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Abstract

Ophthalmic inflammatory diseases, including conjunctivitis, keratitis, uveitis, scleritis, and related conditions, pose
considerable challenges to effective management and treatment. This review article investigates the potential

of advanced nanomaterials in revolutionizing ocular anti-inflammatory drug interventions. By conducting an exhaus-
tive analysis of recent advancements and assessing the potential benefits and limitations, this review aims to identify
promising avenues for future research and clinical applications. The review commences with a detailed exploration

of various nanomaterial categories, such as liposomes, dendrimers, nanoparticles (NPs), and hydrogels, emphasizing
their unique properties and capabilities for accurate drug delivery. Subsequently, we explore the etiology and patho-
physiology of ophthalmic inflammatory disorders, highlighting the urgent necessity for innovative therapeutic
strategies and examining recent preclinical and clinical investigations employing nanomaterial-based drug delivery
systems. We discuss the advantages of these cutting-edge systems, such as biocompatibility, bioavailability, controlled
release, and targeted delivery, alongside potential challenges, which encompass immunogenicity, toxicity, and regula-
tory hurdles. Furthermore, we emphasize the significance of interdisciplinary collaborations among material scientists,
pharmacologists, and clinicians in expediting the translation of these breakthroughs from laboratory environments

to clinical practice. In summary, this review accentuates the remarkable potential of advanced nanomaterials in rede-
fining ocular anti-inflammatory drug therapy. We fervently support continued research and development in this
rapidly evolving field to overcome existing barriers and improve patient outcomes for ophthalmic inflammatory
disorders.
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Introduction

Inflammation-associated ophthalmic diseases com-
prise a diverse array of ocular disorders characterized
by inflammation impacting various eye structures, such
as the uvea, sclera, optic nerve, cornea, and retina [1].
The prevalence of these disorders differs considerably,
depending on factors like geographic location, popula-
tion demographics, and the specific condition under
consideration. For example, uveitis, a more prevalent
inflammatory eye disorder, has an estimated prevalence
of approximately 38-730 cases per 100,000 individuals,
with higher rates observed in developing countries and
certain populations [2]. Conversely, scleritis is less com-
mon, with an estimated prevalence of around 4—20 cases
per 100,000 people [3]. Optic neuritis (ON) also occurs
relatively infrequently, with an estimated prevalence
of 1-5 cases per 100,000 individuals, but is more com-
mon in populations with a higher incidence of multiple

sclero [4]. These conditions can result from various fac-
tors, such as infections, genetic predispositions, auto-
immune diseases, environmental triggers, or other
underlying causes. Typical examples of these disorders
include uveitis, scleritis, ON, keratitis, and retinitis, each
with unique clinical manifestations and varying severity
levels. Symptoms associated with inflammation-related
ophthalmic diseases often encompass redness, pain,
light sensitivity, blurred or reduced vision, floaters, and,
in some instances, sudden vision loss. Diagnosing and
managing these conditions necessitate a comprehensive
assessment by an ophthalmologist, who may employ a
combination of clinical examination, laboratory tests,
and imaging studies to ascertain the underlying cause
and inflammation severity. Treatment strategies for ocu-
lar diseases vary depending on the specific disease and
its underlying cause, often involving a combination of
approaches. These approaches may include the use of
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topical or systemic anti-inflammatory medications, such
as corticosteroids [5, 6] and nonsteroidal anti-inflamma-
tory drugs (NSAIDs) [6], immunosuppressive therapy
with agents like methotrexate or cyclosporine (CsA) [7],
administration of antiviral or antibacterial agents in cases
of infectious causes [8], and in certain instances, surgical
intervention to address complications or unresponsive
cases. Prompt detection and appropriate management
are crucial to minimize the risk of complications and pre-
serve vision.

Nanomaterials, defined as materials with at least one
dimension ranging from 1 to 100 nm in the nanom-
eter scale [9, 10], exhibit unique physical, chemical, and
mechanical properties that markedly differ from those
of their bulk counterparts. Owing to their high surface
area-to-volume ratio, quantum size effects, and other
nanoscale phenomena, they hold promise for advanc-
ing the diagnosis and treatment of inflammation-related
ocular disorders [11]. For example, NPs, liposomes, and
dendrimers can be employed to deliver anti-inflamma-
tory, immunosuppressive, or anti-angiogenic drugs with
enhanced targeting, reduced systemic side effects, and
sustained release profiles [12]. Quantum dots and gold
nanoparticles (AuNPs) can also be utilized in advanced
imaging techniques like optical coherence tomography
(OCT), fluorescence imaging, and photoacoustic imaging
for superior visualization of ocular structures and inflam-
mation for early detection and diagnosis [13]. Quantum
dots and AuNPs can also be employed in advanced imag-
ing techniques such as OCT, fluorescence imaging, and
photoacoustic imaging to provide better visualization of
ocular structures and inflammation for early detection
and diagnosis [14, 15]. Additionally, nanofibers, hydro-
gels, and nanocomposites can function as scaffolds or
supports for the regeneration of damaged ocular tissues
such as the cornea or retina [16—18]. Continued research
in this domain may ultimately result in more effective
treatments for inflammation-related eye disorders, with
fewer side effects. Despite the extensive information
available on nanomaterial formulation, characteriza-
tion, ocular administration, and targeting, addressing the
toxicity and safety of these materials remains an urgent
requirement. Consequently, new breakthroughs are
essential for facilitating the development and application
of next-generation nanomaterials in ocular anti-inflam-
matory drug therapy.

Nanomaterials

Nanoparticles (NPs) represent a class of minuscule, syn-
thetically engineered particles with dimensions ranging
from 1 to 100 nm. These particles bridge the gap between
bulk matter and atoms or molecules. Due to their dimin-
utive size, they exhibit unique characteristics, such as a
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vast surface area, potent penetrative ability, and stabil-
ity. NPs find widespread use in diverse fields, including
biomedicine, fine chemical engineering, seawater puri-
fication, aerospace, environmental energy, and micro-
electronics. Within the realm of biomedicine, NPs can
permeate cellular structures in the body, traverse neu-
ral pathways, lymphatic systems, and blood vessels, and
selectively accumulate within various cellular architec-
tures. This versatility renders nanoparticle-based mate-
rials extensively and actively employed for drug delivery
and disease treatment.

Nanomaterials can be primarily classified into two
categories: organic and inorganic nanomaterials [19].
Organic nanomaterials encompass polysaccharide-based
materials, lipid-based nanomaterials, and polymer-based
nanomaterials, such as microspheres, micelles, hydrogels,
NPs, dendrimeric macromolecules and nanofibers [20].
Inorganic nanomaterials include magnetic-based mate-
rials, gold-based materials, iron oxide-based materials,
silica-based materials, and graphene among others [21].
In ophthalmology, nanomaterials have demonstrated
promising applications in the diagnosis and treatment of
various eye diseases, possessing the capacity to facilitate
targeted drug delivery [22], enhance diagnostic imaging
[23], and promote tissue regeneration [24]. Nonetheless,
further research is required to comprehensively under-
stand the safety and efficacy of these materials in the eye.

Carbohydrate-based nanomaterials

Carbohydrate-based nanomaterials constitute a class of
nanomaterials derived from natural carbohydrates such
as cyclodextrins, cellulose and chitosan (CS) [25]. These
materials exhibit exceptional physicochemical proper-
ties, rendering them highly desirable for a wide array of
applications in fields such as medicine, energy and envi-
ronmental remediation. Carbohydrate-based nanoma-
terials can be engineered to possess specific properties,
including size, shape and surface charge, making them
remarkably versatile and suitable for numerous applica-
tions. These materials can self-assemble and form com-
plex structures, which are attractive for applications in
drug delivery and tissue engineering [26]. Furthermore,
carbohydrate-based nanomaterials demonstrate excellent
biocompatibility, biodegradability and low toxicity, mak-
ing them ideal candidates for biomedical applications
[27].

Chitosan

CS is a linear polysaccharide comprising randomly dis-
tributed B-(1-4)-linked D-glucosamine and N-acetyl-
D-glucosamine units, originating from partially
deacetylated chitin. Due to the presence of protonated
amino groups carrying a positive charge, CS exhibits
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pH-regulating properties and functions as a water-sol-
uble cationic polyelectrolyte capable of interacting with
negatively charged molecules. By encapsulating dexa-
methasone (DEX) sodium phosphate for topical ocular
delivery, CS NPs decreased drug residence time in the
cornea and enhanced drug permeability [28]. Thus, CS
NPs as nano-carriers for DEX have demonstrated broad
prospects in the treatment of ocular inflammation.

Hyaluronic acid

Hyaluronic acid (HA) is a natural polysaccharide com-
posed of D-glucuronic acid and N-acetyl-D-glucosamine
units linked through p-1,3 or p-1,4 glycosidic bonds and
serves as a natural ligand for CD44 receptors expressed
on macrophages. CD44 is a multifunctional receptor
involved in intracellular, intercellular, and extracellu-
lar matrix interactions. The primary mode of HA bind-
ing to CD44 occurs via its NH2-terminal region located
near the 135-amino acid domain of the receptor. Con-
sequently, HA exhibits anti-inflammatory targeting by
recognizing macrophage receptors. As a significant com-
ponent of the vitreous humor, HA and its biocompatible
derivatives are highly suitable for ocular delivery [29-31].
HA-CS nanocomplexes loaded with siRNA could pene-
trate the rabbit vitreous, and following intravitreal injec-
tion, a reduction in laser-induced neovascularization in
the rabbit retina was observed, accompanied by good
tolerability, biosafety, and enhanced bioavailability [32].
HA serves as an excellent drug carrier in the treatment
of ocular diseases, exhibiting outstanding drug diffusion
and delivery properties. These attributes enable its wide-
ranging application potential in intraocular drug delivery.

Cyclodextrins

Cyclodextrins are macrocyclic structures characterized
by a cone-shaped, hollow, cylindrical morphology. The
hydrophilic exterior of cyclodextrins is formed by sec-
ondary and tertiary hydroxyl groups at the larger and
smaller openings, respectively, while the interior cavity is
hydrophobic due to shielding by C—H bonds. This hydro-
phobic cavity can accommodate various organic com-
pounds, forming inclusion complexes and modifying the
physical and chemical properties of the encapsulated sub-
stance. Wang et al. synthesized nanomaterials containing
brinzolamide inclusion complexes and hydroxypropyl-
B-cyclodextrin complexes, prolonging drug release and
enhancing the efficacy of brinzolamide eye drops in
glaucoma treatment [33]. Cyclodextrins offer significant
advantages in the treatment of ocular diseases, includ-
ing drug protection, enhanced solubility, reduced toxic-
ity, improved drug stability and enhanced drug delivery.
These properties establish cyclodextrins as crucial
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components in the treatment of ocular diseases, playing a
vital role that cannot be overlooked.

Natural medicine-based polysaccharides

Natural medicine-based polysaccharides exhibit unique
and highly effective biological functions for treating
ocular afflictions. For instance, Lycium barbarum poly-
saccharides (LBPS) ameliorated dry eye syndrome, miti-
gated oxidative damage in human trabecular meshwork
cells, and maintained retinal and ganglion cell functional-
ity [34—-37]. In human corneal fibroblasts (HCFs), these
polysaccharides reduced the formation of pro-fibrotic
proteins following in vitro corneal injury and suppressed
the expression of IL-8 and IL-6, thereby acting as prophy-
lactic medication before corneal refractive surgery [38].
Moreover, LBPS demonstrated anti-Af;_,, oligomeriza-
tion properties, inhibited NLRP3 inflammasome acti-
vation, and exerted anti-apoptotic effects, alleviated
inflammation and cellular pathology in vitro age-related
macular degeneration (AMD) models [39]. Astragalus
polysaccharides (APS) protected ARPE-19 cells, a spon-
taneously arising retinal pigment epithelium (RPE) cell
line, and rat primary RPE cells under high glucose con-
ditions through miR-182/Bcl-2 and miR-204/SIRT1
signaling pathways, restraining mitochondrial damage,
endoplasmic reticulum (ER) stress and cell apoptosis [40,
41], ultimately improving diabetic retinopathy (DR) RPE
cell function. Ginkgo biloba leaf-derived polysaccharides
(PGBL) reduced tumor necrosis factor-a (TNF-a) expres-
sion in the aqueous humor of endotoxin-induced uveitis
(EIU) model rats, demonstrating notable efficacy in treat-
ing ocular inflammation and glaucoma [42, 43]. Den-
drobium candidum polysaccharides (DCPS) inhibited
proliferation and induced apoptosis of human corneal
epithelial cells (HCEC) under high glucose conditions,
repairing HCEC damage [44]. Sodium alginate (SA), a
natural polysaccharide extracted from brown algae such
as kelp or sargassum, exhibits polyanionic behavior in
aqueous solutions and possesses adhesive properties,
serving as an adjunct in cataract surgery. Additionally,
alginate oligosaccharides (AQOS) treated D-galactose
(D-gal)-induced SOD1, SOD2, and CAT protein expres-
sion in the lenses of C57BL/6] mice, decelerating lens
damage and aging [45]. However, these polysaccharides
display low absorption, poor bioavailability, and unstable
chemical structures in ocular tissues. Therefore, com-
bining polysaccharides and nanotechnology in disease
treatment compensates for the inherent shortcomings
of natural polysaccharides. For instance, when encap-
sulated within high molecular weight CS (HCS)-based
nanogels, resveratrol exhibited no inflammatory or cyto-
toxic effects on ARPE-19 cells. After cellular internaliza-
tion, researchers observed an endo-lysosomal escape of
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nanogels [46]. LBPS and DCPS were integrated with SA
to fabricate nanomaterials, thereby enhancing drug com-
patibility and stability within the body [47]. These find-
ings serve as a positive reference for the application of
natural plant polysaccharides in conjunction with nano-
materials for the treatment of ocular disorders.

In conclusion, carbohydrate-based nanomaterials dem-
onstrate significant potential in the field of ocular drug
delivery, owing to their biocompatibility, biodegradabil-
ity, and unique recognition properties. The development
of these nanomaterials has the potential to revolutionize
the treatment of various ocular diseases, such as dry eye
syndrome, glaucoma, DR, and AMD, by enhancing drug
bioavailability, prolonging drug release, and improving
therapeutic efficacy. Further research and development
of carbohydrate-based nanomaterials are essential to
unlocking their full potential and translating their ben-
efits into clinical applications.

Lipid-associated nanomaterials

Lipid-associated nanomaterials, a class of nanoma-
terials comprising lipids, are highly sought after for
applications in diverse fields such as medicine, biotech-
nology, and materials science. This category includes
liposomes, nanoemulsions, and lipid NPs, all of which
possess unique properties that make them well-suited
for targeted drug delivery, imaging, and diagnostic pur-
poses. These lipid-based nanomaterials can be tailored to
exhibit specific properties, such as size, shape, and sur-
face charge, rendering them highly versatile and effective
in various applications. Additionally, they can self-assem-
ble and form complex structures, a characteristic that is
particularly attractive for drug delivery and tissue engi-
neering applications. Lipid-associated nanomaterials also
demonstrate excellent biocompatibility, biodegradability,
and low toxicity, making them ideal candidates for bio-
medical applications.

Liposomes are spherical vesicles composed of phos-
pholipid bilayers capable of encapsulating both hydro-
philic and hydrophobic drugs. These nanoscale structures
are highly versatile and can be engineered to possess
specific properties, such as size and surface charge, to
enhance their drug delivery capabilities [48]. Liposomes
exhibit biocompatibility, biodegradability, and non-tox-
icity, making them suitable for biomedical applications
[49]. They can protect encapsulated drugs from degra-
dation and clearance by the immune system, leading to
improved drug efficacy and reduced side effects. Further-
more, liposomes can selectively target specific tissues or
cells, improving drug delivery and reducing off-target
effects. They have been employed in various applications,
including cancer therapy [50], vaccine delivery [51], gene
therapy [52], and cosmetic formulations [53]. Researchers
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continue to explore new formulations and modifications
of liposomes to enhance their effectiveness and applica-
bility across diverse fields.

Nanoemulsions are a type of nanomaterial consisting of
small droplets of one liquid dispersed within another liq-
uid. The droplets in nanoemulsions typically have a diam-
eter ranging from 20 to 200 nm [54], making them highly
stable and suitable for various applications, including
drug delivery, food science, and cosmetics. Nanoemul-
sions can be engineered to possess specific properties,
such as size, surface charge, and stability, rendering them
highly versatile and effective in different applications.
They can also be designed to exhibit specific drug release
kinetics, crucial for achieving optimal therapeutic effects.
One significant advantage of nanoemulsions is their abil-
ity to enhance the solubility and bioavailability of poorly
water-soluble drugs. Encapsulating these drugs in nanoe-
mulsions can improve their absorption and distribu-
tion within the body, leading to increased drug efficacy.
Nanoemulsions are also highly stable and can be formu-
lated to resist aggregation and coalescence, which can
reduce their effectiveness. They can be functionalized
with targeting ligands, such as antibodies or peptides,
to selectively target specific tissues or cells for improved
drug delivery. Due to their transparency, uniform texture,
and comfortable application, nanoemulsions are gaining
clinical significance in ophthalmology. Kang et al’s pro-
spective double-blind study revealed that a novel 0.05%
Cyclosporin A topical nanoemulsion demonstrated supe-
rior lipophilicity and water solubility, effectively improv-
ing conjunctival inflammation and ocular symptoms in
dry eye patients compared to a conventional emulsion
[55]. This study provides a basis for the effective utiliza-
tion of nanoemulsions in ocular drug delivery, demon-
strating their potential in the field of ophthalmology.

