages (Fig.  3A). With modifica-
tions of the nanobody conjugate [82] or lipid anchor [83], 
PEGylated EVs can escape the RES and prolong EV circu-
lation time. PEGylated macrophage-derived EVs enhance 
tumor tissue specific uptake and prolong circulation time 
by sevenfold higher without altering their morphology, 
size, or protein composition, and the classical biodistri-
bution pattern of EVs. Nevertheless, owing to the immu-
noglobulin (Ig)M antibodies raised against PEG, the 
clearance of PEGylated EVs is highly accelerated and may 
occur at repeated dosing [84]. Therefore, other polymers 
or biomaterials can replace PEG to modify EVs, such as 
hyperbranched polymers, polymeric fibrous scaffolds, or 
cholesterol [85, 86].

CD47 protein: CD47 is the most common molecule 
employed to modulate EV stability and biodistribu-
tion. The interaction between CD47 and the signal 
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regulatory protein α (SIRPα) expressed by macrophages 
allows the latter to identify CD47-SIRPα as self-sub-
stances that inhibit their activation and activates the 
‘don’t eat me’ signal [87] (Fig. 3B). The CD47 on the EV 
surface can contribute to the clearance suppression of 
EVs and enhanced delivery efficiency. For instance, by 
inserting the glioma targeting peptides into the N-ter-
minus of CD47, the accumulation of engineered EVs 
was increased by 1–1.5 times, and the survival time 
of mice was prolonged to 45–49  days [7]. However, 
owing to the limitations of genetic engineering meth-
ods, CD47 modification is not feasible for all paren-
tal cell types. Alternatively, using artificial EV-loaded 
anti-phagocytic signals [88], CD47 nanobody [89, 90], 
or an enzymatically ligated mimicking CD47 peptide 
modified onto EV surfaces appears to be a promising 
approach [91]. In addition to CD47, exploring new mol-
ecules, such as CD55, CD59, CD31, and CD24, which 
can further enhance its stability, is necessary [92].

Glycans: Glycans are crucial cell communication inter-
mediaries and potential novel indicators of EV hetero-
geneity [93]. By inducing an N-glycosylation sequence 
to the Lamp2b N-terminus of EVs, engineered EVs can 
protect modified peptides from degradation and, thus, 
improve their stability [92]. Generally, hydrophilic NPs 
are more challenging to recognise by phagocytes than 
hydrophobic NPs. Therefore, they can replace hydropho-
bic glycans, such as polysorbate 80, surfactants, block 
polymers, and gangliosides, to avoid RES phagocytosis 
and enhance the stability of modified EVs [86, 94]. Gly-
can-engineered EVs appear to be essential for recognition 
and uptake by recipient cells [93]. For example, modifica-
tion by glycans or glycosylated phospholipids reduces the 
non-targeting of EVs to the liver, with a more significant 
proportion of vesicles taken up by target organs [95, 96]. 
In addition, the enzymatic removal of sialic acids and 
insertion of palmitoyl-LeY into glioblastoma EVs led to 
a fourfold increase in uptake, leading to an increase in 

Fig. 3 Diverse approaches for enhancing EV stability. A PEGylated EVs. The EV surface was modified with PEG by inserting the nanobodies. 
Distearoyl phosphatidyl ethanolamine (DSPE), dimyristoyl phosphatidyl ethanolamine (DMPE), and PEGylated EVs prevent complement 
system-mediated opsonisation and decrease phagocytosis. B CD47 mediation. C Removal of sialic acid. The sialic acid residues of EV surface glycans 
were removed via neuraminidase, reducing their non-specific uptake, and thereby altering their biodistribution. D Blocking phosphatidylserine (PS). 
By inhibiting ‘eat me’ signals with PS-binding molecules, such as RGD-4C, epidermal growth factor receptor (EGFR), Annexin V, and C1C2 domain of 
lactadherin, then PS was blocked, which subsequently decreased phagocytosis. Created with Biorender.com
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 CD8+ and  CD4+ T cell responses [97] (Fig.  3C). As the 
glycocalyx composition of EVs is a fundamental factor 
in DC uptake, glycocalyx potentiates of EVs could be 
applied as an anticancer vaccine in immune-related ther-
apies. However, its capacity to stimulate the immune sys-
tem requires further investigation.

