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Abstract
Background  Hyperthermia-based therapies have shown great potential for clinical applications such as for the 
antitumor and antipathogenic activities. Within all strategies, the so-called photothermal therapy proposes to induce 
the hyperthermia by the remote laser radiation on a photothermal conversion agent, in contact with the target tissue.

Methods  This paper reviews the most relevant in vitro and in vivo studies focused on NIR laser-induced hyperthermia 
due to photoexcitation of graphene oxide (GO) and reduced graphene oxide (rGO). Relevant parameters such as the 
amount of GO/rGO, the influence of the laser wavelength and power density are considered. Moreover, the required 
temperature and exposure time for each antitumor/antipathogenic case are collected and unified in a thermal dose 
parameter: the CEM43.

Results  The calculated CEM43 thermal doses revealed a great variability for the same type of tumor/strain. In order 
to detect potential tendencies, the values were classified into four ranges, varying from CEM43 < 60 min to CEM43 ≥ 1 
year. Thus, a preference for moderate thermal doses of CEM43 < 1 year was detected in antitumor activity, with 
temperatures ≤ 50 °C and exposure time ≤ 15 min. In case of the antipathogenic studies, the most used thermal dose 
was higher, CEM43 ≥ 1 year, with ablative hyperthermia (> 60ºC).

Conclusions  The ability of GO/rGO as effective photothermal conversion agents to promote a controlled 
hyperthermia is proven. The variability found for the CEM43 thermal doses on the reviewed studies reveals the 
potentiality to evaluate, for each application, the use of lower temperatures, by modulating time and/or repetitions in 
the doses.

Keywords  Hyperthermia, Photothermal therapy, Thermal dose, Near-infrared radiation, Graphene oxide, Reduced 
graphene oxide
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Introduction
Hyperthermia refers to an increase in body temperature 
that can be induced by an external energy source, with 
the aim of achieving beneficial effects in the treatment of 
some pathologies and disorders [1]. Among the applica-
tion strategies, local hyperthermia allows the treatment 
of small areas with sufficient preservation of healthy tis-
sues [2]. Potential biological effects of hyperthermia 
were first proved by Eugene Robinson in 1974 demon-
strating that heat had a selective cytotoxicity on hypoxic 
cells [3]. Several years later this selective cytotoxicity 
was discovered to occur specifically in some cell types, 
such as cancer cells [4], due to basic physiological dif-
ferences between cancerous and healthy tissue vascula-
ture. During the same period of time, high temperatures 
were also proven to inhibit bacterial growth, by affecting 
their motility and cell wall integrity [5]. In addition, Song 
et al. demonstrated in 1980 that there was a significant 
increase of blood flow in heated healthy tissues, indicat-
ing that hyperthermia can also induce an immune reac-
tion or vascular stimulation, associated with the first 
proliferative phase of the healing process [6, 7].

According to the temperature ranges applied, induced 
hyperthermia can be classified [8–10] as: (i) mild, when 
the typical physiological temperature is exceeded only by 
a few degrees, being 43  °C the upper threshold consid-
ered for most authors; (ii) moderate, when the tempera-
ture ranges above this mild threshold but below 50  °C 
and (iii) the ablative hyperthermia, for temperatures in 
the 50–55  °C range, which produces the more severe 
effects.

Currently, most hyperthermia systems work by expos-
ing the target tissue to energies generated by ultrasound 
(US) or electromagnetic (EM) radiation sources. Going 
into detail with electromagnetic radiation, the most com-
monly used systems are based on radiofrequency (RF), 
microwave (MW) and infrared (IR) [11]. Other strate-
gies explore the possibility of using electromagnetic 
radiation to irradiate photosensitive materials with the 
resulting release of heat. This is the case of the so-called 
photothermal therapy (PTT), preferably mediated by 
radiation in the first and second near-infrared (NIR) win-
dows, respectively located in the 650–950  nm (NIR-I) 
and 1000–1350 nm wavelength ranges (NIR-IIa). At these 
ranges the light presents its maximum depth of penetra-
tion into the biological tissues [12], being lasers emitting 
at 808  nm wavelength the most widely NIR radiation 
sources, less expensive in relation to the ones required 
for NIR-II. This strategy requires short time interactions 
with the target tissue, and provides with spatiotemporal 
addressability and minimal invasiveness in comparison to 
chemotherapy, photocatalytic and photodynamic therapy 
[13–16].