Lipid NPs consist of lipophilic matrices and aqueous
phases with particle sizes ranging from 100 to 1000 nm.
Lipid NPs can be categorized into two developmen-
tal stages: first-generation solid lipid nanoparticles
(SLNs) and second-generation nanostructured lipid
carriers (NLCs) [56], both exhibiting similarities in
biocompatibility and biodegradability. Lipid NPs have
the unique property of being able to encapsulate both
hydrophilic (water-soluble) and hydrophobic (lipid-
soluble) substances [57]. This versatility is due to their
composition, which includes lipids that possess both
hydrophilic and hydrophobic regions. These lipids can
form self-assembled structures, such as liposomes or
lipid NPs, which can accommodate and entrap a wide
range of drug molecules, regardless of their solubility
properties [58]. The ability to encapsulate both hydro-
philic and hydrophobic substances make lipid NPs
suitable for a broad spectrum of drugs, enabling their
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effective delivery. This characteristic is advantageous
in large-scale production because a single lipid-based
nanoparticle formulation can accommodate different
types of drugs, simplifying the manufacturing process
and reducing the need for multiple formulations [57,
59]. SLNs originate from O/W emulsions, substitut-
ing liquid lipids in emulsions with lipid matrices such
as fatty acids and fatty alcohols, rendering them solid
at room temperature. SLNs decrease surface tension
between lipid and water interfaces. Clinically, most
drugs display low solubility; thus, combining them with
SLNs results in more soluble medications for enhanced
absorption. Surfactant coatings preserve stability, offer-
ing higher physical stability for SLN-based nanocarriers
compared to nanoemulsions when solid structures are
enveloped in stable surfactant layers. Drug-SLN bind-
ing methods can be classified into three distinct models
based on drug distribution within SLNs: The homoge-
neous matrix model, drug-enriched shell model, and
drug-enriched core model [60]. The second-generation
lipid NPs, NLCs, were designed to overcome the limita-
tions of first-generation SLNs. In comparison to SLNs,
NLCs demonstrate high drug loading capacity, reduced
aqueous content in particle suspensions, and minimal
potential drug leakage during storage [61] (Fig. 1A). So
far, literature reports have shown that both NLCs and
SLNs exhibit the ability to encapsulate small-molecule
substances, enabling easier delivery to various ocular
tissues. However, further research is needed to inves-
tigate the delivery of large-molecule substances such as
peptides and proteins to the ocular region, particularly
in the case of SLNs. Lipid-drug conjugates (LDCs) rep-
resent a new class of compounds generated through the
lipophilic modification of water-soluble or poorly sol-
uble drugs. Although SLNs and NLCs are appropriate
for lipophilic drugs, their encapsulation efficiency for
water-soluble drugs is quite low. This can lead to inade-
quate ocular drug delivery permeation and the inability
to administer high doses of proteinaceous and peptide-
based drugs. LDCs tackle these challenges by modify-
ing drugs to boost absorption and therapeutic efficacy.
Typically, LDCs are formed through the covalent bond-
ing of water-soluble drugs or compounds that are
challenging to formulate with lipids, thereby enabling
lipophilic modification. This process imparts pharma-
ceutical properties to the drugs, including increased
drug loading capacity, enhanced membrane permeabil-
ity [62] and active transport, and improved drug bio-
availability. Moreover, controlled release and targeted
delivery can be achieved [63], minimizing toxic side
effects [64]. Lipids such as fatty acids, glycerides, and
phospholipids are commonly employed for conjuga-
tion with drugs. LDCs present a promising strategy for
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enhancing drug delivery for a wide array of therapeu-
tic agents, including those with low solubility or poor
permeability.

Polymer Nanomaterials

Polymer nanomaterials constitute a class of nanomate-
rials comprised of synthetic or natural polymers with
sizes typically ranging from 1 to 100 nm. Various types of
polymer nanomaterials include polymeric NPs, polymer
micelles, dendrimers, polymer hydrogels, and polymer
nanofibers. These materials possess unique properties
that render them highly valuable for diverse applications,
including drug delivery, tissue engineering, and nano-
electronics. Polymer nanomaterials can be engineered
with specific properties, such as size, shape, and surface
chemistry, which can be customized for their intended
application. They can also be functionalized with target-
ing ligands, like antibodies or peptides, to selectively tar-
get specific tissues or cells for enhanced drug delivery. A
significant advantage of polymer nanomaterials is their
ability to encapsulate a broad spectrum of drug mol-
ecules, encompassing both hydrophobic and hydrophilic
drugs. This can improve the solubility and bioavailability
of these drugs, resulting in better therapeutic outcomes
and fewer side effects. Polymer nanomaterials can also
be designed to respond to particular stimuli, such as
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changes in pH, temperature, or light, which can be useful
for controlled drug release applications. Moreover, they
can be engineered to be biodegradable or biocompatible,
rendering them suitable for biomedical applications.

Polymeric NPs are structures that can carry drugs and
proteins by covalently linking or adsorbing them to a pol-
ymer framework or surface [65]. They can take the form
of nanocapsules or nanospheres and consist of natural
or synthetic polymers [66] (Fig. 1B). Examples of natu-
ral polymers include CS, heparin, HA, and starch, while
synthetic polymers encompass polylactic-co-glycolic
acid (PLGA), polyglycolic acid (PGA), and polyethyl-
ene glycol (PEG). Polymeric NPs provide a matrix-type
solid colloidal particle that can facilitate drug release
and targeted delivery in vivo, reducing toxic side effects.
Nanospheres, with diameters ranging from 10-1000 nm,
consist entirely of polymer materials with drugs encap-
sulated or adsorbed within them. By adsorbing sur-
face-active agents, like poloxamine, onto nanosphere
surfaces, NPs can evade recognition and degradation by
the reticuloendothelial system (RES) in vivo, promot-
ing drug circulation within the body [67]. PEA micro-
spheres containing DEX were injected into rabbit eyes to
observe drug metabolism within the vitreous humor, and
the results revealed a sustained drug effect lasting up to
three months [68]. Nanocapsules, conversely, possess an
oily liquid core and an enveloping polymer shell that can
incorporate drugs into the oily core or adsorb them onto
the polymer surface, rendering this approach suitable for
hydrophobic drug delivery [69]. Astragaloside-IV loaded
into lipid nanocapsules (ASIV-LNCs) could reach the
retinal layer via topical eye drops to treat AMD, demon-
strating the feasibility of delivering nanocapsule-encap-
sulated drugs to the retinal layer using eye drops [70]. In
summary, polymeric NPs offer various advantages, such
as increased drug solubility, innovative drug administra-
tion methods, enhanced active ingredient utilization, and
reduced cytotoxicity.

Polymer micelles, with diameters typically ranging
from 10-100 nm, emerged as one of the most effective
drug carriers in the 1990s [71]. These micelles are pri-
marily spherical, featuring hydrophilic heads and hydro-
phobic tails, offering an advantage in the incorporation
and transport of numerous hydrophobic drugs. The
loaded drugs can encompass hydrophobic small mol-
ecules and negatively charged macromolecular nucleic
acids (DNA and siRNA). Interactions between hydro-
phobic small molecules facilitate their integration into
the micelle interiors. When incorporating negatively
charged nucleic acid macromolecules, longer nucleic
acids provide more binding sites with micelles, lead-
ing to increased drug stability. Polymer micelles exhibit
remarkably low cytotoxicity in vivo because, following
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the disintegration of drug-loaded micelles, individual
polymer chains are formed that can be excreted through
renal metabolism [72]. Presently, polymer micelles have
become one of the most extensively utilized drug carriers
in the treatment of ocular diseases, providing exceptional
tissue permeability upon contact with ocular tissues.
Most notably, these polymer micelles possess high water
solubility, enabling the production of transparent eye
drops that neither interfere with vision nor compromise
user comfort [73].Polymer hydrogels represent a class
of three-dimensional, highly hydrophilic polymeric net-
works formed by water-soluble or hydrophilic polymers
through chemical and physical interactions. They can
be categorized into synthetic hydrogels, polysaccharide-
based hydrogels, and peptide (protein)-based hydrogels.
Synthetic hydrogels comprise polymers such as alcohols,
acrylic acids, and their derivatives, including polyacrylic
acid. Polysaccharide hydrogels encompass starch, cellu-
lose, alginate, HA, CS, and others, while peptide-based
hydrogels consist of collagen and poly-L-lysine. Due to
their exceptional biocompatibility, environmental sensi-
tivity, abundant sources, and cost-effectiveness, natural
polymer hydrogels are extensively employed in biomedi-
cine. André et al. discovered that biopolymeric hydrogels
based on high-molecular-weight alginate and HA could
serve as human vitreous substitutes, exhibiting high opti-
cal transparency and viscosity similar to vitreous. In vitro
experiments revealed no cytotoxic effects on human
fibroblasts, ARPE-19, and photoreceptor cells [74].
Polymer dendrimers are a class of highly branched,
monodisperse polymers characterized by tree-like struc-
tures, formed by the linear connection of low molecu-
lar weight polymers via branching units. Dendrimers
typically comprise a core, main polymer chains, and
side chains of branching units. They exhibit precise con-
trol of physicochemical properties, extensive internal
cavity structures, and densely functionalized surfaces.
By adjusting the structure of the branching units and
the distance between the main polymer chains, diverse
dendrimer configurations can be prepared, facilitating
improved combinations with various drugs for delivery.
Commonly synthesized dendrimer components include
polyamidoamine (PAMAM), poly(L-lysine) (PLL), poly-
ethylenimine (PEI), and poly (propylene imine) (PPI). In
a mouse model of oxygen-induced retinopathy (OIR),
Generation-4 hydroxyl polyamidoamine dendrimer NPs
were employed to deliver the drug triamcinolone aceto-
nide (TA). Following intravitreal injection, dendrimer-
conjugated TA (D-TA) was observed to inhibit retinal
microglial inflammation, mitigating OIR-induced neu-
roretinal and visual function impairment [75]. This study
demonstrates the effective approach and solution for the
ocular administration of corticosteroids by reducing the
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dosage of corticosteroids through their conjugation with
dendritic polymers. By coupling TA with dendritic poly-
mers, the complications associated with the ocular use of
corticosteroids can be minimized, offering a promising
strategy for the proper use of corticosteroids in ocular
applications.

Polymer nanofibers are elongated, slender fibers with
diameters ranging from tens to hundreds of nanom-
eters [76]. These fibers are generated via electrospin-
ning, a process that involves applying an electric field to
a polymer solution or melt, resulting in the formation
of a jet that is subsequently stretched and solidified into
nanofibers [77]. Polymer nanofibers possess a high sur-
face area-to-volume ratio, offering enhanced mechanical
properties, and high porosity, enabling their use as drug
delivery systems. These materials have demonstrated
promising results in drug delivery applications, particu-
larly in the treatment of ocular diseases [78]. Nanofiber-
based drug delivery systems provide improved drug
loading capacity, sustained drug release, and targeted
drug delivery, augmenting therapeutic efficacy while
minimizing the risk of toxic side effects. Likewise, poly-
mer nanofibers have been investigated for retinal tissue
engineering, with studies utilizing electrospun nanofibers
of biodegradable polymers like polycaprolactone and pol-
ylactic acid to create 3D scaffolds for retinal cell growth
and differentiation [79]. Moreover, polymer nanofib-
ers have also been deployed as drug delivery systems in
ophthalmology, with electrospun nanofibers employed
to encapsulate and deliver drugs directly to target ocular
tissues. This approach has exhibited promise in treating
diseases such as glaucoma and AMD [80, 81].

Inorganic nanomaterials

Inorganic nanomaterials encompass NPs composed of
inorganic substances, including metals, metal oxides, and
semiconductors. These materials exhibit distinctive phys-
ical and chemical properties, rendering them promising
candidates for biomedical applications [82].

Magnetic NPs constitute a type of inorganic nano-
material characterized by unique magnetic proper-
ties. They are typically comprised of magnetic metals
or metal oxides, such as iron, cobalt, nickel, and mag-
netite, with diameters ranging from 1 to 100 nm. For
medical applications, magnetic particles must possess
essential attributes, including non-toxicity, biocompat-
ibility, injectability, and high accumulation in targeted
tissues or organs. Presently, magnetic NPs are employed
for cell sorting, targeted drug delivery and therapy, con-
trast agents for magnetic resonance imaging, and heating
mediums for cancer thermotherapy. In ophthalmology,
commonly used magnetic nanomaterials include super-
paramagnetic iron oxide nanoparticles (SPIONs) and
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gold-based magnetic materials. Among these, SPIONs
represent a distinct class of nanomaterials composed of
magnetite (Fe;O,) or maghemite (y-Fe,O;), exhibiting a
solid spherical shape. By aggregating with surfactants
such as PEG, polyvinyl alcohol (PVA), and CS, SPIONs
can form more stable and biocompatible nanomateri-
als [83]. During the fabrication process, SPIONs can
be synthesized through microemulsion, hydrothermal,
high-temperature pyrolysis, and chemical co-precipi-
tation methods [84]. Complete drug delivery systems
can be developed by encapsulating drugs with SPIONs
and modifying their surfaces with surfactant materi-
als, enabling targeted and precise drug therapy [85]. For
instance, mesenchymal stem cells (MSCs) treated with
SPIONs and intravenously injected into malnourished
rat models demonstrated increased levels of glial-derived
neurotrophic factor, ciliary neurotrophic factor, hepato-
cyte growth factor, and IL-10 in the rat retina compared
to untreated MSC groups [86]. Moreover, due to their
unique magnetic properties, SPIONs can induce tem-
perature increases in local environments when exposed
to magnetic fields, resulting in tumor cell death. Clini-
cally, this therapeutic approach is referred to as magnetic
nanomaterial thermotherapy. Dextran-coated iron oxide
nanoparticles (DCIONSs), upon magnetic field activation
and at specific concentrations, could promote Y79 cell
death by activating TNF-« activity in Y97 cells through
the caspase-3/7 pathway. In the absence of a magnetic
field, however, DCIONS displayed no cytotoxic effects on
Y79 cells [87].

AuNPs are a widely researched type of nanoparticle,
with diameters typically ranging from 1 to 100 nm, exhib-
iting different colors based on their size. Owing to their
stable physicochemical properties, large surface-to-vol-
ume ratio, and outstanding biocompatibility, AuNPs are
well-suited for tumor targeting therapy, bioimaging, and
as easily distinguishable identification markers in immu-
nodetection and diagnosis due to their high density. In
screening DR populations, color changes in AuNP-con-
taining materials employed for urine testing can indicate
diabetes progression. After photographing and analyzing
these test strips with software systems, DR prevalence
can be determined [88] (Fig. 2).

Inflammation in ophthalmology diseases

Inflammation is a prevalent factor in ophthalmic dis-
eases, manifesting in a variety of symptoms, including
redness, swelling, pain, and compromised vision. Inflam-
matory processes can impact various ocular structures,
such as the cornea, iris, conjunctiva, choroid, retina, and
optic nerve. This section aims to offer a comprehensive
examination of inflammation in ophthalmic diseases,
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Fig. 2 The diagram elucidates the multifaceted applications of AUNP in the domain of ophthalmology. This is reproduced from Ref. [23]

with the authorization of John Wiley and Sons

elucidating its etiology, clinical manifestations, and ther-
apeutic approaches.

Eyelid inflammation

Eyelid inflammation is primarily classified into four cat-
egories: hordeolum, blepharitis, viral palpebral dermati-
tis, and contact dermatitis [89]. Hordeolum is an acute,
purulent or nodular inflammatory condition arising
from eyelid glandular tissue infection by Staphylococcus
aureus. Involvement of the meibomian gland results in a
larger, deeper swelling within the eyelid, with the extent
of swelling constrained by the tarsal plate. Conjunctival
hyperemia and edema may be apparent. If the Zeis gland
is affected, a smaller and more superficial swelling occurs
near the eyelash base. Approximately four days post-
hordeolum onset, the course of the condition depends
on individual resistance, with Staphylococcus aureus

reinfections within the lesion potentially spreading or
remaining localized [90, 91]. Worsened inflammation
may lead to eyelid cellulitis development, or an abscess
may form, culminating in a firm, white nodule. Treat-
ment strategies encompass cold and warm compresses,
antibiotic eye drops, ultra-short-wave therapy, and more
[92]. Severe cases or instances of eyelid cellulitis may
necessitate oral or intramuscular antibiotics. Once the
abscess is localized, incision and drainage can be per-
formed for pus removal.