PS: PS is located in the inner leaflet of the cellular mem-
brane. When relocated to the outer leaflet of the cellular 
membrane, PS serves as an ‘eat me’ signal that facilitates 
the recognition and engulfment of macrophages [98]. 
Given that PS enrichment in EVs may expose the outer 
leaflet during immune and blood coagulation processes 
[99], PS-displayed EVs are readily eliminated from the 
bloodstream. Therefore, blocking PS exposure on EV sur-
faces is a promising strategy for reducing the clearance 
rate of EVs and enhancing their circulation kinetics. For 
example, the PS moieties can be blocked with annexin V 
[100] and lactadherin (C1C2) domains, or with arginine-
glycine-aspartic acid (RGD)-4C peptide [101], peptide 
nanobodies against the epidermal growth factor receptor 
(EGFR) [102] and C1C2 domain. These strategies reduce 
unnecessary macrophage engulfment and confer a target-
ing capability to modified EVs (Fig.  3D). The long-term 

effectiveness of PS and glycans under dynamic conditions 
in vivo requires further investigation.

Lipid fusion: Considering that different ‘stealthy’ sur-
face molecules might be beneficial to improve EV sta-
bility, many strategies for EV modification have been 
developed to improve their stability. For instance, EVs 
have been fused with lipids, exogenous membrane pro-
teins, and polylactic-co-glycolic acid (PLGA) NPs [86] 
(Figs. 4C and 5C-D). As shown in Fig. 2, with induction 
by freeze freeze–thaw cycles, electrostatic interactions, 
or co-incubation, HEs are expected to exhibit effective 
loading and improved stability. This may be caused by 
EVs escaping from the endosome trap, thereby increas-
ing CRISPR/Cas9 cargo availability [9, 18, 49]. Exogenous 
membrane proteins can also be introduced into EVs to 
optimise their surface characteristics, thereby reduc-
ing their immunogenicity and prolonging their half-life 
[103]. Similarly, EV properties can be modified by insert-
ing more liposomes embedded with peptides or ’do not 
eat me’ molecules, such as CD47, PD-L1, and CD24. 
Given that EVs confer immune-evasive properties [104], 
the uptake of hybridised EV-PLGA NPs by macrophages 
and the immune response are significantly reduced, while 

Fig. 4 Different modification strategies for improving EV targeting. A Indirect modification. Overexpressed targeting molecules in parental cells 
fused to EV-enriched fusion partner proteins by vesiculation to obtain EV targeting. B Chemical modification. a. Click chemistry. Through azide–
alkyne cycloaddition, different biomolecules are covalently bound to EV surfaces that endow them with specific functionality. b. Lipid/hydrophilic 
insertion. Lipids or hydrophilic molecules can be inserted into the lipid bilayer of EVs and were displayed on the EV surfaces. c. Multivalent 
electrostatic interactions. Change the membrane potential by binding to cations. d. CP05 peptide anchor. Based on the high affinity of CP05 
peptide for CD63 molecule, the targeting moiety was loaded on the EV surface. e. Direct fusion. With the help of lipophilic nature, markers (such 
as DiR/DiO, 111In-oxine) are directly fused with the lipid bilayer of EVs. C Physical modification. Under the guidance of MF, EVs can be magnetically 
navigated to target sites
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their circulating half-life increases by approximately 3.5-
fold [105].

Endolysosomal escape
After CRISPR vectors enter the lysosomes via receptor-
mediated endocytosis, digestive enzymes and low pondus 
hydrogenii (pH) environments can destroy the CRISPR/
Cas9 cargo [106]. Thus, many strategies have been devel-
oped to bypass the endolysosomal pathway and success-
fully deliver therapeutic genes or drugs. These strategies 
include the introduction of specific molecules onto the 
EV surface [107, 108], combining EVs with compounds 
[109], and introducing pH-sensitive constituents [105]. 
Once specific molecules, such as fusogenic peptides 
[110] and cell-penetrating peptides [111], are intro-
duced onto the surface of EVs, they can either be cova-
lently conjugated with the Cas9 protein [112] or RNPs via 
ionic interactions [113] to facilitate the effective release 
of cargo and tropism. Moreover, the combination of EVs 
with autophagy inhibitors could effectively improve the 
stability and gene editing efficiency of the EV-loaded 
CRISPR/Cas9 system [114]. Inclusion of specific agents, 
such as chloroquine, amantadine, and bafilomycin A, can 
block acidification of the endosomal compartment, lead-
ing to swelling and bursting of endosomes [109]. Hence, 

pH-sensitive constituents, such as PLGA, that are intro-
duced into EVs, are essential for the protection of RNA, 
preventing its degradation, and enabling cellular delivery 
through intracellular release [105, 115]. Finally, toxins 
escaping the degradative route can be engineered into 
EV membranes to enhance endolysosomal escape and 
cargo release. However, the lack of a feasible bioassay has 
hampered our understanding of the biological processes 
underlying EV uptake and cargo delivery to recipient 
cells. Therefore, an EV-mediated tetraspanin-tTA deliv-
ery assay was developed, which may improve our current 
understanding regarding the mechanisms of cytoplasmic 
cargo delivery in electric vehicles [116].