Regardless of the strategy selected to induce the hyper-
thermia, the application of the thermal treatment involves 
the contribution of two basic parameters: the required 
temperature to be reached at the biological tissue of 
interest, and the application time of interaction or expo-
sure time. These two parameters, related by a normalized 
method, define the so-called thermal dose, which will 
determine the effectiveness of the induced hyperthermia 
as a treatment and will allow comparison between treat-
ments. In relation to this, and given its great importance, 
several mathematical models have been proposed to 
express that time-temperature relationship. In particu-
lar, the use of CEM43 (cumulative equivalent minutes at 
43 °C) stands out as a thermal dose method that finds its 
roots in the application of the Arrhenius model to study 
the kinetics of cell killing by hyperthermia. The CEM43 
index, obtained using Eq.  1, converts the various time-
temperature exposures applied into an equivalent expo-
sure time at the reference temperature of 43ºC expressed 
as minutes, allowing to assess the amount of tissue dam-
age caused by heat and, consequently, its use for clinical 
application [17, 18]. With this type of tools, despite the 
intrinsic mathematical limitations, it is able to refine the 
combination of exposure time and applied temperature, 
therefore to manage the thermal dosimetry, for reaching 
an effective but safe hyperthermia effect.

	
CEM43 =

n∑

i=1

ti.R
(43−T i)

Equation  1. Formula for the calculation of the CEM43 
parameter proposed by Dewhirst et al., where ti is the i-
th time interval, R a constant related to the applied tem-
perature (0.25 for T < 43 °C and 0.5 for T > 43 °C) and Ti 
the average temperature during time interval ti [19].

With respect to the materials involved in photother-
mal therapy (PTT), graphene derivatives have been 
identified as photothermal conversion agents of inter-
est, responsible for the light-to-heat conversion. More 
specifically, graphene oxide (GO) and reduced graphene 
oxide (rGO) are the most highly investigated in the bio-
medical field. Their oxygen content, number of layers and 
lateral dimensions provide GO and rGO with improved 
properties with respect to graphene such as better water 
suspending capacity, resulting in higher biocompatibil-
ity. Moreover, they present the ability to be tailored with 
additional functionalities, due to the presence of reactive 
groups such as carboxylic acid, epoxide, and hydroxide 
[20]. These characteristics make GO and rGO very ver-
satile and simple to handle in aqueous media in addi-
tion to their low cost. In relation to their good ability to 
absorb NIR light [21–23], the photothermal conversion 
efficiency in the near-infrared wavelength region for 
graphene derivatives is estimated in about a 50%, very 
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close to that of pure graphene and similar from those 
calculated for other photothermal agents [24, 25]. In 
the specific case of GO, Savchuk and collaborators [24] 
estimated an efficiency of 58 ± 5% when irradiated with a 
wavelength of 808 nm and a laser power of 200 mW. This 
value is higher than the one reported by the same authors 
for Au nanostructures and several semiconductor mate-
rials, polymer nanostructures or nanoparticles with fer-
romagnetic properties for the same wavelength.

The present paper reviews the most relevant studies 
based on the evaluation of induced hyperthermia trig-
gered by NIR laser photoexcitation of GO and/or rGO 
as a potential effective strategy for antitumor and/or 
antipathogenic activities. Moreover, by using the Eq.  1 
above presented, the effective thermal dose CEM43, as 
a unifying parameter, has been determined for each of 
the reviewed studies, to be able to compare the obtained 
results for the two activities evaluated and, in this way, 
gain knowledge and visualize tendencies.

Antitumor activity
As previously mentioned, hyperthermia has been proven 
to generate a selective cytotoxicity, by altering the integ-
rity of certain cells at different levels (changes in mem-
brane permeability, protein denaturation, specific HSPs 
release, DNA damage…). Within the cells investigated, 
this selectivity was also found for cancer cells, making the 
hyperthermia as a potential strategy to be followed in the 
treatment of localized tumors.