Blepharitis encompasses squamous, ulcerative, and
angular forms [93]. Current research posits that chronic
inflammation may be triggered by irritants resulting from
the local degradation of sebum by Malassezia [94]. Treat-
ment options include a 2% sodium bicarbonate solution
for local cleansing, short-term antibiotic ointment use
for mild symptoms, and systemic oral lipid antibiotics to
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reduce bacterial lipase production in severe cases. Ulcer-
ative blepharitis, characterized by chronic or subacute
purulent inflammation of eyelash follicles and associated
glands [95], is typically caused by Staphylococcus aureus,
epidermidis, or coagulase-negative Staphylococcus infec-
tions, primarily affecting immunocompromised children.
Clinical treatment involves selecting appropriate medica-
tion following bacterial culture and drug sensitivity tests,
with strategies including local warm compresses, secre-
tion removal, and localized antibiotic application, with
bacitracin as the preferred choice and long-term ami-
noglycoside use as an alternative [96]. Angular blephari-
tis originates from Moraxella, Staphylococcus aureus
infections, or, rarely, vitamin B2 deficiency. Treatments
include zinc sulfate eye drops (0.25-0.5% concentration)
to inhibit Moraxella-produced enzymes, oral lipophilic
antibiotics, and timely vitamin supplementation for indi-
viduals with vitamin B2 deficiency.

Viral palpebral dermatitis includes herpes simplex and
herpes zoster forms, caused by herpes simplex virus type
I and varicella-zoster virus infections, respectively. With
weakened immunity, the virus can invade the eyelid,
resulting in inflammation. Clinically, clusters of semi-
transparent, yellowish pus-filled vesicles may emerge on
the skin [97]. Pathological scraping tests can reveal multi-
nucleated giant cells [98], while Giemsa staining may dis-
play acidophilic viral inclusion bodies, and peroxidase
staining may yield positive results. Treatment options
consist of topical zinc oxide and antibiotic ointments,
local or systemic antiviral medications such as acyclovir,
and intramuscular interferon injections, depending on
the condition’s severity [99].

Conjunctivitis

The conjunctiva, categorized into the bulbar, palpebral,
and fornix conjunctiva based on location [100], encom-
passes a significant portion of the eye’s surface area. Its
direct contact with the external environment renders
it vulnerable to pathogenic factors, including bacteria,
which may provoke inflammation and damage. Con-
junctivitis may arise from microbial and non-microbial
factors, as well as endogenous and exogenous factors.
Infections can also disseminate from adjacent tissues,
such as the nasal cavity. Microbial infections, encom-
passing bacterial, viral, chlamydial, fungal, and parasitic
infections, constitute the most prevalent causes of con-
junctivitis [101]. The condition is primarily classified into
bacterial conjunctivitis, immune-mediated conjunctivitis,
chlamydial conjunctivitis, and viral conjunctivitis. Funda-
mental clinical treatment approaches for conjunctivitis
include antibiotic eye drops, ointment application, and
systemic administration of antibiotics or sulfonamides
[102].
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Keratitis

The cornea, an integral component of the eye’s refractive
system, functions as the initial refractive medium for light
entering the eye. Its convex, highly transparent structure
is soft, avascular, and rich in sensitive nerve endings,
rendering it essential for maintaining clear visual qual-
ity [103]. Keratitis, a primary cause of global blindness,
is the primary reason behind corneal blindness in both
developed and developing nations, with an approximate
occurrence rate ranging from 2.5 to 799 cases per 100,000
population per year [104]. The disease’s etiology com-
prises microbial infections [105], spread from adjacent
tissues, and autoimmune systemic diseases like rheuma-
toid arthritis. Based on causative factors, keratitis can be
categorized into infectious, immune-mediated, malnu-
tritional, and neurotrophic types. Infectious keratitis is
most prevalent, marked by prominent symptoms such as
photophobia, tearing, and ocular pain, along with varying
degrees of vision loss. Primary treatments involve infec-
tion control, inflammation reduction, ulcer healing pro-
motion, and scar formation minimization. Depending on
the causative agent, distinct medications are employed
for various types of infectious keratitis [106]: topical or
systemic antibiotics such as cefotaxime and tobramycin
for bacterial keratitis; antifungal medications like nata-
mycin eye drops for fungal keratitis [107]; acyclovir or
ganciclovir eye gels, potentially combined with corticos-
teroids for inflammation control in herpes simplex virus
keratitis [108]; and cationic inhibitors such as chlorhex-
idine bigluconate coupled with antifungal medications
for Acanthamoeba keratitis [109]. During treatment,
artificial tears like sodium hyaluronate drops can serve as
adjunctive therapy for eye moisturization. Based on the
depth of corneal infiltration, diverse surgical approaches
can be employed, such as amniotic membrane transplan-
tation or conjunctival flap coverage, lamellar or penetrat-
ing keratoplasty [110]. The emergence of commercial
artificial corneas, including AlphaCor, Miok, and Boston
II keratoprosthesis [111], offers optimism for patients
with corneal diseases lacking corneal graft sources.

Dry eye syndrome, a distinct form of keratitis, con-
stitutes a multifactorial disease characterized by tear
film abnormalities and ocular discomfort, fatigue, and
other unfavorable symptoms [112]. The pathogenesis
of dry eye is intricate, encompassing immune-inflam-
matory response, apoptosis, and neurogenic inflamma-
tion, among other factors, which interrelate and amplify
each other, ultimately leading to or exacerbating dry eye
[113]. Current research suggests that hyperosmotic tear
film and immune-mediated inflammation of the lacri-
mal gland are vital factors in the persistent development
of dry eye [113]. Various cytokines, such as IL-1f3, IL-17,
TNEF-a, IL-6, and tumor growth factor-y (TGEF-y), play
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a significant role in dry eye pathogenesis [114]. Medica-
tions remain the primary treatment modality, and the
field continues to be a focal point of ophthalmologic
research. Currently available topical medications include
artificial tears, CsA, autologous serum, corticosteroids,
and tetracycline derivatives [115]. While artificial tears
can alleviate mild dry eye symptoms and temporarily sta-
bilize the tear film, they cannot reverse the progression of
dry eye inflammation or halt the disease process. Treat-
ment priorities for dry eye encompass reducing ocular
surface inflammation (OSI), stimulating the growth and
recovery of ocular surface epithelial cells, and enhanc-
ing lacrimal gland function. Targeting moderate to severe
dry eye with anti-inflammatory treatment for ocular sur-
face immune-mediated inflammation represents a novel
direction in dry eye therapy [116, 117]. The local applica-
tion of immunomodulators can improve dry eye-related
signs and significantly reduce the expression of ocular
surface inflammatory markers [118].

Scleritis

The sclera, representing the outermost layer of the eye-
ball, is a robust and elastic dense white tissue primarily
composed of type I collagen, proteoglycans, and minimal
amounts of elastin and fibrillin proteins [119]. It features
sparse blood vessels and nerves. When collagen fibers
experience chronic inflammation, they become infiltrated
by inflammatory cells, resulting in diffuse or nodular
lesions that can involve surrounding tissues [120], caus-
ing keratitis and uveitis. Approximately 30% of scleritis
patients exhibit systemic autoimmune diseases [121],
necessitating collaboration with internal medicine physi-
cians for diagnosis and treatment. Scleral inflammation
is classified into episcleritis, which is the inflammation
of the thin vascular connective tissue on the scleral sur-
face, and scleritis, an inflammation of the scleral matrix
layer arising from collagen fiber destruction and cellular
infiltration by inflammatory factors [122]. Inflammatory
types predominantly involve type IV delayed or type III
immune complex-mediated hypersensitivity reactions.
Treatment options, contingent on severity, may encom-
pass topical corticosteroid eye drops, oral NSAIDs,
immunosuppressants, and periocular TA injections to
alleviate inflammation. In instances of extensive lesions,
autologous lamellar scleral grafting or allogeneic scleral
transplantation may be required [123]. Although scleral
transplantation can bring significant benefits in certain
cases, there are also limitations and challenges to con-
sider. These include a lack of donor sources, immune
rejection reactions, surgical complications, postopera-
tive recovery, and suboptimal outcomes. It is essential for
physicians to assess the feasibility of transplantation and
weigh the pros and cons based on the individual patient’s
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specific condition and needs in order to formulate the
most suitable treatment plan.

Uveitis

The uvea, a crucial component of the eyeball and one
of the most vascularized tissues, is situated adjacent to
the sclera and retina. It consists of the iris, ciliary body,
and choroid, connecting the anterior and posterior seg-
ments of the eye. Due to its unique anatomical structure,
inflammation is classified based on location: anterior
uveitis, intermediate uveitis, posterior uveitis, and panu-
veitis [124, 125]. Inflammation typically propagates from
the front to the middle, while posterior inflammation
generally spreads forward, encompassing the entire uveal
tissue. In rare instances, it may extend to adjacent tissues,
causing inflammatory glaucoma, vitritis, and retinitis
[126].

Uveitis is categorized into infectious and non-infec-
tious types based on the cause. Infectious uveitis fur-
ther divides into endogenous and exogenous types
[127]. Exogenous uveitis results from direct invasion by
bacteria, fungi, and viruses, while endogenous uveitis
arises from antigen—antibody and complement system
responses to pathogens. Autoimmune factors involve
antigens such as melanocyte-associated antigens and
retinal S-antigens, instigating pathological changes
through T helper cell 17 (Th17)-derived inflammatory
cytokines like IL-23 and IL-17 [128]. Trauma-related
factors activate arachidonic acid, generating prostaglan-
dins and thromboxane A2 via cyclooxygenase and leu-
kotrienes through lipoxygenase, leading to uveitis [129].
Immune genetic factors have linked various types of
uveitis to HLA antigens, with HLA-B27-positive ankylos-
ing spondylitis patients being susceptible to uveitis [130]
and Vogt-Koyanagi-Harada syndrome correlating with
HLA-DR4 positivity [131]. Based on the findings of these
studies regarding the association between HLA and ocu-
lar inflammatory diseases, testing for HLA genotypes in
patients can aid in predicting the risk and type of uvei-
tis. For individuals at high risk, regular eye examinations
and early intervention are crucial for early detection and
treatment of uveitis.

Treatment options encompass ciliary muscle paralyt-
ics such as M-receptor blockers like atropine and tropi-
camide for mydriasis and relief from ciliary and sphincter
muscle spasms [132]. Corticosteroids, including DEX
and prednisone, are the primary medications for uveitis
in Western medicine. Topical corticosteroid eye drops
can be employed for localized anterior uveitis, while sys-
temic oral or intravenous administration is reserved for
severe cases [133]. Antibiotics sensitive to the causative
agent should be utilized for infectious uveitis. NSAIDs
like diclofenac sodium and indomethacin, which inhibit
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prostaglandins and suppress inflammatory responses,
can be employed [134]. Given that immune reactions
contribute to uveitis pathogenesis, combined corticoster-
oid and immunosuppressive therapy (e.g., methotrexate)
may be considered for recurrent cases [135, 136]. Inter-
mediate and panuveitis with vascular lesions and macu-
lar edema can be treated with intravitreal corticosteroid
injections (e.g.,, TA or Ozurdex) combined with laser
or cryotherapy [137, 138], while surgical excision of the
affected tissue may be required in severe cases.

Retinitis

Inflammatory retinal disorders originate from infectious
and non-infectious sources, as well as inflammation in
the systemic or nearby tissues extending to the retina.
Conditions in this category include cytomegalovirus reti-
nitis (CMVR), retinal vasculitis, DR, and AMD [139]. A
prime example of an infectious retinal inflammatory con-
dition is CMVR, which is the predominant ocular oppor-
tunistic infection in AIDS patients and a leading cause of
blindness [140]. During the initial phase of cytomegalovi-
rus infection, viral DNA is introduced into the nuclei of
uninfected retinal cells, instigating viral DNA transcrip-
tion and the production of viral particles, thereby initiat-
ing an immune response [141, 142]. This triggers retinal
inflammation, characterized by yellow-white necrotic
lesions interspersed with red hemorrhages along blood
vessels, radiating from the posterior pole to the periph-
ery. Diagnosis involves detecting cytomegalovirus anti-
gen PP65, CMV-mRNA, CMV isolation, or inclusion
bodies [143]. Elevated intraocular IL-8 and mannose-
binding lectin (MBL) levels also hold diagnostic signifi-
cance in CMV infection. Ganciclovir, sensitive to CMV,
is typically administered intravenously or through intra-
vitreal injection [144], and vitrectomy is performed in the
presence of complications such as preretinal membranes
and proliferative vitreoretinopathy.

Retinal vasculitis, a vascular injury disease mediated by
immune complexes, arises from autoimmune or infec-
tious factors [145]. Frequently affecting both arterioles
and venules, it presents as flame-shaped hemorrhages
of varying sizes, dot-like and blotchy hemorrhages, tor-
tuous blood vessels accompanied by white sheathing,
and late-stage retinal neovascularization and vitreous
hemorrhage. Fluorescein fundus angiography (FFA)
serves as the gold standard for diagnosing retinal vascu-
litis [146]. Treatment depends on the specific condition:
patients with mild retinal vasculitis without macular cys-
toid edema, significant vitreous inflammation, or severe
ischemic alterations on FFA may not require treatment
but need close monitoring. Macular cystoid edema
can be treated with intravitreal anti-vascular endothe-
lial growth factor (VEGF) medications [147] or DEX
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implants [148]. Retinal ischemia and non-perfusion cap-
illaries necessitate retinal laser photocoagulation to elim-
inate ischemic regions. Infectious retinal vasculitis calls
for the identification of the responsible microorganism
and targeted anti-infective therapy. Surgical intervention
is warranted when retinal detachment or significant vit-
reous hemorrhage occurs that is incapable of independ-
ent absorption, provided inflammation is managed with
medication.

DR, a retinal disorder triggered by chronic hyperglyce-
mia, exhibits a strong association with inflammation in
its progression. Key indicators include increased retinal
vascular permeability, infiltration of inflammatory cells,
and expression of inflammatory and chemotactic factors,
ultimately leading to retinal tissue deterioration, capillary
degeneration, and neovascularization [149]. Takeuchi
et al. observed significantly elevated expression levels of
inflammatory cytokines IL-4, IL-6, IL-17A, IL-21, IL-22,
and TNF-a in the vitreous cavity of patients with pro-
liferative diabetic retinopathy (PDR) compared to the
patients’ own serum concentrations and higher than the
concentrations in the vitreous cavity of patients with
epiretinal membranes or macular holes [150]. Clinically,
macular edema resulting from DR can be treated with
Ozurdex administered into the vitreous cavity [151].

AMD is a prevalent retinal degenerative disease
affecting central vision and a leading cause of blindness
in individuals over 50. Pathological features primar-
ily manifest as the loss of RPE and the degeneration of
photoreceptor cells. The intricate pathogenesis involves
inflammation, hypoxia, oxidative stress, edema, and the
disease’s development is accompanied by neovasculariza-
tion and macular edema [152]. Liu et al. [153] detected
significantly elevated expression levels of IL-17 in the
serum of 23 AMD patients compared to age-matched
healthy individuals. Biopsy of local retinal tissue in AMD
patients also revealed increased expression levels of reti-
nal IL-1f and IL-23. These studies indicate the involve-
ment of inflammatory cytokines in the pathogenesis of
AMD. Corticosteroids play a unique role in the treat-
ment of AMD by inhibiting the pro-angiogenic effects
of inflammatory cytokines and targeting extracellular
components of choroidal neovascularization [154], such
as inflammatory cells and fibroblasts. Due to the com-
plexity of AMD pathogenesis, combined treatment (cor-
ticosteroids +anti-VEGF drugs) is a logical approach
to address the disease progression mechanism. Vakalis
et al. observed a reduction in retinal thickness follow-
ing intravitreal injections of DEX combined with beva-
cizumab [155]. Kiernan et al. posited that combined
therapy was superior to standard anti-VEGF treatment in
cases of exudative AMD unresponsive to standard treat-
ment, reducing the number of intravitreal injections and
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stabilizing or improving visual acuity [156]. The com-
bined treatment approaches proposed in these studies
undoubtedly yield better results for AMD compared to
monotherapy. However, there is no single method that
can perfectly cure AMD without adverse reactions. Natu-
ral products may be safer than synthetic chemicals and
have simpler administration routes, as they have been
used for the treatment of diseases for a long time, with
many being suitable for oral administration. However,
more research and effort are needed to determine their
ability to penetrate the blood-retinal barrier (BRB) and
their metabolic rates within the eye.

Optical neuritis

Optic neuritis (ON) comprises a group of inflammatory
diseases affecting the optic nerve and represents one of
the prevalent neuro-ophthalmic disorders encountered
in clinical practice [157]. ON is primarily classified into
multiple sclerosis-related optic neuritis (MS-ON), neu-
romyelitis optica-related optic neuritis (NMO-ON), and
infection-related ON.