EV storage
During the preparation of EVs, it is particularly impor-
tant for their functionality that the purified EVs can be 
stored stably more completely. Increasing evidence sug-
gests that EV concentration, physical properties, and 
functionality are affected by long-term storage. Among 
the storage conditions, temperature proved to be the 
most critical factor, and EVs were usually stored at 
4, − 20, or − 80  °C [117]. The storage period determines 
the best storage temperatures for EVs; isolated EVs can 
be maintained at 4 °C for days or weeks and at − 80 °C for 

Fig. 5 Different strategies for preparing artificial EVs. A Top-down strategy. Artificial EVs were produced with the following approaches: cells were 
forced to pass through membrane pores or microfluidic devices; cells were exposed to sonication in alkaline solution; cells were disrupted by 
nitrogen cavitation; cells released EVs by cell membrane blebbing with sulfhydryl-blocking. B Bottom-up strategy. By supramolecular chemistry, 
synthetic materials combined fundamental components from cells to form the EMs. C Hybrid strategy. The native EVs hybridised with synthetic 
liposome NPs/other sources of EVs to form the HEs. D Encapsulation strategy. The inorganic or organic NPs were encapsulated with the native EV 
membrane that obtained EV membrane-camouflaged NPs
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months [118]. Despite being an alternative for long-term 
storage, lyophilisation affects vesicle integrity during 
reconstitution. Thus, phosphate buffer solution supple-
mented with human albumin and trehalose added to the 
storage medium is recommended. Moreover, human 
albumin and trehalose significantly improved the recov-
ery rate of EVs when the EV samples were diluted [119]. 
Freeze–thaw cycles can significantly affect EV durability, 
owing to the vulnerability of their PS moieties. Therefore, 
according to downstream analyses and experimental set-
tings, EVs should be processed from off-the-shelf fresh, 
non-archival samples [120].

Targeting
In addition to their high stability and safety, EV target-
ing is crucial for the precise delivery of CRISPR/Cas9 
components to the target sites. Off-site delivery may lead 
to mutations in offspring or new disease development, 
which may raise severe ethical concerns [121]. Based 
on the intrinsic targeting properties and cell tropism of 
EVs [31, 122], specific cell-derived EVs provide potential 
vehicles for CRISPR/Cas9 targeted delivery in vivo [123]. 
Nevertheless, the properties of EVs alone are insufficient 
to guarantee selective delivery [38]. Various strategies for 
designing EV structures have been developed, includ-
ing indirect or direct modification (Fig.  4) and artificial 

EVs (Fig. 5), to ensure EV accumulation in target tissues 
or organs. Indirect modification of EVs is performed by 
transfection of parental cells, and direct modification is 
realised through physical and chemical modification. 
Artificial EVs can be fabricated using top-down, bottom-
up, biohybrid, or membrane-coated technologies. Table 3 
outlines relevant studies that have utilised targeted mol-
ecules and their derivatives for specifically directing EVs 
to target cells for disease treatment. As described below, 
these approaches could lead to higher drug accumulation 
in target cells, reducing off-target effects and improving 
their efficacy.

Indirect modification
By engineering the parental cells with plasmid vec-
tors expressing targeting moieties, such as peptides and 
receptors, the targeting moieties are displayed on the 
outer surface of the EVs to enhance their targeting ability, 
high stability, specificity, and increased safety (Fig.  4A). 
Common transmembrane proteins include the lysosome-
associated membrane protein 2B (LAMP-2B) [124], tet-
raspanins [29, 125, 126], glycosyl-phosphatidyl-inositol 
(GPI) [127], C1C2 [128], and platelet-derived growth fac-
tor receptors (PDGFR) [31, 129], among others (Fig. 4A). 
LAMP-2B is the most widely used EV surface protein 
for displaying a targeting motif, i.e., cell-specific binding 

Table 3 Modification methods for EVs targeted delivery

Approaches Methods Targeting molecules Cargo Target cells References

Genetic engineering Conjugated with Lamp2b Chondrocyte-affinity 
peptide

pDNA Chondrocyte [9]

Conjugated with CD63 GFP RNP Target tissues for enrich-
ment of EVs

[177]

Conjugated with CD9 HuR AntimiR-155 or CRISPR/
dCas9

Liver injury cells [29]

CIBN-CRY2 Cas9 HEK293, HepG2 cells [46]

PDGFR TNF-α ligand Cas9 Solid cancers expressing 
TNF receptor

[141]

Chimeric-antigen receptor Antigen sgRNA/Cas9 plasmids B-cell malignancies [19]