Table  1 summarizes the reviewed papers, and main 
parameters provided by the authors, on the evaluation of 
the antitumor efficacy of PTT mediated by NIR photo-
excitation of GO/rGO [26–57]. The results are presented 
grouped by type of tumor cells evaluated, both in human 
and murine model lines, which are directly related to the 
most diagnosed cancers today: breast, cervix, prostate 
and lung cancer [58] and, therefore, extensively studied in 
all aspects. Thus, as it can be observed in Table 1, breast 
and cervical carcinoma represent almost half of the total 
number of papers reviewed [26–32, 38, 49, 52–57]. Pros-
tate and lung cancer lines were also studied, although 
to a much lesser extent [33–35] and, finally, studies 
with osteosarcoma and other cancer cell lines are also 
included [36, 37, 39–47, 50, 51].

In terms of the material and laser parameters, the con-
centration of GO/rGO evaluated in all the mentioned 
studies was of up to 1 mg/mL and with a preferential use 
of laser emitting in 808  nm. The exceptions for wave-
length correspond generally to the use of others close to 
808  nm, within the NIR first biological window [39, 42, 
43, 55]. However, in recent years, wavelengths in the sec-
ond NIR window have been explored, especially in the 
NIR-IIa window (1300–1400 nm) given its superiority in 
penetration depth and maximum permissible exposure 

over NIR-I window. Thus, Xu et al. [59] evaluated the 
use of laser excitation at 1275 nm demonstrating that it 
was practicable and exhibited, according to the authors, 
much more desirable outcomes in deep-tissue antitu-
mor capabilities in vivo compared to that of 808 nm laser. 
Polyethylene glycol-stabilized copper sulfide nanopar-
ticles were the photothermal conversion agents used at 
this study. Reference should also be made to the laser 
powers used, the influence of which was proposed by 
Vila et al. [60]. Thus, these authors concluded that after 
irradiating osteosarcoma cell line with internalized GO, 
the cell culture temperature increases preferentially with 
laser power (from 1.5 to 3  W cm− 2) rather than with 
exposure time (from 1 to 7 min). Moreover, for the high-
est tested laser powers, necrosis was the preferential cell 
death, leading to an increment in cytokine release to the 
medium. In relation to this, it stands out that most of the 
reviewed studies use a wide range of power densities to 
determine the most adequate value for subsequent tests. 
In this way, most of them applied a power density lower 
than 5 W cm− 2, and only two studies, among the oldest 
ones, used higher power densities of up to approximately 
9 W cm− 2 [34, 39].

When considering the parameters of temperature 
reached and exposure time (Table  1), the evaluation of 
antitumor efficacy revealed a great variability, with tem-
perature ranging from mild hyperthermia, close to 40ºC, 
to ablative by applying even very high temperatures, up 
to 80ºC, widely exceeding therefore the 55ºC. In per-
centage, a 25% of the reviewed works used a tempera-
ture ≥ 55ºC. In the case of the exposure time, something 
similar happens, varying from minutes to one hour. At 
this point, due to the aforementioned variability on these 
both parameters, and in order to be able to compare the 
effectiveness of the results, the reviewed data have been 
unified by calculating the corresponding CEM43 thermal 
dose. This value has been also incorporated to Table  1 
as increasing thermal doses applied for the same type of 
cancer cells. On this basis, a great variability in CEM43 
thermal doses is clearly observed for each type of cancer 
cells, with values from less than a minute to millions of 
years. In line with this, four ranges of CEM43 thermal 
dose are then proposed:

 	• CEM43 < 60 min, thermal dose in the range of 
minutes. These studies did not find significant 
differences in terms of cell viability [27, 30, 31, 33, 
36, 39–41, 51, 55], with the notable exception of the 
ones that used the Hela cell line (cervical carcinoma) 
[30–32].

 	• 1 h ≤ CEM43 < 24 h, thermal dose in the range 
of hours. In this case the results of these studies 
demonstrated a reduction of tumor cells for all the 
lines tested [26, 37, 38, 42–45, 56, 57]. However, 
variability was detected in the results in terms of 
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viability, e.g. four of these studies quantified a tumor 
cells viability reduction higher than 60% [26, 43, 
44, 56], while Kang et al. and Mun et al. obtained a 
lower reduction with values in the range of 15–25% 
[38, 57].