MS-ON is an inflammatory demyelinating disease of
the nervous system, with a majority of ON patients con-
currently experiencing MS [158]. The two conditions
are closely intertwined, with ON signifying the ocular
manifestation of MS. The principal pathogenic mecha-
nisms involve the loss of myelin sheaths and a relative
reduction in nerve cells. Activation of autoreactive T
cells, B cells, and macrophages releases cytokines, caus-
ing inflammation [159]. Infiltration of inflammatory
cells into neuronal cells leads to oligodendrocyte death-
mediated demyelination, activation of neuroglial cells
(including microglia and astrocytes), and axonal degen-
eration [160, 161]. Pathological changes in ON lesions
resemble those in chronic inactive MS plaques [162, 163],
with each neural lesion exhibiting characteristics of long-
term damage. NMO-ON, also known as Devic’s disease,
preferentially affects the optic nerves and spinal cord,
involving unilateral ON, brainstem, cerebral, and dien-
cephalic syndromes [164]. The pathogenesis is associated
with antibodies against astrocyte water channel protein
4 (AQP4-IgG) or MOG [165]. Current research con-
centrates on mitigating astrocyte damage and necrosis,
as well as oligodendrocyte damage and demyelination.
AQP4-IgG binds to astrocyte foot processes, activating
complement, antibody-dependent cell-mediated cytotox-
icity, and complement-induced eosinophil degranulation,
resulting in severe central nervous system inflammation
and astrocyte damage. Furthermore, AQP4-IgG binding
to AQP4 receptors disrupts astrocyte transcellular water
transport or receptor internalization [166]. By regu-
larly monitoring the levels of AQP4-IgG, the progres-
sion of the disease can be assessed, enabling clinicians
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to adjust treatment plans and take appropriate interven-
tion measures to control the inflammatory response. This
provides patients with more accurate prognostic assess-
ment and management strategies. Infection-related ON,
induced by various pathogenic microorganisms, elicits
immune-mediated ON, serving as a precipitating fac-
tor for MS-ON. Other optic neuropathies are associ-
ated with autoimmune disorders such as systemic lupus
erythematosus (SLE), Sjogren’s syndrome, autoimmune
thyroiditis, and myasthenia gravis [167, 168], often coin-
ciding with NMO-ON. Current treatments and research
aim to suppress such inflammatory cascades and alleviate
symptoms. Clinically, high-dose corticosteroid therapy
(oral, intravenous, and periocular injections) significantly
improves patients’ visual acuity, while immunosuppres-
sants like methotrexate reduce the recurrence rate of ON
[169]. Other treatment options include plasma exchange,
intravenous immunoglobulin, antibiotics, and neuro-
trophic medications.

Anti-inflammatory properties of nanomaterials
in ophthalmology diseases
Nanomaterials, characterized by their small size and high
surface area, have gained considerable interest in vari-
ous fields, including biomedicine. One area of particular
interest is their potential anti-inflammatory properties,
which can be attributed to their interactions with bio-
logical systems, such as cells, tissues, and whole organ-
isms. In this discussion, we will explore common types
of nanomaterials with anti-inflammatory properties
and their potential applications in ophthalmic diseases
(Fig. 3). Recent research suggests that the anti-inflam-
matory properties of nanomaterials can be attributed to
two distinct mechanisms: the nanoknife mechanism and
the electron transfer mechanism. The nanoknife mecha-
nism refers to the sharp-edged structure of nanomateri-
als, which can puncture the cell walls of microorganisms
such as bacteria, causing cellular disruption, dysfunction,
and ultimately leading to the death of microorganisms.
The electron transfer mechanism involves charge trans-
fer between nanomaterials and bacteria, resulting in the
oxidation and damage of essential cellular structures or
components. Positively charged NPs can alter the func-
tion of the electron transport chain within bacteria,
extracting electrons directly and causing oxidative stress
in lipoproteins and other substances on the bacterial cell
wall, thereby inhibiting bacterial growth and producing
anti-inflammatory effects. Literature reports that ZnO-
NPs, Ag-NPs, graphene materials (GMs), nanoceria, and
nano-flower structured MoS, exhibit antibacterial prop-
erties through this mechanism [170-172].

Ocular bandages, encompassing natural amniotic
membrane variants and synthetic alternatives, serve a
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Fig. 3 The image illustrates the varying capacities of different nano-formulations to traverse distinct barriers and reach diverse tissues
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vital role in treating ocular injuries [173, 174]. Electro-
spun fibrous membranes (EFMs) are employed as syn-
thetic wound dressings due to their facile production
and accessible sources [174]. Nonetheless, their use in
ophthalmic applications is restricted, as they lack anti-
bacterial capabilities [175, 176]. Recently, silver nano-
particles (Ag-NPs) have been extensively integrated into
medical material scaffolds for their exceptional antibacte-
rial properties. Yan and colleagues coated Ag-NPs onto
EFMs and poly (lactic acid) (PLA) composite scaffolds,
which significantly impeded the growth of Escherichia
coli, Staphylococcus aureus, and Fusarium spp. in bac-
terial culture dish experiments [177]. Consequently, Ag-
NPs coated EFMs and PLA composite scaffolds exhibited
potential for treating fungal and bacterial keratitis by
promoting corneal and conjunctival epithelial cell prolif-
eration, inhibiting elevated expression of inflammatory
factor IL-6, and facilitating wound healing. This study
paves the way for the development of advanced bioma-
terial-based strategies for ocular tissue engineering,
offering a promising solution for improving ocular cell
proliferation and combating infections in the field of oph-
thalmology. Cai et al. discovered that inorganic cerium
oxide NPs (nanoceria) exhibited antioxidative properties,
rendering them suitable for endogenous reactive oxygen
species (ROS) scavengers with enzyme-mimetic cata-
lytic activity [178]. These enzymes encompass superoxide

dismutase (SOD), hydrogen peroxide enzymes, peroxi-
dases, and oxidases. Additionally, research has unveiled
the anti-inflammatory effects of nanoceria, which, fol-
lowing intravitreal injection, not only downregulated
VEGEF expression and inhibited neovascularization [179]
and the expression of inflammatory factors IL-3 and IL-7
[180] in VLDLR™~ mice but also suppressed Miiller cell
gliosis in mouse retinal tissue via the ]NK/NF-«kB sign-
aling pathway [181]. Qian et al. observed that nanoceria
attenuated inflammatory corneal lesions in rat models
and in vitro HCECs by inhibiting IKB/NF-kB-mediated
inflammatory responses through the suppression of oxi-
dative stress [170]. These findings indicate that nanoceria
may constitute a novel therapeutic strategy for manag-
ing ocular inflammatory neovascular diseases. Carbon
nanostructured materials, including carbon nanotubes
(CNTs) and graphene, are distinctive nanomaterials
boasting exceptional biocompatibility and mechani-
cal stretchability. They have demonstrated the ability to
maintain the elasticity and rigidity of collagen fibers for
treating corneal lesions while exhibiting good biocom-
patibility in the eye without evidence of active inflamma-
tion upon blue Alcian staining [182]. Lin et al. devised a
remote monitoring and treatment system for chronic OSI
utilizing carbon nanostructured materials, comprising a
smart contact lens and a thermotherapy eye patch [183].
Graphene, a carbon nanomaterial, possessed outstanding
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electrical conductivity, enabling a graphene field-effect
transistor (FET) to remotely monitor the OSI biomarker
MMP-9 concentration in tear fluid via a smartphone
[184]. A diagnosis of OSI is established when the con-
centration surpasses 200 ng/ml. Transparent, stretchable
eye patches were fabricated using Ag-NPs and an elasto-
mer film (polydimethylsiloxane). These patches adhere to
the eye during the application, utilizing the exceptional
thermal conductivity and stable mechanical deformation
resistance of Ag-NPs to deliver thermotherapy for OSI
treatment. This approach has shown promising therapeu-
tic results in both animal experiments and human trials
[183].

Nanomaterial-based drug delivery systems

are a promising approach for the treatment

of ophthalmology diseases

Nanomaterial-based drug delivery systems have emerged
as a highly promising approach for the treatment of oph-
thalmology diseases due to their numerous advantages
(Table 1). The unique properties of nanomaterials enable
precise control over drug release, enhanced drug stabil-
ity, improved bioavailability, and targeted delivery to spe-
cific ocular tissues. These systems utilize nanoparticles
or nanocarriers to encapsulate drugs and protect them
from degradation, ensuring their efficacy and prolonged
shelf life. By employing nanotechnology, ophthalmol-
ogy drugs can be administered using non-invasive routes
such as eye drops, minimizing patient discomfort and

Table 1 Advantages of nanotechnology for ocular drug delivery
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improving treatment adherence. Furthermore, nano-
materials facilitate the penetration of drugs across ocu-
lar barriers, allowing them to reach the target tissues
more effectively [185]. Additionally, the ability to design
nanocarriers with surface modifications enables targeted
delivery to specific areas of the eye, reducing systemic
exposure and potential side effects [186—188]. The ver-
satility of nanomaterial-based drug delivery systems also
allows for combination therapy, wherein multiple drugs
or therapeutic agents can be co-delivered, enabling com-
prehensive treatment of complex ophthalmology condi-
tions. With ongoing advancements in nanotechnology,
these innovative drug delivery systems hold immense
potential to revolutionize the treatment of ophthalmol-
ogy diseases, offering improved therapeutic outcomes
and enhancing the quality of life for patients.

The delivery of glucocorticoids

Glucocorticoids, or corticosteroids, comprise a class
of steroid hormones naturally produced by the adrenal
glands and can be artificially synthesized for medical
applications. They are frequently employed in ophthal-
mology to address various inflammatory eye conditions,
such as uveitis, scleritis, and ON, by suppressing the
immune system and diminishing inflammation. Corti-
costeroids serve as potent inhibitors of the phospholi-
pase A2 (PLA2) enzyme, which can curtail the synthesis
of arachidonic acid. As a precursor of numerous inflam-
matory mediators, the judicious use of corticosteroids in

Advantages Descriptions

Enhanced drug bioavailability

Nanoparticles used in ocular drug delivery can increase drug solubility, stability, and permeability, leading

to improved bioavailability and therapeutic efficacy

Prolonged drug release

Nanocarriers can be designed to release drugs in a sustained and controlled manner, prolonging the therapeu-

tic effect and reducing the need for frequent administration

Targeted delivery

Nanoparticles can be surface-functionalized with ligands that specifically bind to ocular tissues, allowing

targeted drug delivery to the desired site, such as the cornea, conjunctiva, or retina. This minimizes systemic

exposure and reduces side effects
Protection of drugs

Nanocarriers provide protection to drugs from degradation by enzymes and other physiological factors present

in the ocular environment, ensuring drug stability and prolonged shelf life

Improved ocular penetration

Nanoparticles can enhance drug penetration across ocular barriers, such as the cornea and blood-retinal barrier,

enabling drugs to reach the target tissues more effectively

Reduced frequency of administration The prolonged release and enhanced bioavailability offered by nanotechnology allow for reduced dosing
frequency, improving patient compliance and convenience

Minimized toxicity

Nanoparticles can encapsulate drugs, reducing their toxicity and enhancing their safety profile. Moreover, tar-

geted delivery minimizes systemic exposure, further reducing the potential for systemic side effects

Non-invasive delivery

Nanotechnology-based ocular drug delivery systems offer non-invasive administration routes, such as eye drops

or ophthalmic gels, avoiding the need for injections or invasive procedures

Combination therapy

Nanotechnology enables the co-delivery of multiple drugs or therapeutic agents within a single nanocarrier,

allowing for combination therapy to address complex ocular diseases or conditions

Potential for personalized medicine

Nanoparticles can be customized with specific drug formulations, release profiles, and targeting ligands, ena-

bling personalized treatment approaches tailored to individual patient needs
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ocular inflammatory diseases can effectively suppress the
inflammatory response and avert diverse complications.

Multiple studies have investigated the employment of
nanomaterial-based drug delivery systems for target-
ing ocular tissues and achieving sustained corticoster-
oid release (Table 2). For instance, Alami et al. utilized
polycaprolactone-polyethylene glycol-polycaprolactone
(PCL-PEG-PCL) micelles loaded with DEX to treat endo-
toxin-induced anterior uveitis in rabbits, demonstrating
that DEX-loaded micelles could mitigate inflammation
and attain the maximum therapeutic effect within 36 h
[189]. Likewise, polymeric TA NPs prepared using PLGA
polymer had proven effective in decreasing the expres-
sion of inflammatory factors NO and PGE2 in a rab-
bit anterior uveitis model induced by endotoxin [190].
Furthermore, polymer micelles and nanomicelles, pre-
pared using various monomers and surfactants, have
been explored for uveitis treatment. These delivery sys-
tems have been observed to maintain a prolonged effec-
tive drug concentration in the choroid and retina while
significantly reducing ocular inflammation in rabbits.
For example, Pradip et al. employed cationic NLCs of
the drug triamcinolone acetonide (cTA-NLC) to treat
anterior uveitis, demonstrating sustained drug release
for up to 24 h [191]. Nanoemulsion eye drops have also
received approval from the US FDA for ocular disease
treatment. Difluprednate (DFAB or Durezol), a nanoe-
mulsion eye drop developed by Sirion Therapeutics, has
found widespread use in treating anterior scleritis due to
its ability to penetrate the scleral barrier and access the
uveal tissue [192]. Mahmoud et al. discovered that Dur-
ezol exhibited more potent anti-inflammatory activity
than prednisolone in controlling inflammation, reduc-
ing corneal edema, clearing anterior chamber cells (ACs),
and maintaining stable intraocular pressure in patients
undergoing cataract surgery [193]. In summary, nano-
material-based drug delivery systems hold significant
promise for treating ocular inflammatory diseases using
corticosteroids.

The delivery of antibiotics and antiviral agents

Antibiotics and antiviral agents constitute a category
of medications employed to combat bacterial and
viral infections by either eliminating or inhibiting the
growth of bacteria and viruses. Healthcare profes-
sionals frequently prescribe these medications, which
can be administered orally, topically, or intravenously,
depending on the type and severity of the infection.
Currently, antibiotics are widely utilized in ophthalmol-
ogy to address bacterial eye infections, including eye-
lid inflammation, conjunctivitis, corneal ulcers, and
endophthalmitis. Topical antibiotics in the form of eye
drops or ointments are often recommended for mild to
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moderate infections, while severe infections may necessi-
tate intravenous antibiotics. Commonly used antibiotics
in ophthalmology encompass fluoroquinolones, amino-
glycosides, macrolides, and tetracyclines. Nanomaterial-
based drug delivery systems have demonstrated potential
in ophthalmology for treating microbial infections. Anti-
biotics or antiviral agents can be encapsulated within
nanocarriers such as liposomes, dendrimers, and NPs to
augment drug delivery and enhance treatment outcomes.
These nanocarriers can safeguard the antibiotic from
degradation and boost its penetration through ocular
barriers, resulting in sustained release and improved effi-
cacy. Research has indicated that antibiotic- and antiviral
agent-loaded NPs can effectively treat ocular infections
like bacterial keratitis and endophthalmitis while mini-
mizing systemic side effects (Table 3).

Voriconazole (VRC) is a broad-spectrum antifungal
agent utilized in ophthalmology for treating fungal kera-
titis [219] caused by Aspergillus or Candida species and
endophthalmitis [220]. CS-VE-copolymer micelles modi-
fied with PBA form nanomicelles capable of specifically
binding to sialic acid residues in mucin, extending the
corneal residence time of the drug and enhancing VRC’s
bioavailability and therapeutic efficacy for fungal kerati-
tis [207] (Fig. 4). Furthermore, Andrade et al. developed
ocular administration of VRC based on cationic NLCs,
which demonstrated effective drug concentration in cor-
neal tissues within 30 min of application in vitro, play-
ing a role in treating fungal keratitis [208]. Fluconazole,
another broad-spectrum antifungal, was formulated
into liposomes using the reverse-phase evaporation
technique, yielding longer drug action time and quicker
therapeutic effects in rabbit models of Candida keratitis
compared to conventional fluconazole [209]. Nanofiber
scaffolds provide not only structural and nutritional sup-
port but also deliver drugs or cells for eye implantation,
facilitating drug dissolution and absorption. Acyclovir,
an effective antiviral drug used for treating viral kerati-
tis, has limited solubility and bioavailability; combin-
ing it with nanomaterials broadens its applicability. The
development and application of electrospinning poly-
mer-free, free-standing acyclovir/cyclodextrin nanofib-
ers enhanced the solubility of acyclovir [217] (Fig. 5).
Hydrophilic PVP and slow-dissolving PCL form a fibrous
membrane structure encapsulating acyclovir and cip-
rofloxacin, extending drug release in the eye [218]. This
scaffold could function as an ocular implant, gradu-
ally releasing medication for treating vitritis and retini-
tis. Fluoroquinolones, a class of synthetic antimicrobial
drugs including moxifloxacin, ofloxacin (OFX), ciproflox-
acin, and levofloxacin, demonstrated exceptional activ-
ity against common Gram-positive and Gram-negative
ocular pathogens [221, 222]. Combining these drugs with
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Fig. 4 The effectiveness of PBA-CS-VE-VRC in treating fungal keratitis is illustrated, highlighting its role in minimizing ocular irritation

while enhancing corneal permeability and extending immediate retention time for the administration of topical ocular medications. A The structure
of PBA-CS-VE-VRC nanocelles and their role in treating corneal diseases is diagrammed. B The HET-CAM assay, an in vitro surrogate for ocular
stimulation, is employed to assess the irritation potential of various preparations, namely: Sanitary saline, Sol-VRC, CS-VE-VRC, PBA-CS-VE-VRC,

and 0.1 M NaOH solution on the chick embryo chorioallantoic membrane. C Fluorescent preparations of Sol-C6 (a), CS-VE-C6 (b), or PBA-CS-VE-C6
(c) were prepared and their respective uptake rates by the HCE-T cell line (human immortalized corneal epithelial cells) were observed using
confocal fluorescence microscopy at 2 h and 4 h D intervals. Scale bar equals 20 um. This figure has been reprinted from Ref. [207] with permission

from Elsevier
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Fig.5 The electrospinning process for the creation of polymer-free and free-standing acyclovir/cyclodextrin nanofibers, notable for their
exceptional histocompatibility and facilitation of drug release in the treatment of viral keratitis. A Chemical structures of (a) HP-3CD, (b) PVP, and (c)
acyclovir are presented, (d-e) alongside schematic diagrams demonstrating their interrelationships. B Experimental data confirms the solubility

of acyclovir/HP-BCD nanofibers and acyclovir/PVP nanofibers in an artificial saliva environment. Adapted from Ref. [217] with permission

from Elsevier

nanomaterials enhances their bioavailability in the eye.
Hosny et al. prepared a liposomal hydrogel formulation
containing ciprofloxacin. The mucoadhesive properties
of the hydrogel matrix ensured close contact between
liposomes and corneal epithelial cells, promoting drug
penetration and preventing rapid elimination through

tear circulation. The permeability of the liposome hydro-
gel was five times higher than that of the aqueous solu-
tion, and encapsulating ciprofloxacin prolongs its release.
Such formulations decreased the dosing frequency in
ocular inflammation treatment [211]. Levofloxacin-
loaded SLNs optimized using Box-Behnken experimental
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design exhibited favorable therapeutic effects in treating
conjunctivitis. Salman et al. found that NPs encapsulat-
ing the drug achieved a drug release rate of 0.2493 pg/
cm?/h on excised goat corneas, extending drug release
time and demonstrating excellent antimicrobial activ-
ity against Staphylococcus aureus and Escherichia coli-
induced conjunctivitis [212]. OFX-loaded NLCs prepared
by the high shear homogenization method, with glyc-
erin as a plasticizer, exhibited increased bioadhesion, six
times longer residence time in the anterior eye segment,
and improved corneal inflammation and swelling in rab-
bits infected with Staphylococcus aureus within seven
days compared to traditional formulations [213]. Dapto-
mycin, a lipopeptide antibiotic, is employed to treat bac-
terial infections caused by Gram-positive bacteria such
as Staphylococcus aureus and Streptococcus viridans,
and it also exhibits some efficacy against drug-resistant
strains. Silva et al. prepared CS NPs encapsulating dap-
tomycin, proposing them as an ocular delivery system for
the antibiotic to treat bacterial endophthalmitis, thereby
enhancing local therapeutic effects and avoiding systemic
drug toxicity [214].