Signal peptide Inflammatory factors CRISPR/CasRx Acute inflammatory 
tissues

[51]

Physical engineering Magnetic field Iron oxide NPs Therapeutic molecules Magnetic field position, 
endothelial cells and 
neurons

[145]

Ultrasound-targeted 
microbubble destruction

Tissue-specific microRNA, 
fat brown transcription 
factor: PGC1α

RNP Ultrasound position, 
dermal papilla cells

[149]

Chemical modification Multivalent electrostatic 
interaction

Breast cancer-targeted 
biological molecules

Cationic lipid-Cas9 protein Breast cancer cells [49]

Aptamer incorporation Cholesterol anchoring-
TDNs

RNPs HepG2 cells, liver cancer 
cells; xenograft tumour 
models

[22]

Lipid/hydrophobic inser-
tion

Cell targeted biological 
molecules

pDNA, Cas9 mRNA Cancer cells, chondrocyte [9, 18, 49]



Page 15 of 25Huang et al. Journal of Nanobiotechnology          (2023) 21:184  

peptides or antibodies targeting specific organs or tissues 
can be genetically modified at the N- [130] or C-termi-
nus [131] of LAMP-2B to realise their targeting effects. 
For instance, by conjugation with LAMP-2B, the amino-
acid sequence CGNKRTR (tLyp-1 peptide) becomes 
expressed on the EV surface for targeted delivery, result-
ing in a two-fold increase in the delivery of tLYP-1-la-
belled EVs to human lung cancer cells [132]. However, 
peptide degradation by endosomal proteases makes it 
challenging to obtain the desired yield of peptide-func-
tionalised EVs. To prevent this degradation, two strate-
gies have been suggested that confer high resistance to 
protease activity: that is, target peptides with a glycosyla-
tion sequence [133] and utilisation of D-isomers [134]. 
Compared with peptides, the antibodies, ankyrin repeat 
proteins that target HER2 fused with LAMP-2B exhibit 
higher binding affinities toward receptors on HER2-pos-
itive breast cancers cells, showing a four-fold uptake of 
engineered EVs in vitro [135].

As a viable and straightforward strategy, the tetraspa-
nin superfamily (CD63/CD9/CD81) is often selected for 
EV modification with target molecules [29, 125, 136]. 
By conjugating CD63 with apoprotein-A1 and further 
bonding to scavenger receptors expressed on hepato-
cellular carcinoma cells, engineered EVs showed a two-
fold increase in uptake for targeted delivery [136]. By 
sequential deletions of CD63’s transmembrane helix, 
it establishs a novel and topologically distinct scaffolds 
that allow for flexible engineering of EV surface, thus 
facilitating targeted cargo delivery and adhesion [137]. 
Nevertheless, whether overexpressed tetraspanins affect 
producer cells or EV composition is unclear. In addition, 
other transmembrane proteins can be used as EV mem-
branes to increase EV targeting, such as GPI [138], C1C2 
[102, 139], and PDGFR [140, 141]. Indeed, new recep-
tors have been identified for precise delivery to target 
organs or cells (Table  3). For example, electroporation-
loading of MYC oncogene-targeting sgRNA/Cas9 plas-
mids into CD19-chimeric-antigen receptor-modified 
HEK293T cells produced EVs results in a higher distribu-
tion in CD19 positive tumour tissues and more effective 
MYC genome editing than that of plain EVs [19]. Hence, 
expressing specific targeting moieties on EV surfaces by 
genetic engineering could serve as an effective strategy 
for active targeted delivery, thereby facilitating future EV-
based therapeutic development.

Direct modification
When the source cells for EVs are not easily modifi-
able, direct modification of EVs offers a more reliable 
alternative [142], direct modification, including physi-
cal or chemical modification, or the use of artificial EVs, 
can prove more reliable and promising compared to the 

indirect modification. As physical modification has the 
potential to damage EVs, surface labelling of EVs with 
targeting moieties is primarily implemented by chemi-
cal modification, i.e., covalent and non-covalent attach-
ments. Compared to gene engineering of parent cells, 
chemical modifications present several advantages, 
including faster reaction time, high specificity, and com-
patibility with organic and aqueous buffers [143, 144].