 	• 1 day ≤ CEM43 < 365 days, thermal dose in the 
range of days. The results of these studies showed an 
effective inhibition of cancer cells viability using this 
higher thermal dose, with a reduction of cell viability 
of more than 50% in all cases [28, 34, 46, 49, 52], even 
reaching almost total inhibition or direct necrosis in 
some studies [28, 34, 46].

 	• CEM43 ≥ 1 year, thermal dose in the range of years. 
In these studies, the applied temperature exceeded 
60ºC, which supposes a very high thermal dose with 
powerful results in terms of cell death [29, 32, 35, 50, 
53, 54].

With these four ranges in mind, it can be seen that the 
majority of the reviewed in vitro studies have selected 
medium thermal doses, situated in the first two ranges 
established: CEM43 < 60  min and 1  h ≤ CEM43 < 24  h. 
Despite this clear trend towards the use of CEM43 ther-
mal doses of less than a day or few days, there is vari-
ability in the results obtained influenced, not only by the 
hyperthermia conditions applied, but also by the inherent 
differences between the cell lines. The relevance of the 
stage of the cell cycle and the culture conditions must be 
also taken into account together with the thermo-toler-
ance that mammalian cells develop after short periods of 
exposure to moderate temperatures or longer periods of 
exposure to sub-lethal temperatures [61–63]. However, 
no specific differences can be elucidated depending on 
the origin of the cell line used.

With respect to the in vivo tests, a remarkable number 
of the reviewed studies completed their research with 
ectopic xenograft tumor models in small rodent, using 
the same cell type than in vitro assays. These ones have 
been also identified in Table 1. In these tests, apart from 
the PTT conditions applied and the strategy followed, the 
route of administration of the photothermal conversion 
agents seems to be of special relevance, being the intrave-
nous and the intratumoral the two most common routes 
to administer the GO/rGO. There were exceptions such 
as in the research work carried out by Yan et al. where 
the subcutaneous route [44] was chosen; or at the in vivo 
evaluation presented by Sang Jung et al. where the com-
pound was applied topically because a certain type of 
skin cancer was investigated [45]. Moreover, following a 
different strategy, Liang Ma et al. manufactured a scaffold 
that was incorporated directly into the tumor [36]. The 
overall analysis of the reviewed studies where an in vivo 
evaluation was carried out, shown at Table  1, revealed 
that the antitumor effectiveness achieved was mainly 
established based on the assessment of two parameters: In
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variation in the tumor volume and in the animals’ total 
weight. Within them, two studies [26, 45] indicated a 
total inhibition of the tumor, complete reduction in 
tumor volume, concluding that there was no recurrence 
during the following weeks. In these two cases, GO 
was the photothermal conversion agent used with laser 
conditions of 808 nm wavelength and 2 W cm− 2 power 
administered, by different routes, resulting in an applied 
thermal dose CEM43 of 273 min in case of breast cancer 
and of 1280 min in melanoma. In both cases de CEM43 
remained below 24 h, in the 1 h < CEM43 < 24 h, thermal 
dose range. There was another study, Zhang et al. [56], 
that proposed a combination of chemotherapy and pho-
tothermal therapy in one system, using graphene oxide as 
photothermal agent but also as a delivery agent of a con-
ventional antitumor drug for breast tumor. The results 
demonstrated that the synergistic effect significantly 
improved the therapeutic efficacy, and presented a lower 
toxicity when compared to the administration of the anti-
tumor agent alone. The calculated CEM43 thermal dose 
applied at this case, where photothermal therapy was 
combined with chemotherapy, was lower with a value of 
384 min, again in the range 1 h < CEM43 < 24 h range.

Antipathogenic activity
Infections caused by some bacterial and fungal strains 
are attracting great concern in the medical community 
because of the high mortality rates associated. Within 
them, Kraker et al. [64] highlighted the mortality and 
consequences caused by two particular bacterial strains: 
methicillin-resistant Staphylococcus aureus (MRSA) and 
third-generation cephalosporin-resistant Escherichia coli 
(G3CREC). This high mortality is due to the decreasing 
effectiveness of conventional treatments against these 
microorganisms, a process that has increased in recent 
decades due to various factors such as the misuse of anti-
biotics. This resistance, identified as one of the top 10 
global public health threats [65], urges the development 
of alternative procedures to fight the so-called multi-drug 
resistant pathogens, being hyperthermia-based systems 
an interesting approach.

