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Next-generation nanomaterials: advancing 
ocular anti-inflammatory drug therapy
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Abstract 

Ophthalmic inflammatory diseases, including conjunctivitis, keratitis, uveitis, scleritis, and related conditions, pose 
considerable challenges to effective management and treatment. This review article investigates the potential 
of advanced nanomaterials in revolutionizing ocular anti-inflammatory drug interventions. By conducting an exhaus-
tive analysis of recent advancements and assessing the potential benefits and limitations, this review aims to identify 
promising avenues for future research and clinical applications. The review commences with a detailed exploration 
of various nanomaterial categories, such as liposomes, dendrimers, nanoparticles (NPs), and hydrogels, emphasizing 
their unique properties and capabilities for accurate drug delivery. Subsequently, we explore the etiology and patho-
physiology of ophthalmic inflammatory disorders, highlighting the urgent necessity for innovative therapeutic 
strategies and examining recent preclinical and clinical investigations employing nanomaterial-based drug delivery 
systems. We discuss the advantages of these cutting-edge systems, such as biocompatibility, bioavailability, controlled 
release, and targeted delivery, alongside potential challenges, which encompass immunogenicity, toxicity, and regula-
tory hurdles. Furthermore, we emphasize the significance of interdisciplinary collaborations among material scientists, 
pharmacologists, and clinicians in expediting the translation of these breakthroughs from laboratory environments 
to clinical practice. In summary, this review accentuates the remarkable potential of advanced nanomaterials in rede-
fining ocular anti-inflammatory drug therapy. We fervently support continued research and development in this 
rapidly evolving field to overcome existing barriers and improve patient outcomes for ophthalmic inflammatory 
disorders.
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Introduction
Inflammation-associated ophthalmic diseases com-
prise a diverse array of ocular disorders characterized 
by inflammation impacting various eye structures, such 
as the uvea, sclera, optic nerve, cornea, and retina [1]. 
The prevalence of these disorders differs considerably, 
depending on factors like geographic location, popula-
tion demographics, and the specific condition under 
consideration. For example, uveitis, a more prevalent 
inflammatory eye disorder, has an estimated prevalence 
of approximately 38–730 cases per 100,000 individuals, 
with higher rates observed in developing countries and 
certain populations [2]. Conversely, scleritis is less com-
mon, with an estimated prevalence of around 4–20 cases 
per 100,000 people [3]. Optic neuritis (ON) also occurs 
relatively infrequently, with an estimated prevalence 
of 1–5 cases per 100,000 individuals, but is more com-
mon in populations with a higher incidence of multiple 

sclero [4]. These conditions can result from various fac-
tors, such as infections, genetic predispositions, auto-
immune diseases, environmental triggers, or other 
underlying causes. Typical examples of these disorders 
include uveitis, scleritis, ON, keratitis, and retinitis, each 
with unique clinical manifestations and varying severity 
levels. Symptoms associated with inflammation-related 
ophthalmic diseases often encompass redness, pain, 
light sensitivity, blurred or reduced vision, floaters, and, 
in some instances, sudden vision loss. Diagnosing and 
managing these conditions necessitate a comprehensive 
assessment by an ophthalmologist, who may employ a 
combination of clinical examination, laboratory tests, 
and imaging studies to ascertain the underlying cause 
and inflammation severity. Treatment strategies for ocu-
lar diseases vary depending on the specific disease and 
its underlying cause, often involving a combination of 
approaches. These approaches may include the use of 
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topical or systemic anti-inflammatory medications, such 
as corticosteroids [5, 6] and nonsteroidal anti-inflamma-
tory drugs (NSAIDs) [6], immunosuppressive therapy 
with agents like methotrexate or cyclosporine (CsA) [7], 
administration of antiviral or antibacterial agents in cases 
of infectious causes [8], and in certain instances, surgical 
intervention to address complications or unresponsive 
cases. Prompt detection and appropriate management 
are crucial to minimize the risk of complications and pre-
serve vision. 