Physical modification
Apart from the membrane loading of target molecules, 
many methods have been explored to load functional 
nanomaterials into EV with minimal damage to EVs and 
their functions, such as co-incubation, ultrasound, and 
electroporation [12]. Given that, physical exogenous 
guidance can lead to the localisation of EV-based deliv-
ery systems. Remote navigation by external fields, such as 
magnetic field (MF) [145] (Fig. 4C) and ultrasound [146], 
is directed to the precise location of target sites and 
leads to an increase in drug release in  situ. Engineered 
EVs with potential magnetic targeting in vivo have been 
obtained by incubating superparamagnetic or iron oxide 
nanoparticles with MSCs. Under the guidance of an 
external MF, EVs can be magnetically navigated to target 
sites, with a precision 1.7–5.1 times higher than that of 
the control group [145], and drug release is controlled 
in time and space [147]. Ultrasound is another strategy 
for physical navigation widely employed in medicine for 
diagnostic and therapeutic applications. Although it can-
not be used for external navigation of delivery systems, 
ultrasound can improve the site-specific infiltration of 
systemically administered drugs and trigger their release 
from responsive delivery carriers. Under conditions of 
local ultrasound exposure, EV-based nanosonosensitiser 
and mRNA delivery systems show targeted accumula-
tion with minimised off-target effects [146, 148]. In order 
to enhance delivery efficiency and biocompatibility, a 
novel engineered EVs have been synthesized by micro-
bubble-nanoliposomal. By utilizing microbubble cavi-
tation-induced sonoporation, the RNPs were effectively 
delivered by engineered EVs and the target genes were 
edited both in vitro and in vivo with high efficiency [149].

Except of the exogenous guidance, some endogenous 
stimulatory (pH, temperature, redox) materials used to 
engineer EVs can be effectively controlled in releasing 
of gene-edited components. When EVs are exposed to 
an acidic environment (pH 5.6–6.8), their membranes 
collapse and release cargo with maximum efficacy and 
minimum toxicity [90]. The literature on engineered EVs 
that deliver CRISPR/Cas systems is much less extensive. 
Nevertheless, other stimulus-responsive NPs regulate 
the delivery of the CRISPR/Cas9 system to a particular 
cell in a predetermined manner. For instance, zeolitic 



Page 16 of 25Huang et al. Journal of Nanobiotechnology          (2023) 21:184 

imidazolate framework-8/RNP NPs, a controlled RNP 
delivery method, can release up to 70% of the RNPs to 
the desired cell in an acidic environment or a low pH 
within 10  min [150, 151]. Compared with endogenous 
stimuli, exogenous strategies can remotely switch on/off 
CRISPR gene editing in real-time, enabling easy tunabil-
ity, non-invasiveness, and high spatiotemporal specificity. 
When responding to a single stimulus, multiple-stimuli 
bioresponsive nanocarriers, such as pH/MF, pH/tem-
perature, pH/redox, pH/magnetic/redox, and many other 
combinations, can achieve more precise and effective 
gene editing [150, 152]. With multiple stimuli, EV-based 
CRISPR/Cas9 delivery systems would provide several 
benefits for genome editing, such as increasing the intra-
cellular release of EV cargo, ensuring stable encapsula-
tion, improving editing efficiency, reducing off-target 
effects, and enabling well-programmed multifunction-
ality. However, it is limited to a few stimulating factors 
and remains underutilised in clinical applications. With 
rapid advances in implantable stimulus-responsive mate-
rials, those modification strategies can be used to deliver 
the EV-based CRISPR/Cas system, thereby accelerating 
the use of gene editing in clinical applications. Eventu-
ally, therapeutic genome editing with smart EVs could 
be a revolutionary delivery strategy for reaching a new 
milestone.

Chemical modification
Covalent modification: First, as a common method, click 
chemistry is applied to attach targeting moieties on the 
EV surface through azide–alkyne cycloaddition [143, 
144] (Fig.  4a). Azide–labelled cyclic peptide-EVs have 
been effectively provided targets treatment of ischae-
mic brain injury in mice [153]. Secondly, combining the 
metabolic engineering of parent cells with click chem-
istry is another strategy for producing EVs. By adding 
compounds, such as synthetically modified amino acids, 
lipids, glycans, or oligonucleotides to the cell culture 
medium, these compounds can be incorporated into the 
cell metabolism and, consequently, on the surface of the 
produced EVs [154]. Although click chemistry has bet-
ter reaction speed, high selectivity, and compatibility, 
the temperature, pressure, and osmotic pressure must 
be carefully controlled during the modification process 
to avoid EV rupture and denaturation [91]. Finally, enzy-
matic ligation utilises protein ligases to covalently conju-
gate specially designed targeting moieties, such as EGFR, 
HER2, SIRPα-targeting peptides or their nanobodies 
[91], and hyaluronidase [155]. This promising EV-based 
platform harbours not only high-activity enzymes but 
also therapeutic payloads.