In conclusion, nanomaterial-based drug delivery sys-
tems hold significant potential for improving the treat-
ment of ocular inflammatory diseases by enhancing the
solubility, bioavailability, and therapeutic efficacy of
antibiotics. These advanced systems may lead to more
effective and targeted treatments for a variety of ocular
conditions.

The delivery of nonsteroidal anti-inflammatory drugs
Nonsteroidal anti-inflammatory drugs (NSAIDs) rep-
resent a class of medications frequently employed to
alleviate pain, diminish inflammation, and reduce fever.
Their mechanism of action involves the inhibition of
COX enzymes, which are instrumental in the synthesis
of prostaglandins—chemical messengers implicated in
the inflammatory response. In the field of ophthalmol-
ogy, NSAIDs are utilized to address various conditions,
including uveitis, OIS, and macular edema. They exert
their effects by suppressing prostaglandin production,
which in turn mitigates pain, redness, and swelling in
the eye. Topical NSAIDs are favored in ophthalmol-
ogy due to their rapid onset and localized therapeutic
impact. Widely used NSAIDs in this domain encompass
indomethacin, ketorolac, bromfenac, nepafenac, and
diclofenac. Researchers have also investigated nano-
material-based drug delivery systems for NSAIDs as a
potential approach to treating ophthalmological diseases
(Table 4). These systems endeavor to address challenges
linked to the topical delivery of NSAIDs to the eye, such
as inadequate drug penetration, limited bioavailability,
and brief residence time.
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Indomethacin is a viable treatment for ocular inflam-
matory conditions such as conjunctivitis, uveitis, and
other anterior segment inflammations. However, its poor
solubility and stability present challenges in formulat-
ing topical ophthalmic solutions, as less than 5-10% of
administered indomethacin reaches intraocular tissues.
Prachetan et al. employed nanocarriers to encapsulate
indomethacin and enhance its ocular penetration into
posterior eye tissues [223]. The researchers developed
indomethacin-loaded SLNs and NLCs and modified
SLNs with CS chloride, a cationic water-soluble pen-
etration enhancer. They assessed the in vitro release and
in vivo distribution of the three formulations in corneal
and sclera-choroid-RPE tissues. Results showed that
indomethacin-loaded NLCs exhibited superior drug-
loading capacity and elevated indomethacin levels within
ocular tissues. Moreover, indomethacin-CS-SLN dem-
onstrated enhanced permeation properties compared to
indomethacin SLN [237, 238].

NLCs combined with the thermoresponsive polymer,
Pluronic® F-127, were formulated as eye drops to deliver
ibuprofen with anti-inflammatory effects in the eye. This
nanocarrier formulation exhibited excellent stability in
Y-79 human retinoblastoma cells and extended the drug
release profile of ibuprofen in the eye [226]. Garcia et al.
developed two different concentrations of dexibuprofen-
loaded PEGylated PLGA nanospheres (0.5 and 1.0 mg/ml,
with zeta potentials of -14.1 and -15.9 mV, respectively).
Ex vivo experiments measured drug concentrations in
the vitreous, aqueous humor, cornea, and sclera, reveal-
ing release curves lasting up to 12 h in both cornea and
sclera. Notably, higher drug retention and permeability
were observed in the ex vivo cornea. Cell viability assays,
Hen’s egg test-chorioallantoic membrane (HET-CAM)
test, and Draize tests confirmed the low cytotoxicity,
non-irritating nature, and anti-inflammatory properties
of dexibuprofen-loaded PEGylated PLGA nanospheres
[230]. Vega et al. prepared poly(lactic/glycolic) acid NPs
loaded with flurbiprofen (FB) and evaluated their anti-
inflammatory effects in a rabbit ocular inflammation
model induced by sodium arachidonate (SA) [227]. FB-
loaded NPs effectively suppressed inflammation when
administered 30 min before SA-induced inflammation
and exhibited a longer residence time in inflamed eye
tissues compared to healthy eyes. These findings suggest
that FB-loaded PLGA-NPs possess excellent anti-inflam-
matory efficacy, potentially due to increased adhesion
between the drug and biological cell membranes, pro-
longed drug residence time on the ocular surface, and
sustained drug release from NPs.

Fujisawa et al. utilized the calcium acetate gradient
method to encapsulate diclofenac within liposomes,
achieving a 97% encapsulation efficiency [233]. In animal
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studies, this eye drop formulation resulted in a 1.8-fold
increase in retinal-choroidal drug concentration com-
pared to conventional diclofenac eye drops. Attama et al.
used human corneal endothelial cells (HENC), stromal
fibroblasts, and epithelial cells CEPI 17 CL 4 for bio-engi-
neering human cornea construct (HCC) experiments,
observing the permeability of diclofenac sodium-loaded
SLNs on HCC. Analysis of permeation flux and permea-
tion coefficients indicated superior corneal permeability
per unit time and area, suggesting potential application
for the prevention and treatment of preoperative and
postoperative inflammatory responses in cataract surgery
[232].

Bromfenac sodium eye drops are commonly used to
treat conjunctivitis caused by various factors and to pre-
vent inflammation preoperatively and postoperatively
in ophthalmic surgeries. However, low corneal perme-
ability, rapid tear turnover, and swift nasolacrimal drain-
age result in a short ocular residence time for bromfenac
sodium. Tara et al. developed chondroitin sulfate-CS NPs
encapsulating bromfenac sodium [229]. The formulation
displayed a biphasic release curve, and compared to con-
ventional eye drops, the permeation and corneal reten-
tion rates of bromfenac sodium were 1.62 and 1.92 times
higher, respectively. The HET-CAM test was employed
to assess the safety and drug toxicity of this formulation,
demonstrating its non-toxicity and suitability for ocular
drug delivery, with scores consistent with those of the
saline group (negative control).

Lornoxicam (LX) is a selective COX-2 inhibitor used
to treat various ocular inflammations and to alleviate
postoperative inflammation and macular edema follow-
ing cataract surgery [239]. However, LX is a hydrophobic
drug, and its absorption and efficacy in the eye present
significant challenges. Salama utilized a mixed micel-
lar system made of poly (ethylene oxide)-poly (propyl-
ene oxide) to encapsulate LX [231], which was dissolved
and encapsulated in the hydrophobic core of the micelles
through hydrophobic interactions [240]. This approach
aimed to improve permeation and increase residence
time on the ocular surface to overcome ocular barri-
ers [241]. Results indicated that the polymer micelles
increased the solubility of LX from 0.0318 mg/ml to over
2.34 mg/ml, an enhancement of approximately 73-fold. In
animal studies using rabbit eyes, histopathological exam-
ination and confocal laser scanning microscopy revealed
the non-irritating nature and excellent penetration of the
developed nanocarrier formulation on rabbit corneas.
Consequently, polymer micelles encapsulating LX pro-
longed the drug’s residence time on the ocular surface
and improved corneal permeability.

In conclusion, nanomaterial-based drug delivery
systems hold promise for enhancing the delivery and
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efficacy of NSAIDs in treating various ophthalmic dis-
eases. Nonetheless, further research is required to opti-
mize these systems and evaluate their safety and efficacy
in clinical settings.

The delivery of immunosuppressants
Immunosuppressants represent a category of pharma-
ceuticals designed to attenuate or diminish the potency
of the body’s immune response. These medications are
frequently prescribed to inhibit the immune system from
attacking transplanted organs or tissues in transplant
recipients, as well as to address autoimmune diseases,
such as those affecting the eyes. For severe inflammatory
eye conditions, particularly in instances of various uvei-
tis where corticosteroid therapy proves ineffective or is
contraindicated due to systemic illness or dependence,
immunomodulatory drugs are utilized to alleviate the
adverse consequences of prolonged corticosteroid use.
Notable immunomodulators encompass antimetabo-
lites, alkylating agents, T-lymphocyte inhibitors like CsA
and rapamycin, and biological agents. Presently, numer-
ous nanomaterial-based drug delivery systems have
been established for the targeted and controlled release
of immunosuppressants, encompassing liposomes, poly-
meric NPs, hydrogels, dendrimers, and micelles (Table 5).
Research has demonstrated that 0.05% CsA can effec-
tively address dry eye syndrome [255-257]. To develop
NP drug carriers with enhanced hydrophilicity, density,
and stability, scientists have formulated poly (D, L-lactic
acid) and dextran (PLA-b-Dex) NPs [242]. These NPs
had been surface-modified with PBA to adhere to car-
bohydrates on ocular mucosa via covalent bonding with
cis-diol groups [258]. The efficacy of CsA-loaded PBA-
modified NP formulations was compared to Restasis®
in induced mouse and rabbit dry eye experiments. The
investigation revealed that the NPs delivered a near-
infrared fluorescent dye to the eye for over 24 h, while the
free dye was predominantly cleared from the ocular sur-
face within 3 h. Following one month, NP eye drop for-
mulations containing 0.005-0.01% CsA reduced corneal
lymphocytes and polymorphonuclear leukocytes, miti-
gated inflammation symptoms, and aided in the recovery
of ocular surface goblet cells. In contrast, administering
Restasis to mice three times daily did not restore ocular
surface goblet cells. The mucoadhesive nanoparticle eye
drop platform extended ocular surface retention time
and effectively treated dry eye while reducing the total
CsA dosage by 50 to 100 times, thus diminishing side
effects and lengthening the dosing interval. CsA encapsu-
lated in lipid-based nanomaterials such as SLN and NLC
has been extensively investigated for ocular treatments.
Researchers loaded CsA into SLNs and administered it to
rabbit eyes in vivo [243]. Aqueous humor samples were



Page 32 of 60

:282

(2023) 21

Wei et al. Journal of Nanobiotechnology

uond3fal sunwull Jo

uonigiyul pue ‘uonelueidsuer
[POUIOD BUIMO||0) SBNSSI Ul

80D pue ¥dD 14N 4o

uolssaidxa pasnpail ‘A1ayes
[e2160]010] 1U3||92%3 ‘sdoip 943
SNWI|0I2BY 9%50°0 JO 1By Uey)
Aujigeswiad |eaulod 1aybiy e
PR1QIYX3 $3|[9D1UIOURU

Ejzd V91d-9-53dW Papeo|-DVL

COEECM_QmCmb |eauIod

1eJ JO S3NSS[ JB[NDO U] 1092
uondefal-iue pabuojoid pue
‘SUOIRIIUSDUOD r_@_g pauleisns
‘Aiqeawiad ybiy e pangiyxe

Vazd $3||931UWoURU PIPEOI-DVL

SNOa41IA Y1 Ul

anpisas Bnip ou pue ‘plojoyd

-BUM3J 3] Ul UONBIUIOUOD

Bn.p pa1eAsls ‘9ouela|ol |93
9|qRIONR) 'ADUBIDYS UONE|NS
-deous bnip ybiy pauqiyxs

lova S4NI papeoj-upAwedey

SUOIIBINULIOY
3|ge|IeAR A|[EIDISUILIOD 0}

pasedwod eaulod dy3 Ul suon
-BJ1U92U0d BNIp Jaybiy e payl

-qIyxa VN PUB SN| P9PEOI-Y/SD
‘UOI1e1ILI- 9K3 OU PRUGIYXD YIN
POPEO|-YSD ‘UoneILl 243 [ew

[S7T] -UIW PR1IGIYXS SNI PIPEOI-YSD
3NSSN Je|NDO pue

piny Jeay lowny snoanbe ul

sanjen 70y pue Y0y
pa1eASJ3 PUE ‘UoISaypeolq

Buons ‘ssesjas brup pauleisns

[rZ] PaNGIYXe SYIN-SAD Popeo}-vs)
uonell Jejndo Aue buisned 1no
-UIm Jouwny snosnbe ayi ul
suonenusduod bnip ybiy

levdd PaUQIYXS SNTIS POPROI-YSD
uopeledaid

|BUOIIUSAUOD O} paledwiod
uonedipaw Jo Aousnbaij pue
2besop pasnpal pue ‘s||92

190D 2284NS J18|nd0 JO

UOI1RI01S3I ‘S1D3y) Alojeul
-Wweyul-nue 1uan0d ‘94s sy Ul
uonualas pabuojoid pangiyxa

[erdd  SIN-X2Q-G-V1d PepeOl-YsD

S1eJ Ul uoll wiaIsAs
-eue(dsuel) [PaUI0D BuUNeS  SURIGUISW 950|N|[3D PUB ‘S1Iq
sdoipak3  -uad d12Usbo||y puU SHGgRY -Cel JO SeSUI0D Pale|os! 'SDIDH

S1eJ Ul uoll WES
-eue(dsuel) [PaUI0D BuNeS  SURIGUISW 950|N([2D PUB ‘S1Ig
sdoipak3  -uad d1suabolje pue siggey -gel JO SeauIod Pale|os! 'SOIDH

sdoip o/ suqaey £0¥@ pue sD3Dd!

sdoup 243 suqaey -

sdoip 243 Suqoey  WSISAS SUBIQUUSW 350|N||9D

sdoip 243 sugqey -

2DIW Ul 943 AIp pasnpul
sdoup a/3 -aulwe|odods pue syggey -

poy1sw uon

-n|os snoanbe uj Alquiasse-j|as

PIONPUI-UONEIOdRAS-IUBAI0S

poy1aw uon

-n|os snoanbe uy Alquiasse-j|as

PIONPUI-UONEIOdRAS-IUBAIOS

poyiaw
uoneIodeAd JUSA|OS [9AON

poylaw
uonedYIS|NWS-3

poylaw uoleziusbowoy
1eays ybiH

poylaw uoneydpaidouen

s3||2d1woueu
€lLFEL8 V91d-9-53dW

EEIER)
-JwoueU JNJH pue

SLFYI0L ¥1d-9-93d-HN

sa|[@a1uwoueu
LLOF¥80L 07-20 pue SHIL 3 HA

G8¢ SW puUB SNI

70F6'99 SOIN-SAD

SN1S-08 Usam| pue
‘38| Jawexojod

§SF6STC ‘0L 888 [omdwod

1'6¢—6'9C SdN-X°d-9-v'ld

VL

oVl

upAwedey

VD

v

VO

VSO

‘SJoY  S)1J949 pue sdisuLldeIey)

(oma uy) (oamA uy)
31n01 uoneASIUIWPY sjewiuy B{Es)

poyiaw uondNpoid

(wu) azis s|euajewoueN

sbnip

aAIssaiddns

-ounwiw|

S9SEISIP JBINDO JO JUSWILIY YL Ul sBnp aAIssaiddnsounuiwl Yiam Uolleuiguiod Ul Sjelsslewoueu jo uoied|idde sy g ajqeL



Page 33 of 60

:282

(2023) 21

Wei et al. Journal of Nanobiotechnology

SUOIRINWIOY JB[|DIWOURU PaXIW papeo|-udAwedes sf\ {UOIIN|OS Jej|2d1W e Sjy ‘uoisusdsnsoueu Nyis-Ul Ue SN ‘g J33SN|D UOIIBIIURIBYIP 80D ‘7 193SN|D UOIIRIUIBPIP 0D