Nanomaterials, defined as materials with at least one 
dimension ranging from 1 to 100  nm in the nanom-
eter scale [9, 10], exhibit unique physical, chemical, and 
mechanical properties that markedly differ from those 
of their bulk counterparts. Owing to their high surface 
area-to-volume ratio, quantum size effects, and other 
nanoscale phenomena, they hold promise for advanc-
ing the diagnosis and treatment of inflammation-related 
ocular disorders [11]. For example, NPs, liposomes, and 
dendrimers can be employed to deliver anti-inflamma-
tory, immunosuppressive, or anti-angiogenic drugs with 
enhanced targeting, reduced systemic side effects, and 
sustained release profiles [12]. Quantum dots and gold 
nanoparticles (AuNPs) can also be utilized in advanced 
imaging techniques like optical coherence tomography 
(OCT), fluorescence imaging, and photoacoustic imaging 
for superior visualization of ocular structures and inflam-
mation for early detection and diagnosis [13]. Quantum 
dots and AuNPs can also be employed in advanced imag-
ing techniques such as OCT, fluorescence imaging, and 
photoacoustic imaging to provide better visualization of 
ocular structures and inflammation for early detection 
and diagnosis [14, 15]. Additionally, nanofibers, hydro-
gels, and nanocomposites can function as scaffolds or 
supports for the regeneration of damaged ocular tissues 
such as the cornea or retina [16–18]. Continued research 
in this domain may ultimately result in more effective 
treatments for inflammation-related eye disorders, with 
fewer side effects. Despite the extensive information 
available on nanomaterial formulation, characteriza-
tion, ocular administration, and targeting, addressing the 
toxicity and safety of these materials remains an urgent 
requirement. Consequently, new breakthroughs are 
essential for facilitating the development and application 
of next-generation nanomaterials in ocular anti-inflam-
matory drug therapy.

Nanomaterials
Nanoparticles (NPs) represent a class of minuscule, syn-
thetically engineered particles with dimensions ranging 
from 1 to 100 nm. These particles bridge the gap between 
bulk matter and atoms or molecules. Due to their dimin-
utive size, they exhibit unique characteristics, such as a 

vast surface area, potent penetrative ability, and stabil-
ity. NPs find widespread use in diverse fields, including 
biomedicine, fine chemical engineering, seawater puri-
fication, aerospace, environmental energy, and micro-
electronics. Within the realm of biomedicine, NPs can 
permeate cellular structures in the body, traverse neu-
ral pathways, lymphatic systems, and blood vessels, and 
selectively accumulate within various cellular architec-
tures. This versatility renders nanoparticle-based mate-
rials extensively and actively employed for drug delivery 
and disease treatment.

Nanomaterials can be primarily classified into two 
categories: organic and inorganic nanomaterials [19]. 
Organic nanomaterials encompass polysaccharide-based 
materials, lipid-based nanomaterials, and polymer-based 
nanomaterials, such as microspheres, micelles, hydrogels, 
NPs, dendrimeric macromolecules and nanofibers [20]. 
Inorganic nanomaterials include magnetic-based mate-
rials, gold-based materials, iron oxide-based materials, 
silica-based materials, and graphene among others [21]. 
In ophthalmology, nanomaterials have demonstrated 
promising applications in the diagnosis and treatment of 
various eye diseases, possessing the capacity to facilitate 
targeted drug delivery [22], enhance diagnostic imaging 
[23], and promote tissue regeneration [24]. Nonetheless, 
further research is required to comprehensively under-
stand the safety and efficacy of these materials in the eye.

Carbohydrate‑based nanomaterials
Carbohydrate-based nanomaterials constitute a class of 
nanomaterials derived from natural carbohydrates such 
as cyclodextrins, cellulose and chitosan (CS) [25]. These 
materials exhibit exceptional physicochemical proper-
ties, rendering them highly desirable for a wide array of 
applications in fields such as medicine, energy and envi-
ronmental remediation. Carbohydrate-based nanoma-
terials can be engineered to possess specific properties, 
including size, shape and surface charge, making them 
remarkably versatile and suitable for numerous applica-
tions. These materials can self-assemble and form com-
plex structures, which are attractive for applications in 
drug delivery and tissue engineering [26]. Furthermore, 
carbohydrate-based nanomaterials demonstrate excellent 
biocompatibility, biodegradability and low toxicity, mak-
ing them ideal candidates for biomedical applications 
[27].