Non-covalent modification: Engineered EVs can be 
obtained by non-covalent modification methods, such 

as ligand-receptor interactions, modification of aptam-
ers, multivalent electrostatic interactions (Fig. 4c), hydro-
phobic interactions/lipid insertion, and modification of 
anchoring peptides. Among them, the most commonly 
used method is lipid/hydrophobic insertion (Fig.  4b). 
EVs can be easily fused with functionalised liposomes 
embedded with targeting moieties without affecting their 
native function or integrity [97, 156, 157]. Next, through 
ligand-receptor binding, the natural receptors on the EV 
membrane are used to attach the targeted ligand, i.e., 
magnetic molecules and endosmotic peptide L17E. This 
enables the EVs to enhance cancer targeting under condi-
tions of an external MF. However, this method has cer-
tain drawbacks, such as synthetic challenges and the cost 
of presenting functional ligands [147]. Again, as short 
stretches of oligonucleotide sequences or short polypep-
tides, aptamers are used as another type of material to 
functionalise EVs. Aptamer-EV conjugates can directly 
enter predetermined locations in the target organs, 
which sheds light on new practical methodologies for 
EV targeting [158, 159]. For specific targeted delivery of 
Cas9/SgRNA, the valency-controlled TDNs have been 
loaded on the EV surface, resulting in an increase of EV 
accumulation in target cells at a 1:3 ratio of aptamer/
cholesterol [22]. Further, depending on multivalent elec-
trostatic interactions, the cationised pullulan-modified 
EVs with positive charge reflect excellent cellular uptake 
for targeting the liver [160] (Fig. 4c). In some cases, the 
cytotoxicity of cationic nanomaterials can cause lysoso-
mal degradation and a reduction in EV purity. Therefore, 
monitoring the concentration of these cationic agents is 
necessary to avoid their occurrence. Finally, the anchor-
ing peptide presents a simple approach for expressing 
targeting moieties on the EV surface. Compared with 
conventional loading methods, such as transfection, elec-
troporation, and lyophilisation, directly fusing the thera-
peutic moiety with the CP05 peptide can eliminate the 
issue of poor cargo loading; the abundance of CP05-EVs 
was found to be increased by 18-fold in the quadriceps 
using the latter approach [161] (Fig.  4d). In summary, 
the genetic approach may allow for a more standardised 
product which is desirable to address regulatory expec-
tations. However, this strategy has several drawbacks, 
including changes in biological activity and challenges 
associated with controlling EV density. Chemical modi-
fication may offer effective control for EV surface modi-
fication both in content (preventing peptide degradation) 
and density of the targeting epitope, regardless of the cell 
source [162]. It may be performed during EV purifica-
tion steps, and thus, be amenable to clinical translation. 
However, non-site-specific chemical modification might 
shield protein–protein interactions and alter EV recogni-
tion properties. It may also jeopardise the structure and 
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function of EVs, leading to low specificity and efficiency 
[143, 144]. Moreover, previous studies have shown that 
EV subtypes exhibit different organ biodistributions and 
biological functions [163]. Therefore, selecting EV sub-
types that display favourable targeting properties may 
provide new insights into the therapeutic applications of 
EVs.

Artificial EVs
Artificial EVs are attractive as they closely mimic innate 
chemical and biological surface characteristics, such as 
chemical composition, membrane fluidity, and three-
dimensional (3D) protein presentation. Among them, 
targeting specificity is a critical factor to consider in the 
utilization of artificial EVs in various applications. Com-
paratively, the natural EVs are endowed with specific sur-
face markers and membrane proteins that confer the cell 
type- or tissue-specific targeting ability [123]. Given that, 
artificial EVs combine the advantages of natural EVs with 
those of NPs synthesised through different approaches 
[164], such as artificially synthesised EV-like NPs, EV-
mimetics (EMs), HEs, and EV membrane-camouflaged 
NPs (Fig. 5), while their distribution is similar when bio-
mimetic vesicles have the similar particle sizes as EVs. 
Based on these advantages, the functionalization of arti-
ficial EVs endows them with an enhanced tissue targeting 
ability, facilitates the delivery of CRISPR/Cas compo-
nents payloads to the intended target site [9, 18, 49]. The 
common strategies for modifying artificial EVs have been 
well documented in previous reviews and were briefly 
summarised in Table 4. The large and complex units were 
broken down into smaller components using a top-down 
approach (such as extrusion through a porous membrane, 
sonication, and nitrogen cavitation) to prepare EV-like 
NPs (Fig. 5A). After the donor cells were serially extruded 
through the membrane filters or devices with different 
pore sizes, EV-like NPs were primarily produced with 
membrane features similar to those of donor cells [165]. 
Their generation achieved a 500-fold higher produc-
tion yield [166] and targeting ability [167]. Conversely, 
EMs refer to nanovesicles synthesised using individual 
biomimetic molecules that resemble EV characteristics. 
Adopting a bottom-up strategy, small molecules can be 
used as building blocks to form large and complex struc-
tures through a stepwise assembly process and ultimately 
produce EMs (Fig.  5B). Thus, by assembling ideal com-
ponents based on natural EVs, their components can be 
cleaned and contain controllable characteristics [168].