1192 1 Pa3eAIIDR JO J03DR) JB3|DNU /4N ‘PIoe D1|02A|6-02-21308|-(] ‘q) A|od-20]g-(]0dA|6 dus|Ay3a) Ajod Axoylaw ¥H7d-G-DIJW ‘0t-|OUAX0ID0 Of-20 ‘UOIIN|OS JB|[DJIW S)y ‘@3eulddns |03A|6 auajAyiak|od jo1aydod0) 3 uiwena

S$Dd1 3 A ‘S|192 [el)dynda yuswbid [eunas uewny Z04@ ‘S|192 [e119Yida [eaulod gqges s34 duejisAxoyiauyjAdoidourwe-¢ 31 dYNSIA ‘SNWI0Ide) DL ‘Ubiixap pue (p1de d13del-1'a)Alod Xag-g-y1d ‘Y duliodsodAd ysH

11 pue

A-N41 ‘361 Sy1ads-vAQ Jo
uolssaiddns pue ‘s||9d 1sew [ea
-112UnfUod WoJj SI01eIPaW K10}
-eUJWeUl JO UONIGIYU! ‘95833
Bnip paulesns pangiyxe

ERVRY]
SIIAIIDUN[UOD BUNWW| PIdNPU

126 nyis Ut
SNTS ULIRA|6 pue
‘08-UsaM| 'SWD

szl |96 NS Ul SNTIS Papeo|-DV L sdoip 943 -UIWING[BAO PUB S)IGQRY  WSISAS SURIGUUSW 350|N||9D) POY13W UOILDIUOS 3G0Id SYFETTL 'OLV 888 gl03duwio) VL
uolssaldxa sa|nsdedoueu
4509 pue 9-11 ‘Z-dIW DM Jo 083gPl0dIT pue
uonIgIyul ‘uolielll 94s ou 13  Joydowaid
‘Aujigeswiad ybiy “Ajigels 921U Ul S[311eJ9Y pasnpul ‘08¢
|e21sAyd 1U3|[99X2 PAAUIYXD -Sd7's1eJ Ul N3 PadNPUI-UIXo} U9M] ‘|10 1035
[es?] sa|nsded>oueu papeol-Dy| sdoip a4s sissnuad pue usbiue-g sbid JO seaul0d Pa1e|0S| POYISW JUSWSe|dSIP JUSA|0S 991-901 YOd VL
SUOIeIIUDD SAN-SD [024|6
-uod Bnip ybiy pue ‘uoneu -0-9-JAyIdWI-N pue
243 ou ‘Ajigeawiad Alybiy ‘N ‘N-JAYIaWIp-N
‘Aiges [edisAyd 1us|@oxa ‘N-IAyrowouow
[esd PRUGIYXS SdN Popeo|-DV.L sdoip 243 sHqaey ~  pOoyIaW UoneIpAY wiy-uiy | 00¢ -N-Aonuijed-N ovL
‘A11D1X010140
PaAIaSqO Ou YuM Ajigneduwod 1591 AYD-13H
-01q JU3|[92X3 ParqIyxe sdN puegl poyiaw (a4
[152]  ®edl|is STLJYNSW Pepeol-DvL suonda(ul [eaninesu| siey -3d¥y  uonejsb didonouol panoidui FEOL SAN B2I|Is STLJVNSW vl
swoldwAs
9As AIp panoidw ayy pue
'B3UJ0D B3 Ul DU} 9DUPISI
papuIXa ‘sea|as bnip
pabuojoid ‘Aideded Hui
-peoj pue A2uaIdYa Uol} W1sAs aueIqUISW
-e|nsdeoua ybiy pauqiyxe 950|N|[92 pUe 1591 WY D-13H poy1aw
[057] SN wnb uejab papeol-DvL sdoip 243 suqaey 's1e06 JO Se2Ul0D paje|os|  uone|ab oidoijouol paroidw| 068 F O Y/ T SN wnb ue|e VL
Jowny snoanbe pue
‘eAI12UN[UOD ‘83U 9Y1 Ul
SUOIeNUdUOD Brup ybiy pue
'90UeJR|0) aNssh Jouadns ‘Al
-1ge3s 3UD||90%3 'A)
[BUIOD B[qEY IR PRAIGIYXD poylaw G/E
letc] SAN-YS'1d Popeo-DVL sdoip a43 sHqqgey S)gqed JO Sesulod pale|os| uoisnyip-uonesyisinwy Y91 SdN-VY91d vl
sbnip
(OAIA Ul) (043IA up) aAIssaiddns
'SJ9Y 51099 pue sdisuIdRIRYD 91n0J uonessIUIWPY sjewnuy HE») poyiaw uondNpoid (wu) azis s|ellewoueN -ounwwy|

(panunuod) g ajqey



Wei et al. Journal of Nanobiotechnology (2023) 21:282

collected at different time points, and CsA concentra-
tions were measured using HPLC. The results displayed
a sharp increase in CsA concentration in the aqueous
humor at 4 h, reaching a peak concentration of 50.53 ng/
mL at 6 h, without causing significant irritation in rabbit
eyes. SLNs exhibited sustained drug release and high per-
meability, further enhancing drug utilization when for-
mulated within SLNs. Shen et al. synthesized Cys-NLC as
potential nanocarriers for topical ocular administration
of CsA [244]. rapidly crosslinked under simulated physi-
ological conditions. Thiolated NLCs did not cause dis-
comfort or irritation and displayed sustained drug release
in vitro. In rabbit eye experiments, Cys-NLCs were
administered twice, with each dose containing 500 pg of
CsA and a 90-s interval between administrations. HPLC
analysis of CsA levels in various eye tissues revealed that
Cys-NLCs had significantly higher CsA content than oil
solutions and non-thiolated NLCs. Consequently, thi-
olated NLCs may represent a promising strategy for
treating ocular surface disorders and anterior segment
inflammatory diseases, such as uveitis. Luschmann et al.
discovered that cyclosporine, enclosed in in-situ nano-
suspension (INS) and a MS, demonstrated significantly
higher concentrations in rabbit corneal tissue (1683 + 430
NZcon/Eeomea AN 826+ 163 NE ia/Eeomea) than Restasis®
(350 Ngrep/eornea) and cationic emulsions (750 ng ¢,/
Seomea) [245]. These findings underscore the broad use
and remarkable efficacy of nano-encapsulated CsA in
inflammatory eye diseases.

Rapamycin, a macrolide immunosuppressant generated
by the bacterium Streptomyces hygroscopicus, impedes
the transition of T cells from the G1 phase to the S phase
of the cell cycle by inhibiting IL-2-mediated signaling
pathways, thus exerting anti-inflammatory activity [259,
260]. Owing to its high hydrophobicity, orally or intrave-
nously administered rapamycin cannot achieve effective
drug concentrations for uveitis treatment. Cholkar et al.
developed mixed nanomicellar formulations (MNFs) of
rapamycin (0.2%) with VE tocopherol polyethylene gly-
col succinate and octoxynol-40 (Oc-40) as a polymeric
matrix [246]. They administered 50ul of 0.2% rapamycin
MNEF into the rabbit conjunctival sac, and after 60 min,
they collected retinal-choroidal tissue and extracted vit-
reous humor. The concentration of rapamycin in the
tissue was 362.35+56.17 ng/g tissue, while rapamycin
remained undetected in the vitreous humor. These exper-
imental outcomes suggest that the formulation exhibits
drug-targeting effects in the treatment of uveitis (Fig. 6).

Analogous to rapamycin, tacrolimus (also known as
TAC or FK506) demonstrates similar efficacy when
incorporated with nanomaterials for treating ocular
inflammation. Wu et al. devised TAC-loaded methoxy
poly (ethylene glycol-block-poly (d, I)-lactic-co-glycolic
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acid) nanoparticles (TAC-NPs) using nanotechnology
to surmount corneal transplant rejection and minimize
local inflammatory responses [261]. In rats undergoing
allogeneic penetrating keratoplasty, TAC-NPs enhanced
the concentration of TAC in the aqueous humor and cor-
nea compared to conventional 0.1% TAC eye drops and
exhibited potent inhibitory effects on IL-2, IL-17, and
VEGF expression in tissues. Liu et al. investigated FK506/
NH2-PEG-b-PLA/HPMC nanomicelles [247] and TAC-
loaded mPEG-b-PLGA micelles, discovering that, rela-
tive to traditional TAC eye drops, TAC incorporated into
mPEG-b-PLGA micelles could diminish the expression
of NFAT, CD4, and CDS8 in animal tissue sections, dis-
playing a significant inhibitory effect on immune rejec-
tion reactions following corneal allograft transplantation
(Fig. 7). The use of these formulations can reduce the risk
of immune system attack on the transplanted cornea,
thereby increasing the success rate of transplantation sur-
gery and the survival rate of the transplanted cornea. This
breakthrough advancement brings great hope to the field
of corneal transplantation, and through ongoing research
and development, these formulations are expected to be
further improved and widely adopted, providing more
effective immunosuppressive strategies for corneal trans-
plant patients. Kalam et al. optimized TAC (TAC)-loaded
PLGA-NPs to augment their TAC encapsulation capac-
ity [249]. In vitro experiments using rabbit corneal tissue
demonstrated that PLGA-NPs enhanced the bioavail-
ability of TAC in the corneal, conjunctival, and aque-
ous humor, indicating their potential in treating ocular
inflammation. Deepika et al. developed TAC gellan gum
nanoparticles (TGNPs) for dry eye syndrome treatment.
In a rabbit eye experiment, TGNPs exhibited prolonged
drug release and elevated corneal retention within 12 h.
Pharmacological studies indicated that TGNPs effec-
tively treated DED symptoms [250]. Mayara et al. inte-
grated TAC and MSNAPTES into silica NPs [251]. They
examined the particles’ toxicity and biocompatibility in
ARPE-19 and CAM models and assessed the safety of
intravitreal injections using electroretinography (ERG)
and rat ocular histology. No retinal, vitreous, or optic
nerve lesions were detected. Moutaz et al. encapsulated
TAC in a CS-based amphiphile to generate water-soluble
nanoparticles (MET-TAC) [252]. One hour post-admin-
istration, TAC concentrations in the rabbit cornea and
conjunctiva reached 4452+2289 and 516+ 180 ng/g of
tissue, respectively. The formulation achieved effective
drug concentrations in affected tissues and delivered suf-
ficient TAC to treat moderate to severe atopic keratocon-
junctivitis (AKC) and vernal keratoconjunctivitis (VKC).
Rebibo et al. formulated nano-capsules (NCs) loaded
with TAC, which significantly mitigated LPS-induced
keratitis and experimental autoimmune uveitis (EAU)
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Fig. 6 The schematic diagram demonstrates the pathway of a drug through the conjunctiva, sclera, and onward to the choroid and retinal
tissue following the injection of 50 pl of 0.2% Rapamycin MNF into the conjunctival sac of rabbits. Reproduced from Ref. [246] with permission

from Springer Nature

inflammatory responses [253]. The NCs inhibited the
expression of inflammatory and chemotactic cytokines
such as KC, MIP-2, IL-6, and GCSF in a mouse corneal
inflammation model. Clinical and histological efficacy
was demonstrated in a mouse (EAU) model. Sun et al.
discovered that a novel in situ gel of TAC-loaded SLNs
could suppress the release of inflammatory media-
tors from conjunctival mast cells, down-regulate IL-4
in serum, thereby inhibiting B cell antibody reactions
from IgM to IgE, reducing IgE synthesis, up-regulating

IEN-vy in serum, inhibiting Th2 cell proliferation and IL-4
function, suppressing the conversion of Th1 to Th2, and
maintaining the dynamic balance of Thl and Th2. Fur-
thermore, it inhibited the expression of OVA-sIgE, IFN-y,
and IL-4 in a mouse conjunctivitis model, controlled type
I allergic reactions, and treated immune-mediated con-
junctivitis [254]. Collectively, these experimental studies
demonstrate that biodegradable polymeric nanomateri-
als for drug delivery of TAC hold significant potential in
enhancing clinical therapeutic effects.
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Fig. 7 The use of Tacrolimus-loaded mPEG-b-PLGA micelles in the treatment of corneal immune rejection subsequent to allogeneic penetrating
corneal transplantation in rats A. (a) presents a schematic diagram of the composition and ocular application of Tacrolimus-loaded mPEG-b-PLGA
micelles, while (b) shows the detection of mMPEG-b-PLGA by a TH NMR spectrometer. (c) provides a scanning electron microscope (SEM) image

of Tacrolimus-loaded mPEG-b-PLGA micelles with a scale bar denoting 50 nm. The immunofluorescence assay was used to observe the inhibitory
effect of Tacrolimus-loaded mPEG-b-PLGA micelles (administered either via subconjunctival injection, or solution drops) on the phosphorylation
of NFAT B, CD4 C and CD8 D, key factors in immune rejection, across various layers of corneal tissue in comparison to blank controls and standard
0.05% tacrolimus eye drops. E showcases a statistical graph of the percentage of fluorescence intensity. Values are represented as mean +SD,
with statistical significance denoted as *p <0.05, **p < 0.01, ***p < 0.001. This figure is reproduced from Ref. [248] with permission from Elsevier
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In conclusion, nanomaterial-based immunosuppres-
sive agents constitute a group of medications aimed at
attenuating or inhibiting the body’s immune response.
Frequently prescribed for the prevention of immune-
mediated organ or tissue rejection in transplant recipi-
ents, these drugs also serve as treatment options for
autoimmune diseases such as rheumatoid arthritis, lupus,
and multiple sclerosis. In recent years, the exploration of
alternative nanocarriers, including hydrogels, dendrim-
ers, and micelles, for ocular drug delivery has broadened
the scope of nanotechnology applications in the field of
ophthalmology. Despite considerable advancements in
the development of nanomaterial-based drug delivery
systems for ocular conditions, further research and clini-
cal trials are imperative to comprehensively assess their
safety and effectiveness. Future investigations should
prioritize the optimization of nanoparticle proper-
ties, assessment of long-term impacts, and resolution of
potential challenges related to drug stability, biocompat-
ibility, and immunogenicity.

The delivery of TNF-a inhibitor

TNF-a inhibitors represent a group of medications
designed to obstruct the function of TNF-a, a cytokine
implicated in systemic inflammation and immune sys-
tem regulation. Widely employed in the management
of autoimmune diseases such as rheumatoid arthritis,
psoriasis, and inflammatory bowel disease, these drugs
include infliximab, etanercept, adalimumab, golimumab,
and certolizumab pegol [262]. TNF-« is recognized as a
crucial factor in the development of numerous inflam-
matory ocular conditions, encompassing uveitis, scleritis,
and ocular surface disorders like dry eye disease [263—
266]. Consequently, TNF-a inhibitors exhibit consider-
able potential in treating various ophthalmic ailments.
Recently, nanomaterial-based drug delivery systems
have demonstrated promising outcomes in addressing
ophthalmic diseases using TNF-a inhibitors. Infliximab,
a TNF-a inhibitor, has been proven to effectively miti-
gate chronic uveitis. Zhang et al. employed liposomes
loaded with infliximab in an experimental autoimmune
uveoretinitis rat model, administering the drug via intra-
vitreal injections. Owing to the liposomes’ desirable bio-
compatibility and sustained drug release properties, a
significantly enhanced reduction in inflammatory cell
infiltration, diminished retinal damage, and decreased
intraocular inflammation were observed in comparison
to traditional infliximab, indicating potential advantages
for efficient ocular tissue drug delivery [267]. This study
thus highlights the potential of nanomaterial-based drug
delivery systems in ophthalmology for the effective man-
agement of TNF-a mediated inflammatory conditions.
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The delivery of genes

The clinical implementation and advancement of nucleic
acid therapeutics are intimately linked to effective and
safe delivery systems that must accommodate the prop-
erties of genetic material and target tissues. Delivery
is considered the primary obstacle in gene therapy, and
it is particularly crucial to the success of corneal gene
therapy in ophthalmic diseases. Presently, virus-medi-
ated nucleic acid delivery, involving retroviruses, lenti-
viruses, and adenoviruses, is the most prevalent method
for selecting gene therapy vectors and has been exten-
sively employed in the investigation and treatment of
ophthalmic conditions. However, immune rejection and
inflammatory reactions are inescapable [268]. As a result,
non-viral gene therapy, utilizing NPs as gene carriers for
treating eye diseases, has gained prominence [269-272].
Commonly employed nanoscale gene carriers include
SLNs [270], HA, CS [269], AuNPs [271], and magnetic
NPs [273]. These carriers exhibit greater safety and
reduced harm during production, while offering more
convenience than viral carriers in clinical or practical
applications.