Going into detail, the two mechanisms of action that 
alter the integrity of microorganisms are the membrane 
disruption and oxidative stress. Both processes can be 
caused by localized hyperthermia generated by NIR irra-
diation of GO/rGO [66]. The first effect (membrane dis-
ruption) is the result of physical damage produced by the 
GO/rGO nanosheets themselves. This leads to instabil-
ity of the cellular structure and consequently the bacte-
ria inactivation [67]. The second effect, oxidative stress, 
occurs at the same time, due to the reactive oxygen spe-
cies (ROS) produced by these graphene derivatives. This 
causes damage to cellular components, such as lipids and 
proteins, and with them the mitochondrial dysfunction 

and DNA damage, after being internalized by cells [68]. 
Both effects are increased by the additional damages 
caused by hyperthermia in the same way [69].

Table  2 collects a summary of the reviewed publica-
tions, with main parameters provided by the authors, 
on the evaluation of the antimicrobial efficacy of PTT 
mediated by NIR photoexcitation of GO/rGO [70–78]. 
Additionally, the CEM43 thermal dose has also been 
calculated, and incorporated for each publication. Thus, 
when first looking at Table  2, it is noted that the stud-
ies are mainly focused on the most investigated bacte-
rial strains, above mentioned, Staphylococcus aureus and 
Escherichia coli. However, two of the reviewed publica-
tions [70, 71] include studies with pathogenic fungi such 
as Saccharomyces cerevisiae and some species of the 
genus Candida. This latter is also considered already at 
the same threat level as the assigned to the above-men-
tioned bacteria given several evidences of drug-resistant 
Candida yeasts [79]. In relation to the photothermal 
conversion agents, GO or rGO have been used mostly 
as nanosheets and nanotubes in dispersions or scaffolds. 
Moreover, it is also important to take into account the 
antimicrobial action derived solely from the presence 
of these graphene derivatives, already proven at previ-
ous studies [80, 81] where authors concluded that GO 
produces the strongest effect, followed by rGO, graph-
ite and graphite oxide. When hyperthermia is addition-
ally incorporated, induced by PTT using the GO/rGO as 
PTCAs, the reviewed publications presented at Table  2 
revealed that none of the studies used GO/rGO concen-
trations exceeding 100  µg/mL. When considering the 
laser parameters, almost all authors used a wavelength 
of 808 nm, as well as in the antitumor activity, which is 
within the first biological window. Two of the reviewed 
works [71, 76] applied different wavelengths, 660 and 
1064 nm respectively, which although not the most stud-
ied wavelengths, they both still belong to the NIR biologi-
cal window. Furthermore, in relation to the power laser, 
it seems that the trend is moving towards the use of soft 
power densities ≤ 1.5 W cm− 2 and, to our best knowledge, 
only two reviewed studies exceeded this value, using up 
to 3 W cm− 2 [72, 73]. When considering the temperature, 
a clear tendency was detected on these antipathogenic 
studies with the application of high temperatures in the 
ablative range with values ≥ 55ºC in the 100% of the cases.

As in the studies for tumor cells, the thermal dose has 
also been calculated for the antipathogenic reviewed 
works presented at Table  2, using the CEM43 param-
eter. It can be observed (Table 2) that the thermal doses 
applied are very high, 77.8% in the range CEM43 ≥ 1 year 
[70–73, 76–78] and 22.2% in the 1  day ≤ CEM43 < 365 
days’ range [74, 75]. These high thermal doses are gen-
erated by the use of high temperatures, included in the 
ablation range (≥ 55ºC), combined with exposure times of 
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great variability from 3 to even 60 min. The use of such 
high temperatures can be justified by the recently dem-
onstrated effect on the morphology of the biofilm formed 
by Staphylococcus bacteria when exposed to local heating 
above 60  °C and for long periods of time [82]. Accord-
ing to the biological response to these thermal doses, a 
very strong decrease in microbial viability was achieved 
in all in vitro tests. However, only three of the reviewed 
works carried out animal experiments and offered prom-
ising results with an enhanced reduction of bacterial 
infection [70, 71, 76]. Moreover, these three in vivo stud-
ies observed a simultaneous acceleration of the wound 
healing, with faster healing of skin wounds compared 
to the control probes in both, mouse and rat popula-
tions. Additionally, Li and collaborators [76] claimed the 
absence of toxicity of their strategy, based on a compos-
ite with Zn and GO and dual light irradiation for 10 min, 
to organs and proposed some regulatory mechanisms 
that may occur. Finally, clear positive antipathogenic 
results were observed from the first days of treatment by 
Wu et al. [70], who also claimed that the injuries of rats 
treated with the GO composite did not show erythema 
symptoms.