HEs have been used to optimise loading, immune eva-
siveness, and ability to cross biological barriers (Fig. 5C). 
As stated earlier, liposome-fused HEs have successfully 
delivered the CRISPR/Cas9 system to the target cells to 
achieve more effective gene editing efficiency [9, 18, 49]. 

HEs can also be prepared by fusing two different origi-
nal parent cell membranes, which can synergistically 
perform the complex activities of both cells. HEs exhibit 
potential for large-scale production [169]. EV mem-
brane-camouflaged NPs are typically prepared using an 
active EV membrane to encapsulate inorganic or organic 
NPs (Fig. 5D). The coated NPs protect the loaded cargo 
from immune clearance and promote the targeted release 
of intracellular cargo [105]. However, NPs may induce 
an immune response in vivo after washing out the mem-
brane camouflage. Thus, neutrophil membrane-derived 
EVs can directly load therapeutic elements without NPs 
[170]. These strategies provide attractive prospects for 
expanding the applications of EVs beyond their original 
functions. Although artificial EVs have many advantages 
and gradually applied to deliver the CRISPR/Cas compo-
nents, several caveats should be considered when select-
ing an appropriate method, including cell source, cargo 
type, and immune response.

Tracking
Tracking techniques can provide valuable insights into 
the distribution, transport, and targeting properties of 
EVs used for delivering gene-editing components in vivo. 
By labelling the molecules or components within EVs, 
their locations and fates can be tracked to assess their 
delivery efficiency and targeting precision in  vivo. To 
date, hundreds of heterogeneous markers, such as fluo-
rescent, bioluminescent, and radioactive tracers, have 
been developed for EV tracking [173]. Each marker offers 
different sensitivities, times, and spatial resolution. EVs 
are labelled with these markers primarily through chemi-
cal modifications, such as click chemistry [174] (Fig. 4a), 
metabolic glycoengineering [175], hydrophobic inser-
tion [176], direct fusion [30] (Fig. 4b and e), and genetic 
engineering [177] (Fig.  4A). EV modification with trac-
ers, such as fluorescent dye PKH26/67, DiR/DiO, Cy5.5 
[7, 22, 30, 38], or radioactive agent 111In-oxine [92, 125, 
174, 178], provides EV-based CRISPR/Cas components 
with the desired functionality without changing EVs size, 
internalisation pattern, and properties (Fig.  4). Through 
imaging of organs and analysis of tissue lysates in vitro, 
111In-oxine and DiR were found to be the most sensitive 
tracers for EV imaging in vivo, providing the most accu-
rate quantification of EV biodistribution. Radioactive 
traces are the most accurate EV tracking approach for a 
complete quantitative biodistribution study and pharma-
cokinetic profiling [173, 179]. All these techniques pos-
sess a distinctive advantage and can be used as a criterion 
for selecting labelling methods depending on the purpose 
of EV tracking/imaging.

Through genetic manipulation, the fusion of lucif-
erase and CD63 alters the distribution of EVs, resulting 
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in high their accumulation in lungs [173]. This implies 
that EVs engineered for tracking purposes might com-
promise their physiological biodistribution. True 
single-molecule fluorescence optimised using the 
CRISPR/Cas9 method has been studied as an improved 
quantitative analysis of individual EV localisation, dis-
tribution, and uptake to avoid the potential artefacts 
caused by marker overexpression. The results showed 
that a single CRISPR/Cas9 GFP-CD63-labelled EV fur-
ther improved the quantitative analysis of EV biological 
distribution (83%) compared to overexpression of GFP-
CD63 (36%) [177]. Furthermore, used a different tactic 
to visualise the function of CRISPR/Cas9 components, 
the results showed that EVs-based-CRISPR tracking 
system can more efficiently abrogate the target gene 
in recipient cells [43]. To improve the efficiency and 
sensitivity of this tracking system, the sgRNA could be 
optimized to trigger the expression of reporter protein 
more efficiently [64]. In contrast to genetic engineer-
ing, pH-reversible boron dipyrromethene fluorescent 
probes have been used to track EV imaging without 
severe cytotoxicity. When acidic EVs or their precur-
sors are encountered for ‘always-on’ dyes, pH transition 
empowers their imaging with minimal false positive 
signals [180].