Numerous studies have demonstrated that gene ther-
apy can deliver specific anti-inflammatory factors to
alleviate various types of corneal inflammation. IL-10
is an immune regulatory factor involved in antigen
presentation, which can inhibit the production of pro-
inflammatory cytokines IL-1, IL-6, IL-8, and TNF-«
[268, 274—-278], and has potent anti-inflammatory effects
[279]. The plasmid encoding IL-10 was first formulated.
In cell experiments, HA-SLN transfected with pUNO1-
hIL10 plasmids to transfect HCE-2 cells for 72 h, IL-10
was detected in the culture medium at a concentration of
9.1+£0.8 ng/mL. Following local administration to wild-
type and IL-10 knockout (KO) mice, it was discovered
that the addition of PVA enhanced the corneal perme-
ability of liposomes. IL-10 expression was observed in
the corneal epithelium after three days of local adminis-
tration of HA-SLN encoding IL-10 plasmids [280]. The
use of NPs as carriers for therapeutic genetic material,
delivering them to target tissues and addressing various
eye diseases, has gained popularity [281, 282]. Fuente
et al. compared the efficacy of a novel DNA nanocarrier
coated with HA and CS [269], finding that CS-derived
NPs increased alkaline phosphatase expression in a
human corneal epithelial model. Plasmid DNA coated
with both types of NPs could enter corneal and conjunc-
tival epithelial cells, effectively delivering DNA. Conse-
quently, these NPs may represent innovative strategies
for gene therapy in diverse eye diseases. MUC5AC is
a high-molecular-weight glycoprotein that forms a gel
layer on mucous membrane surfaces, providing tissue
protection. Its reduced expression is closely related to
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the pathogenesis of dry eye syndrome. Contreras-Ruiz
et al. developed NPs carrying plasmids encoding modi-
fied MUC5AC protein (pMUC5AC) [283]. In an experi-
mental dry eye (EDE) mouse model, tear production
improved significantly after pMUCS5AC-NP treatment.
Fluorescent staining of lesion tissue revealed normal
structure and morphology, while immunohistochemistry
showed decreased CD4 or T cell infiltration and reduced
inflammatory responses. MUC5AC protein expression
encapsulated in nanospheres was higher in ocular surface
tissues than in the control group.

Employing nanomaterials as gene carriers enables
the targeting of specific genes involved in inflammation
for silencing, resulting in decreased inflammation and
improved disease outcomes. In summary, nanomaterial-
mediated gene silencing represents a novel and prom-
ising approach for the treatment of inflammatory eye
diseases, with the potential to enhance patient outcomes.

The delivery of natural products with anti-inflammatory
properties

Natural substances possessing anti-inflammatory proper-
ties have long been employed in treating various inflam-
matory conditions. Often derived from plants and fungi,
these substances have demonstrated efficacy in reduc-
ing inflammation and promoting overall health. Nano-
material-based drug delivery systems have emerged as a
promising approach to enhance the therapeutic potential
of these anti-inflammatory natural substances in oph-
thalmic diseases (Table 6). Such systems offer numerous
advantages, including improved solubility, targeted deliv-
ery, enhanced bioavailability, and controlled release of
the natural products [284, 285].

Resveratrol, a bioactive component found in grape
juice and Polygonum cuspidatum, had demonstrated
efficacy in reducing BRB permeability and lowering
TNF-a, MCP-1, IL-6, and IL-1p mRNA expression in
the retina by inhibiting the phosphorylation of NF-«xB
and ERK in STZ-induced DR in rats when delivered via
gold nanoparticle-coated resveratrol nanopreparations
[286]. The anti-angiogenic effect of these nanoprepa-
rations suggests potential therapeutic value in inflam-
matory neovascular eye diseases. Myricetin (Myr)
is a natural flavonol compound utilized in treating
organism lesions. Its anti-inflammatory properties are
beneficial for degenerative and inflammatory eye dis-
eases, such as dry eye syndrome and chronic anterior
uveitis [290-293]. To address Myr’s poor water solu-
bility and low stability, researchers encapsulated Myr
in PVCL-PVA-PEG polymer micelles, which resulted
in increased water solubility and stability. In vivo
anti-inflammatory experiments demonstrated a dose-
dependent anti-inflammatory effect with 4 mg/ml Myr
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micelle eye drops exhibiting strong anti-inflammatory
effects, comparable to pranoprofen eye drops [293].
Curcumin (CUR), a bioactive component found in tur-
meric, has been extensively researched and employed
in the treatment of ocular diseases due to its capacity
to inhibit corneal epithelial cell neovascularization,
lens epithelial cell proliferation, protect retinal gan-
glion cells, and suppress choroidal neovasculariza-
tion [294, 295], as well as its anti-inflammatory and
neuroprotective properties [296]. Li et al. encapsu-
lated CUR within PVCL-PVA-PEG polymer micelles,
observing that combining CUR with nanomaterials
significantly enhanced corneal bioavailability and ocu-
lar tolerance [287]. Moreover, 4.5 mg/ml nanomicelle
CUR demonstrated anti-inflammatory effects com-
parable to pranoprofen. In another study, Ganugula
et al. combined CUR with PLGA and encapsulated
the mixture in double-headed polyester NPs [185].
Oral administration of PLGA-GA,-CUR enabled the
detection of CUR content in aqueous humor, sug-
gesting that PLGA-GA,-CUR can traverse the BRB.
In an acute anterior uveitis beagle model, oral admin-
istration of PLGA-GA,-CUR significantly amelio-
rated aqueous humor inflammation and intraocular
edema (Fig. 8). Pentacyclic triterpenoids constitute
a diverse and widespread class of natural compounds
with a wealth of resources. Numerous studies have
highlighted their wide-ranging pharmacological and
biologically significant activities, particularly in the
domains of anti-inflammatory and immune regulation,
garnering significant interest. Oleanolic acid (OA) and
ursolic acid (UA) are anti-inflammatory compounds
extracted from the leaves of Thymus broussonetii and
Thymus willdenowii, which are part of the Lamiaceae
family and are rich in these compounds [297]. These
triterpenoids impede inflammation progression by
inhibiting cyclooxygenase (COX) and PLA2 activity,
blocking the release of cytokines, histamine, and ser-
otonin, and interacting with serine/threonine kinases
[298]. Helen et al. optimized PLGA-NPs loaded with
OA and UA using a 23+ star CCRD [289]. The study
revealed that OA/UA-loaded nanomaterials (NM OA/
UA NPs) exhibited excellent permeability and safety
in corneal tissue during in vitro rabbit corneal tis-
sue penetration experiments and HET-CAM studies.
Additionally, NM OA/UA NPs maintained a higher
concentration of drugs in the corneal tissue compared
to the standard mixture (SM) post-administration. The
anti-inflammatory effects of SM or NM OA/UA NPs
were assessed 30 min after administration, followed by
the application of SA solution (SAS) and quantifica-
tion of intraocular inflammation using the Draize test.
The results indicated that NM OA/UA NPs displayed
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Fig. 8 The synthesis of PLGA-GA,-CUR and its resultant therapeutic impact on a beagle uveitis model. A The schematic diagram illustrates

the composition of PLGA-GA,-CUR. B A dynamic size distribution of light scattering describes the model particle of PLGA-GA,-CUR. C SEM
provides microstructure images of PLGA-GA,-CUR. D The anti-inflammatory effect of topical PLGA-GA,-CUR is demonstrated in a canine model
of acute endophthalmitis. Following an intraocular injection of lens protein at t=0 h, the semiquantitative preclinical ocular toxicology scoring
(SPOTS) was employed, incorporating scores for aqueous flare (a), pupillary light reflex (b), and conjunctival swelling (c). Local administration

of PLA-GA,-CUR showed statistical significance when compared to topical prednisolone acetate (PA) and untreated controls, as assessed

by two-way ANOVA. Statistical significance is denoted as *p < 0.05, **p <0.01, ***p <0.001, and ****p < 0.0001. This figure is reproduced from Ref.
[185] with permission from the American Association for the Advancement of Science

superior anti-inflammatory activity compared to the
simple OA/UA mixture.

In conclusion, the integration of natural products with
nanomaterial-based drug delivery systems has the poten-
tial to amplify their anti-inflammatory properties, which
could pave the way for the development of more effective
and targeted therapies for addressing inflammation and
associated diseases.

Other pharmacological activities of nanomaterials
in ophthalmology diseases

The applications of nanomaterials in ophthalmology
reach far beyond their well-established anti-inflam-
matory effects and drug delivery capabilities. These

minuscule particles offer a range of multifunctional
properties that can be harnessed for diverse therapeu-
tic purposes, including antioxidation, anticancer, tissue
engineering and regeneration, ocular imaging, and cor-
rection of refractive errors. In this section, we will dis-
cuss the potential benefits of nanomaterials as well as the
challenges that must be addressed to successfully imple-
ment them in clinical practice (Fig. 9).

Antioxidation

Oxidative stress has been implicated in various ocular
diseases, such as AMD [225] and cataractss [299]. NPs
can be engineered to neutralize free radicals and inhibit
oxidative damage, potentially preventing or decelerating
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Fig.9 A schematic illustration of the diverse aspects of nanomaterial application in ocular biomedicine. This figure is reproduced from Ref [343].

with permission from John Wiley and Sons

the progression of these diseases. Wet AMD is a cho-
roidal neovascularization disease that originates from
endothelial cell dysfunction. Research indicates that oxi-
dative stress is involved in the development of AMD and
is positively correlated with pathological vascular lesions
[300—302]. Regrettably, there is a scarcity of effective
drugs based on antioxidant damage therapy for treat-
ing AMD, making the development of drugs capable
of effectively clearing ROS to treat wet AMD a critical
endeavor. Nanomedicine has facilitated the development
of novel ROS-clearing techniques, employing a variety
of functional nanomaterials to address ROS-related dis-
eases [303]. Experimental evidence demonstrates that
biocompatible and stable nanoceria formulations, such
as glycol CS-coated ceria nanoparticles (GCCNPs),
exhibit potent antioxidant activity. In vitro experiments
reveal that GCCNPs could suppress the expression of

VEGF in ARPE19 cells and HUVECs induced by H,0,,
inhibit the vascular formation and migration of HUVECs
induced by H,0,, and inhibit the oxidative reaction prod-
uct 4-HNE and the chemokine stromal-derived factor-1
(SDF-1) and its receptor CXCR4 in laser-induced choroi-
dal neovascularization C57 model mice following intra-
vitreal injection. GCCNPs accumulated more at the site
of laser-induced CNV injury (RPE layer) [304] (Fig. 10).
Many drug-loaded nanomaterials also exhibit strong
antioxidant properties, in addition to the nanomateri-
als themselves. For example, eye preparations based on
dipotassium glycyrrhizinate (DG)-loaded nanomicelles
carrying thymol (THY) display enhanced Fe® reduc-
tion activity in FRAP tests compared to free THY [305].
In vivo and in vitro experiments show that nanomaterials
effectively mitigate oxidative stress and suppress inflam-
matory reactions in ocular lesions, offering advantages
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Fig. 10 The inhibitory effect of GCCNPs on neovascularization in a laser-induced choroidal neovascularization mouse model. A A schematic
diagram depicting the synthesis, structure, and morphology of GCCNP is presented. The protective role of GCCNP on laser-induced lesions

is highlighted in a mouse model of choroidal neovascularization. The control group received a vitreal injection of saline B, while the experimental
group was administered a vitreal injection of GCCNPs C. Observations of the repair of damaged fundus vessels by the drug were conducted

both prior to and 14 days post-injection using fundus fluorescein angiography, plain fundus photography, and OCT. Laser-induced lesion sites are
indicated by red arrows. The representations include fluorescein angiography (FA) and bright field (BF) images. This figure is reproduced from Ref.
[304] with permission from the American Chemical Society

over corresponding free drugs by producing more investigation in the treatment of ocular diseases, as an
favorable outcomes and preserving drug efficacy stabil-  efficacious and safe therapy for various conditions associ-
ity during transportation and storage. As a result, the ated with oxidative stress.

antioxidant capacity of nanomaterials warrants further
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Anticancer

Ocular neoplasms encompass tumors of the eyelids,
conjunctiva, various layers of the eyeball, and ocular
appendages. These neoplasms are classified as benign
or malignant based on their pathological characteris-
tics, each displaying distinct features and age of onset
within the population. Retinoblastoma (RB) represents
the most common intraocular malignancy affecting
children, originating from mutations or deletions in the
RB1 tumor suppressor gene within developing retinal
cells—an autosomal dominant inherited disorder [306].
The typical clinical manifestation in affected children is a
yellow-white glow within the pupillary region, accompa-
nied by reduced vision, ocular discomfort, and inflamma-
tion. Currently, numerous treatment modalities for RB
exist, including intravenous and arterial chemotherapy,
external radiation, cryotherapy, and enucleation [307].
However, repeated administration of these treatments
may induce systemic and cellular toxicity, tumor dissemi-
nation, infection, and additional complications. Recent
advancements in nanotechnology have facilitated pro-
gress in RB treatment. NPs have been utilized to reduce
chemotherapy toxicity and overcome challenges in drug
transport across the ocular barrier. NPs have been uti-
lized to reduce chemotherapy toxicity and overcome
challenges in drug transport across the ocular barrier
[308, 309].

Melphalan is the primary chemotherapeutic agent used
for arterial RB treatment; however, repeated injections
and anesthesia may prove harmful. Lee et al. employed a
double emulsion synthesis technique to encapsulate mel-
phalan within PLGA-NPs, observing increased efficacy
and an extended interval between successive injections
[309]. MicroRNA plays a crucial role in regulating the
development of various diseases, including RB. MiRNA-
181a was downregulated in RB and other cancerous cells
[310, 311]. Combining microRNA and chemotherapeutic
agents may enhance treatment effectiveness by modulat-
ing the chemical susceptibility of malignant cells [312—
314]. Tabatabaei et al. developed a lipid nanoparticle

(See figure on next page.)
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delivery system for melphalan and miRNA-181a, result-
ing in superior transfection efficiency and reduced toxic-
ity in Y79 cells and RB heterotopic transplant rat models
(315] (Fig. 11).

Targeted therapy has attracted considerable attention
in cancer treatment due to its increased specificity and
efficacy. Sugar receptors are overexpressed in retino-
blastoma, and Rutika et al. designed an innovative sugar
receptor-targeted drug delivery system for Etoposide
(ETP) [316]. ETP-PLGA-NPs were synthesized using the
solvent displacement method, demonstrating sustained
drug release for 32 h. In Y79 cells with an excess of sugar
receptors, ETP-PLGA-NP uptaked exceeded that of non-
binding ENP, and the NPs exhibited higher cancer cell
apoptosis rates compared to pure ETP.

Metal NPs possess anti-inflammatory properties and
unique advantages in RB treatment. AgNPs derived
from pure algal aqueous extract solutions were char-
acterized, exhibiting significant cytotoxicity in Y79 cell
lines. Incorporating polysaccharides into the synthesized
AgNPs reduced their toxicity in Y79 cells and enhanced
free radical elimination [316]. While the formulation
has undergone toxicological validation through in vitro
cell experiments, it is well-known that in vivo animal
studies provide a better simulation of the real biologi-
cal environment and offer more comprehensive data and
assessments. Therefore, in future research, it is necessary
to conduct further in vivo animal experiments to gain a
better understanding of the formulation’s performance in
living systems and evaluate its potential effects in treat-
ment or other applications.In contrast to conventional
cancer therapies, nanomaterials-mediated drug delivery
offers superior efficacy, decreased toxicity, and ligand-
specific targeting, thus managing cellular toxicity and
improving cost-effectiveness. The emerging trend of mul-
tifunctional and biocompatible ligands is strategically
improving the treatment and diagnosis of RB, signaling a
new era in overcoming challenges associated with tradi-
tional therapy.

Fig. 11 The therapeutic impact of surface-modified melphalan nanoparticles (NPs) on retinoblastoma (RB). A A schematic depiction

of the preparation and concentration of melphalan is provided. B Structural schematic diagrams and scanning electron microscope (SEM) images
of four distinct NP preparations are depicted: Surface-unmodified PLGA NPs loaded with melphalan (a), surface-modified PLGA NPs loaded

with melphalan by TET1 (b), surface-modified PLGA NPs loaded with melphalan by PEG (c), and surface-modified PLGA NPs loaded with melphalan
by MPG (d), scale bar=200 nm. C In an in vitro cellular assay, four different NP formulations in 1 mg/mL and 10 mg/mL melphalan configurations
were used to treat Y79 cells for 24 h to observe their cytotoxic effects. MPG NPs were identified as the most effective treatment group. IC50 values
for TET1, PEG, and unmodified NPs were higher than those for free melphalan, while MPG NPs demonstrated statistically similar efficacy to free
melphalan. IC50 values are displayed as mean + SD; statistical significance is indicated by *P <0.05, **P <0.01, ***P <0.001, ****P <0.0001. D The
influence of surface modification of NPs on Y79 cell binding (black) and internalization (gray) was assessed using flow cytometry. Surface-modified
NPs showed increased cell binding and internalization compared to unmodified NPs at 1.5 h (a) and 24 h (b). Data is represented as mean +SD;
statistical significance is indicated by *P <0.05, **P <0.01, ***P <0.001, ****P <0.0001. This figure is reproduced from Ref. [344] with permission

from the Association for Research in Vision and Ophthalmology Inc
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Tissue engineering and regeneration Nanomaterials provide an optimal scaffold for corneal

Regenerative medicine presents a renewed prospect for  tissue regeneration, exhibiting stability. Iriczalli et al.
restoring aged and diseased organs, with notable pro- had enhanced traditional nanoscaffolds by incorporat-
gress in ocular medicine, particularly concerning cor- ing natural wool keratin fibers into polycaprolactone
neal, crystalline lens, and retinal disorders, facilitating nanoscaffolds. A composite scaffold with superior light
the recuperation of compromised tissue functionality. transmittance and reduced fiber keratin degradation was
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created when mixed in a 1:1 ratio. MSCs were cultivated
on these scaffolds, sustaining growth and metabolism for
up to two weeks [18]. Limbal epithelial stem cells pro-
liferate and differentiate during corneal injury, repair-
ing damaged tissue. Exogenous SDF-1la augments stem
cell proliferation, chemotaxis, and migration, increasing
the expression of differentiation-related genes in vitro
in LESC and MSCs. Tang et al. found that in a rat alkali
injury model, treatment with SDF-la-loaded thermo-
sensitive CS-gelatin hydrogel (CHI hydrogel) for 13 days
resulted in the proliferation, thickening, and orderly
arrangement of corneal epithelial cells, as observed via
transmission electron microscopy. This mechanism may
involve the secretion of growth factors in the SDF-1/
CXCR4 chemotactic axis to regulate cell proliferation
[317]. Subsequently, the researchers discovered that com-
bining MSC-derived exosomes with thermosensitive CHI
hydrogel could downregulate the expression of type I and
V collagen. The exosome-contained miR-432-5p inhibits
Translocation-associated Membrane Protein 2 (TRAM?2),
preventing extracellular matrix deposition and effectively
promoting the repair of damaged corneal epithelium and
stromal layer, reducing scar formation and accelerating
the healing process [318].