Concluding remarks and future perspectives
As clearly documented in the present review, both gra-
phene derivatives, GO and rGO, show a remarkable abil-
ity as effective photothermal agents when irradiated with 
NIR lasers and can be used in a controlled hyperthermia 
process. Moreover, based on the data of temperature 
and exposure time collected from the reviewed stud-
ies, the unified thermal dose parameter CEM43 allowed 
differentiating four ranges of interaction heat-cell in 
three thresholds: 1 h, 1 day and 1 year. Fig 1 presents the 
CEM43 thermal dose ranges established based on these 
three thresholds: CEM43 < 60  min, 1  h ≤ CEM43 < 24  h, 
1  day ≤ CEM43 < 365 days and CEM43 ≥ 1 year, together 
with the position of the thermal dose calculated for each 
of the reviewed studies. From it, despite the variability, 
the preference for a certain thermal dose depending on 
the cell type to be irradiated (tumor cell/pathogen) is 
revealed. Being the moderate thermal doses of CEM43 < 1 
year the most used for antitumor activity (dotted oval: 
black spots), with most temperatures ≤ 50  °C and expo-
sure time ≤ 15 min. While, in case of the antipathogenic 
studies (dotted oval: white squares), the most used ther-
mal dose was higher, CEM43 ≥ 1 year, with ablative 
hyperthermia (> 60ºC). Finally, observing those two ten-
dencies and each range values, the interest of extended 
research on the application of lower thermal doses: 

Table 2  Summary of the reviewed studies related to antipathogenic activity based on hyperthermia generated by photon excitation 
of GO and/or rGO in the NIR range
Type of 
microorganism

Material Laser 
Wave-
length 
[nm]

Power 
Density
[W 
cm− 2]

Tem-
perature 
reached
[°C]

Expo-
sure 
Time
[min]

CEM43
thermal dose
[min]

In vivo Results Ref.

S. aureus rGO 808 0.4 60 10 1.3 × 106

(2.5 years)
- Almost 100% killing efficiency 

and maintained even after stor-
age for 30 days

[77]

E. coli GO 808 2.78 65 5 2.1 × 107

(39.9 years)
- Total antibacterial 

capability > 98%
[73]

S. aureus and E. coli GO 808 1.5 55 5 5281
(3.6 days)

- Almost complete elimination of 
bacteria

[74]

S. aureus and E. coli GO 808 0.6 55 60 2.4 × 105

(170 days)
- Antibacterial effect of 99.91% [75]

S. aureus and E. coli GO 660 0.9 65 10 2.7 × 107

(52.3 years)
14 days 
treatment

Significant differences in antibac-
terial potential of up to 54% for S. 
aureus and 66% for E. coli

[76]

S. aureus and E. coli rGO 808 3.0 70 6 8.0 × 108 (thou-
sands of years)

- Bacterial viability reduced to 0% [72]

E. coli and S. 
typhimurium

GO 808 - 66 15 6.4 × 107

(122.2 years)
- Effective killing (> 95%) [78]

S. aureus and P. 
aeruginosa
S. cerevisiae and C. 
albicans

GO 808 1.0 61 6 1.6 × 106

(2.9 years)
21 days 
treatment

Significant differences in vitro and 
in vivo results. Topical GO incor-
poration and daily irradiation had 
effective potential

[70]

S. aureus and P. 
aeruginosa
S. cerevisiae and C. 
utilis

GO 1064 - 64 3 6.3 × 106

(11.9 years)
6 days 
treatment

Not only the in vivo infection is 
stopped but also the wound 
healing is improved

[71]
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CEM43 < 1  h for antitumor activity and CEM43 < 1 year 
for antipathogenic activity is clear. The efficient applica-
tion of lower temperatures by modulating the thermal 
dose with the time of exposure and/or repetitions in the 
doses will also contribute to reduce the damage on sur-
rounding tissues.
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