Although fluorescence or luminescence imaging 
techniques are readily available and the instruments 
are easy to operate, they do not offer high sensitivity 
and absolute quantification. Live imaging single-pho-
ton emission computed tomography (SPECT), posi-
tron-emission tomography, and anatomical computed 
tomography/magnetic resonance imaging tracking 
overcome these limitations and provide radiolabelled 
EVs. They offer higher sensitivity, absolute quantifica-
tion, and the advantages of non-invasive techniques, 
which help understand the functions of EVs in the 
physiology and pathophysiology of diseases. As imag-
ing modalities can provide information about the 
therapeutic dose of EVs and potential side effects, the 
pharmacokinetics and biological behaviour of EVs 
could be favourable in fostering improved diagnosis 
and treatment of many diseases [179]. Nevertheless, 
SPECT imaging technology is limited owing to the 
shortcomings of relatively long acquisition times, low 
spatial resolution, and changes in the propriety of EVs 
in practical applications. Given that near-infrared fluo-
rescence (NIRF) imaging offers the advantages of real-
time and high-resolution, multimodality SPECT-NIRF 
imaging provides more accurate spatial positioning and 
3D information for detecting small lesions [181]. Thus, 
the modified EVs could be used as carriers for multi-
modal imaging, which could open up a new treatment 
avenue in precision medicine [176, 182].

Conclusions and future perspectives
In the past decade, the use of the CRISPR/Cas system, 
a revolutionised and powerful genome editing tool, has 
been growing expeditiously worldwide across various 
fields. When delivering the CRISPR/Cas components to 
the target sites, an appropriate carrier is a prerequisite 
for ensuring their safety, efficacy, and specificity. Using 
various design or modification strategies, engineered 
EVs could be an effective tool for gene delivery. However, 
delivery of CRISPR/Cas systems with EVs remains in 
its infancy, and extensive progress is needed before EV-
based vectors can compete with their more time-hon-
oured counterparts. In particular, certain issues must be 
addressed, (I) Currently, there is a lack of the guidelines 
for standardised operation for EV/engineered EV large-
scale manufacturing, isolation, characterisation, storage, 
dosage, and functionality assessment. Some strategies, 
such as building donor cell banks [183–185], enhanc-
ing EV yield by different stimulation [186], producing 
artificial EVs (Fig. 5), using hollow-fibre bioreactors and 
3D-printed scaffolds [187, 188], incorporating separa-
tion technologies (microfluidics, centrifugal [189], acous-
tical forces [190], and filtration combined with anion 
exchange [191]), could be suitable for preparing EVs for 
clinical applications following large-scale good manu-
facturing practice grade. (II) Regarding cargo delivery, 
multiple aspects, including the interaction of EV-loaded 
exogenous cargo and endogenous cargo, unclear pharma-
cokinetics and biodistribution pattern profiles of delivery 
systems in vivo, imperfect EV biomarkers and their refer-
ence range, and the balancing mechanism of EV process-
ing and degradation must be explored. (III) The choice 
of an appropriate administration route, such as systemic 
[96] or local injection [21], is crucial to the facilitate pre-
clinical and clinical transformation of EVs. Other poten-
tial administration routes, including inhalation, oral, 
local infiltration, or optimised EV-based spatiotemporal 
control of delivery routes, warrant further exploration in 
future studies. (IV) The distribution and degradation of 
engineered EVs in  vivo must be studied. (V) Consider-
ing that the pathogenesis of each disease and the deliv-
ery barriers of each target cell differ, developing versatile 
delivery systems capable of delivering all three forms of 
CRISPR/Cas components into multiple target cells is not 
recommended.

A growing body of literature has demonstrated that 
numerous diseases are associated with structural or func-
tional changes in various subcellular organelles, such as 
mitochondria [192], endoplasmic reticulum [193], Golgi 
apparatus, and lysosomes [194]. Many optimized gene 
editing tools have been established to edit the organelles 
of mitochondria [195], lysosomes [196], and chloro-
plast [197], such as the Cas 13a, base editors and prime 
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editors [198]. With the exploitation of EVs secreted by 
organelles [199], or with the assistance of biomimetic 
technology [200], targeting the delivery of CRISPR/
Cas components to organelles with EVs would sug-
gest a significant research direction for EV-based gene 
fixed-point editing applications. Presently, our team is 
constructing a novel expression system by targeting the 
delivery of the CRISPR/Cas9 system with EVs/NPs into 
the nucleus/chloroplast of Dunaliella salina [201, 202]. 
Establishing nucleus-chloroplast dual expression systems 
in Dunaliella salina has important practical significance 
for the large-scale production of foreign proteins. Despite 
EV-mediated gene editing still facing multiple technical 
hurdles, as discussed previously, following the resolu-
tion of these fundamental issues, EV-based CRISPR/Cas 
delivery systems show great promise for safe and efficient 
gene editing, which would soon realise their full potential 
in numerous fields.
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