The enigma of lens regeneration in the eye has persisted
throughout history, in addition to corneal stem cell regen-
erative therapy. Lin et al. investigated the central roles of
Pax6 and Bmil in eye development and lens induction. In
mice obtained from breeding the ROSA™""¢ membrane-
bound GFP reporter strain with (P0-3.9-GFPcre) mice,
robust GFP expression was observed in lens epithelial
cells (LECs) under fluorescence microscopy. This indi-
cated that Pax6 LECs derived from embryonic or adult
lenses contributed to mouse lens fiber cell regenera-
tion. In Pax6P0-3.9-GFPcre mouse lens anterior capsule,
Pax6* (GFP-positive) LECs exhibited higher Bmi1, Sox2,
and Ki67 expression levels compared to Pax6~ (GFP-
negative) LECs (Fig. 12). Furthermore, the researchers
devised an innovative capsulorhexis method, tested in
rabbits, 1-3-month-old macaques, and children under
two years old with congenital cataracts, resulting in lens
regeneration and exceptional visual axis transparency.
This groundbreaking approach minimizes wound size,
mitigates anterior capsule damage during capsulorhexis,
and shifts the capsular opening from the central visual
axis to the periphery, substantially preserving lens epithe-
lial cells and promoting lens regeneration [17] (Fig. 13).
In both congenital and age-related cataract patients, the
amalgamation of enhanced surgical techniques, the injec-
tion of stem cells and LEC growth-promoting compo-
nents, and the employment of nanomaterial scaffolds to
expedite LEC proliferation may potentially maximize lens
regeneration.
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The retina consists of blood vessels, nerves, and vari-
ous photoreceptor cells, maintaining a diverse array
of visual functions in animals. Retinal photoreceptors,
including rods and cones, are responsible for detect-
ing dim and bright light stimuli, respectively. When
these cells become impaired, visual disturbances arise.
Glucocorticoids are among the most commonly pre-
scribed medications for retinal diseases, with the pri-
mary treatment method being intravitreal injections,
delivering drugs directly into the vitreous to exert anti-
inflammatory, immunosuppressive, and vasoconstrictive
effects [319-321]. Wang et al. optimized this formula-
tion by synthesizing nanoscale zirconium-porphyrin
metal-organic frameworks (NPMOF) to encapsulate
methylprednisolone (MPS) [16]. Injecting this drug into
the vitreous cavity of zebrafish with light-induced reti-
nal photoreceptor damage promoted the proliferation
of cone cells, rod cells, and Muller cells, thereby enhanc-
ing retinal visual function regeneration. Although there
are differences between zebrafish eyes and human eyes,
the importance of zebrafish as an experimental animal
model in ophthalmic research cannot be overlooked.
The study of zebrafish retina provides valuable informa-
tion and a platform for the development of treatments
for ocular diseases in humans, thus driving forward new
therapeutic strategies and drug development. Kang et al.
combined injectable tauroursodeoxycholic acid and CUR
with alginate to form a composite nanoscale hydrogel,
which demonstrated increased adhesion to diseased tis-
sue in vivo. Moreover, they found a 41% and 23% increase
in the proliferation rate of RPE cells compared to the
pure alginate group [322, 323].

In summary, tissue engineering and regeneration hold
immense potential for the development of innovative
therapies for various ophthalmic diseases. Although sig-
nificant challenges remain, including the need for long-
term safety and efficacy studies, these approaches offer
a potential solution to the limitations of conventional
treatments and may provide hope for patients with cur-
rently incurable eye diseases.

Ocular imaging
Due to the distinctive architecture of the eye and the het-
erogeneous composition of ocular tissues, nanotechnol-
ogy has made considerable progress in detecting various
ocular diseases and enhancing imaging techniques. The
exceptional functions and potential applications in biol-
ogy and medicine render nanomaterials indispensable for
augmenting disease detection in ocular imaging systems,
thus facilitating clinical diagnoses.

AuNPs provide numerous advantages in ocu-
lar applications compared to traditional diagnostics
[324]. Fu et al. found that femtosecond laser-prepared
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significance is denoted by *P <0.001. The part C reveals that the absence of Bmi1 leads to a decrease in LEC proliferation. The proportion

of BrdU +LECs was calculated for each eye at 2 m, 7 m, and 12 m. Statistical significance was determined via a two-tailed Student’s t-test; *P < 0.05.
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Bmi1fl/fl mice, to observe the development of cataracts. After using Nestn-creER to delete Bmi-1 in 6-week-old mice and following 10 months

of tamoxifen treatment, the HE morphology of mouse eyes showed no cataract phenotype. All scale bars equal 100 pm. Reproduced from Ref. [345]
with permission from Springer Nature
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AuNPs, coated with polyethylene glycol, synthesized
PEG-AuNPs (20.0 + 1.5 nm), function as excellent con-
trast agents for photoacoustic microscopy (PAM) and
OCT [325]. In vitro bovine retinal endothelial cells and
in vivo rabbit experiments demonstrated no signifi-
cant cytotoxicity or multi-organ toxicity. Simultane-
ously, the detection of blood vessels in the retina and
choroid was enhanced, increasing by 82% in PAM and
45% in OCT. Subsequently, the research team coupled
AuNPs with arginine-glycine-aspartic acid (RGD) pep-
tides (CGNP clusters-RGD), synthesizing a contrast
agent with a red-shifted peak wavelength of 650 nm.
In a rabbit choroidal neovascularization model, fol-
lowing auricular vein injection of CGNP clusters-RGD,
retinal examination using PAM and OCT revealed
signal intensity increases of 1700% and 176% [14],
respectively. This evidence provides improved clar-
ity for subretinal neovascularization, assisting disease
diagnosis and treatment plan formulation. As a high-
quality contrast agent, AuNPs can also contribute to
the development and application of ocular detection
imaging systems. Maryse pioneered a novel OCT scan-
ning method—Photothermal OCT (PT-OCT) [326],
addressing the limitations of traditional methods,
which exhibit poor detection specificity with contrast
agents in a scattering background [327]. Utilizing reti-
nal melanin as an endogenous detection material and
intravenously injected gold nanorods as exogenous
detection material, PT-OCT observes the photother-
mal effects on endogenous and exogenous substances
in the retina, effectively adding a new source of con-
trast for structural OCT and marking a new era in
ocular OCT examinations.

In conclusion, ocular imaging techniques play a vital
role in understanding the applications and potential of
nanomaterials in ophthalmology. As research in this
area advances, it is anticipated that the utilization of
nanomaterials will lead to improved diagnosis, treat-
ment, and management of various ocular diseases.

Vision correction

With societal progression and technological advance-
ment, myopia prevalence has escalated among popula-
tions, including adolescents and working adults. Myopia

(See figure on next page.)
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arises from a combination of genetic and environmental
factors, typified by increased axial length and thinning
of the sclera at the eye’s posterior pole. Complications
linked with myopia, such as vitreous opacities, retinal
detachment, and macular degeneration, follow. As a
challenging condition to treat that significantly affects
patients’ daily lives and work, no effective pharmaceutical
therapy for myopia currently exists. While myopia treat-
ments continue to develop, existing methods primarily
concentrate on rectifying the condition.

Myopia correction techniques encompass eyeglasses,
contact lenses (CLs), orthokeratology lenses, corneal
laser surgery, and implantable collamer lens (ICL) sur-
gery. Eyeglasses are the primary choice, while CLs are
also widely employed, and surgical correction may be
considered in specific cases. The market is saturated
with a diverse range of CLs, composed of various mate-
rials and exhibiting unique physical properties, result-
ing in different patient experiences. The application of
nanomaterials in vision correction is a swiftly advanc-
ing field that holds tremendous potential for enhanc-
ing the treatment of various vision issues. Researchers
have been exploring inventive methods to integrate
nanomaterials into CLs, intraocular lenses, and even
artificial retina development. These advancements aim
to provide more effective and less invasive solutions
for common vision problems such as myopia, hypero-
pia, presbyopia, and astigmatism, as well as more
severe conditions like cataracts and macular degen-
eration. To further minimize spherical and chromatic
aberrations, Lina et al. investigated the beneficial role
of nanomaterials in optical refraction [328]. Titanium
dioxide nanoparticles (TiO, NPs) are a remarkable
material for augmenting high refractive index (RI). Lina
et al. synthesized TiO, NPs using the sol-gel method
and polymethyl methacrylate (PMMA) via free-radi-
cal polymerization, combining them in specific ratios
to create PMMA-TiO, polymer CLs. The researchers
examined the performance parameter changes in ocu-
lar aberrations under polychromatic light sources, with
and without the addition of TiO, in CLs. PMMA-TiO,
CLs exhibited a high RI value of approximately 1.615,
low dispersion (vd=31), and high transparency in the
visible region (T >95%). The retinal image sharpness

Fig. 13 A novel minimally invasive surgical technique for promoting lens regeneration. A A minimally invasive ocular surgery conducted

on a rabbit eye, employing a capsulorhexis size of 1-1.5 mm. The procedure targets a 1.2 mm2 region surrounding the lens, with photographic
evidence of lens regeneration observed via a slit-lamp microscope from day 1 to 4 weeks post-surgery. B A similar minimally invasive ocular
operation was executed in a macaque model. Slit lamp microscopy demonstrates the regenerated lens tissue expanding from the periphery
towards the lens center between 2-5 months post-surgery. Direct illumination reveals a translucent visual axis. C The minimally invasive procedure
was also performed on infants with congenital cataracts. Lens regeneration was observed from week 1 to 5 months post-surgery, with almost

all eyes (95.8%) attaining visual axis transparency. The surgical incision remained peripheral, and the anterior capsule wound scar tissue kept

away from the visual axis was less than 1.5 mm in diameter. This novel surgical approach significantly mitigated visual axis opacity compared

to the current standard surgical approach. Reproduced from Ref. [345] with permission from Springer Nature
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(spatial frequency value) and contrast (MTF value)
experiments revealed that CLs with TiO, demonstrated
higher image contrast at low frequencies (less than
20 cycles/mm) and achieved optimal corrected visual
acuity at 0.01 PMMA-TiO, CL. This not only reduced
spherical, coma, and astigmatism aberrations but also
enhanced visual image quality. However, the evalua-
tion of NPs’ toxicity is crucial for the development of
new products, which can ensure that the addition of
TiO, NPs in contact lenses does not have any negative
impact on ocular health, thereby ensuring the reliability
and usability of the new product. Although the appli-
cation of nanomaterials in vision correction remains a
developing field, the potential benefits are substantial.
As research progresses, we can anticipate more effec-
tive and less invasive solutions for a broad range of
vision problems, improving the quality of life for mil-
lions of people worldwide.
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Safety and toxicity of nanomaterials

in ophthalmology diseases

In recent years, the employment of nanomaterials
has emerged as a promising strategy for addressing
and diagnosing a wide array of ophthalmic disorders.
Due to their unique physicochemical properties and
enhanced bioavailability, these materials hold tremen-
dous potential to revolutionize ocular therapeutics.
However, alongside their numerous advantages, con-
cerns regarding the safety and toxicity of nanomateri-
als in ophthalmology have also arisen [329] (Fig. 14).
The size and shape of nanomaterials may influence
their interaction with ocular tissues, potentially lead-
ing to unforeseen consequences. Small particles can
easily penetrate ocular barriers and reach sensitive
tissues, while specific shapes may affect their cellular
uptake and biodistribution [257]. Furthermore, fac-
tors such as surface charge, hydrophobicity, and the

Choroid

Retina

(Retinopathy,
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Retina detachment)

Macula

(Age-related
macular

degeneration)

Optic nerve
(Glaucoma)

Optic disc

Fig. 14 Ocular pathologies induced by the improper utilization of nanomaterials. The image showcases irritation and toxic responses elicited
by nanomaterials interacting with the eye surface (cornea, conjunctiva), intraocular structures (e.g., iris, ciliary body, choroid, and lens), or various
regions of the retina, macula, and optic nerve. Reproduced from Ref. [346] with permission from John Wiley and Sons
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presence of functional groups on nanomaterials can
significantly impact their biocompatibility and inter-
action with ocular tissues. Surface modification tech-
niques may be employed to enhance biocompatibility
and reduce potential toxicity [330-332]. Additionally,
the tendency of certain nanomaterials to aggregate in
physiological environments can induce complications,
such as occlusion of ocular blood vessels and inflam-
matory responses [333]. Moreover, the rate at which
nanomaterials degrade and are eliminated from the
body plays a crucial role in determining their potential
toxicity. Substances that break down too quickly may
release harmful byproducts, while those that degrade
slowly may accumulate in tissues, causing prolonged
damage [334]. To harness the full potential of nano-
materials in ophthalmology while mitigating their
associated risks, several approaches can be adopted to
minimize their toxicity: (1) Optimizing size, shape, and
surface properties: By carefully selecting the dimen-
sions, structure, and surface characteristics of nano-
materials, researchers can reduce potential adverse
effects on ocular tissues. For instance, smaller parti-
cles with a more neutral surface charge are less likely
to cause irritation and inflammation [335-337]; (2)
Biodegradable materials: Choosing biodegradable sub-
stances that can be safely metabolized and removed
from the body can help minimize the risk of lasting
toxicity and tissue accumulation [338]. (3) Surface
modification: Surface modification techniques, such
as the addition of hydrophilic polymers, can be used
to improve the biocompatibility of nanomaterials and
decrease their tendency for aggregation and occlusion
[339]. (4) Targeted delivery: Developing targeted drug
delivery systems that can specifically deliver nanoma-
terials to the desired site of action within the eye can
help reduce off-target effects and minimize potential
toxicity [316]. (5) Preclinical assessment: Thorough
preclinical evaluation of nanomaterials in relevant ani-
mal models and in vitro assays is essential to identify
and address potential safety concerns before progress-
ing to clinical trials [340].

In summary, nanomaterials have the potential to
transform the field of ophthalmology, offering innovative
solutions for the treatment and diagnosis of various ocu-
lar conditions. However, concerns regarding their safety
and toxicity must be thoroughly addressed to ensure the
successful translation of these technologies to clinical
applications. By implementing strategies to minimize
toxicity, optimizing material properties, and conduct-
ing rigorous preclinical testing, researchers can pave the
way for the safe and effective use of nanomaterials in
ophthalmology.

Page 50 of 60

Conclusion and perspective

In conclusion, the emergence of next-generation nano-
materials holds the potential to substantially advance
the domain of ocular anti-inflammatory drug therapy.
These groundbreaking materials present unparalleled
prospects for devising novel drug delivery systems and
augmenting the efficacy of existing treatments, ulti-
mately ameliorating patient outcomes for a wide array of
ocular conditions. By exploiting the unique attributes of
nanomaterials, researchers can tackle challenges linked
with conventional therapies, such as limited bioavail-
ability, off-target effects, and the necessity for frequent
administration.

As we gaze into the future, the sustained development
and refinement of nanomaterials for ocular drug delivery
will likely result in breakthroughs in the management of
inflammatory eye diseases. Investigators will strive to
optimize the physicochemical properties of nanomate-
rials, including size, shape, surface charge, and biodeg-
radability, to attain superior biocompatibility, targeted
delivery, and controlled drug release. Moreover, the
incorporation of stimuli-responsive mechanisms and
multifunctional capabilities may lay the foundation for
intelligent, personalized therapies tailored to individual
patient requirements.

Furthermore, interdisciplinary cooperation among
material scientists, ophthalmologists, and pharmaceuti-
cal researchers will be pivotal in propelling the translation
of these avant-garde technologies from the laboratory to
the clinical setting. Rigorous preclinical evaluation and
meticulously designed clinical trials will be essential in
verifying the safety and efficacy of nanomaterial-based
ocular therapies, ensuring compliance with regulatory
standards and garnering acceptance within the medical
community.

However, concomitant with the substantial prom-
ise of nanomaterials in ocular anti-inflammatory drug
therapy, it is vital to remain attentive to potential safety
concerns and adverse effects. Researchers must assidu-
ously appraise the biocompatibility and toxicity of these
materials, implementing strategies to minimize potential
hazards while maximizing therapeutic advantages. In
doing so, the full potential of next-generation nanomate-
rials can be harnessed to transform the landscape of ocu-
lar drug therapy, providing improved treatment options
and ultimately enhancing the quality of life for millions of
patients globally.
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