Chitosan
CS is a linear polysaccharide comprising randomly dis-
tributed β-(1–4)-linked D-glucosamine and N-acetyl-
D-glucosamine units, originating from partially 
deacetylated chitin. Due to the presence of protonated 
amino groups carrying a positive charge, CS exhibits 
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pH-regulating properties and functions as a water-sol-
uble cationic polyelectrolyte capable of interacting with 
negatively charged molecules. By encapsulating dexa-
methasone (DEX) sodium phosphate for topical ocular 
delivery, CS NPs decreased drug residence time in the 
cornea and enhanced drug permeability [28]. Thus, CS 
NPs as nano-carriers for DEX have demonstrated broad 
prospects in the treatment of ocular inflammation.

Hyaluronic acid
Hyaluronic acid (HA) is a natural polysaccharide com-
posed of D-glucuronic acid and N-acetyl-D-glucosamine 
units linked through β-1,3 or β-1,4 glycosidic bonds and 
serves as a natural ligand for CD44 receptors expressed 
on macrophages. CD44 is a multifunctional receptor 
involved in intracellular, intercellular, and extracellu-
lar matrix interactions. The primary mode of HA bind-
ing to CD44 occurs via its NH2-terminal region located 
near the 135-amino acid domain of the receptor. Con-
sequently, HA exhibits anti-inflammatory targeting by 
recognizing macrophage receptors. As a significant com-
ponent of the vitreous humor, HA and its biocompatible 
derivatives are highly suitable for ocular delivery [29–31]. 
HA-CS nanocomplexes loaded with siRNA could pene-
trate the rabbit vitreous, and following intravitreal injec-
tion, a reduction in laser-induced neovascularization in 
the rabbit retina was observed, accompanied by good 
tolerability, biosafety, and enhanced bioavailability [32]. 
HA serves as an excellent drug carrier in the treatment 
of ocular diseases, exhibiting outstanding drug diffusion 
and delivery properties. These attributes enable its wide-
ranging application potential in intraocular drug delivery.

Cyclodextrins
Cyclodextrins are macrocyclic structures characterized 
by a cone-shaped, hollow, cylindrical morphology. The 
hydrophilic exterior of cyclodextrins is formed by sec-
ondary and tertiary hydroxyl groups at the larger and 
smaller openings, respectively, while the interior cavity is 
hydrophobic due to shielding by C–H bonds. This hydro-
phobic cavity can accommodate various organic com-
pounds, forming inclusion complexes and modifying the 
physical and chemical properties of the encapsulated sub-
stance. Wang et al. synthesized nanomaterials containing 
brinzolamide inclusion complexes and hydroxypropyl-
β-cyclodextrin complexes, prolonging drug release and 
enhancing the efficacy of brinzolamide eye drops in 
glaucoma treatment [33]. Cyclodextrins offer significant 
advantages in the treatment of ocular diseases, includ-
ing drug protection, enhanced solubility, reduced toxic-
ity, improved drug stability and enhanced drug delivery. 
These properties establish cyclodextrins as crucial 

components in the treatment of ocular diseases, playing a 
vital role that cannot be overlooked.

Natural medicine‑based polysaccharides
Natural medicine-based polysaccharides exhibit unique 
and highly effective biological functions for treating 
ocular afflictions. For instance, Lycium barbarum poly-
saccharides (LBPS) ameliorated dry eye syndrome, miti-
gated oxidative damage in human trabecular meshwork 
cells, and maintained retinal and ganglion cell functional-
ity [34–37]. In human corneal fibroblasts (HCFs), these 
polysaccharides reduced the formation of pro-fibrotic 
proteins following in vitro corneal injury and suppressed 
the expression of IL-8 and IL-6, thereby acting as prophy-
lactic medication before corneal refractive surgery [38]. 
Moreover, LBPS demonstrated anti-Aβ1-40 oligomeriza-
tion properties, inhibited NLRP3 inflammasome acti-
vation, and exerted anti-apoptotic effects, alleviated 
inflammation and cellular pathology in vitro age-related 
macular degeneration (AMD) models [39]. Astragalus 
polysaccharides (APS) protected ARPE-19 cells, a spon-
taneously arising retinal pigment epithelium (RPE) cell 
line, and rat primary RPE cells under high glucose con-
ditions through miR-182/Bcl-2 and miR-204/SIRT1 
signaling pathways, restraining mitochondrial damage, 
endoplasmic reticulum (ER) stress and cell apoptosis [40, 
41], ultimately improving diabetic retinopathy (DR) RPE 
cell function. Ginkgo biloba leaf-derived polysaccharides 
(PGBL) reduced tumor necrosis factor-α (TNF-α) expres-
sion in the aqueous humor of endotoxin-induced uveitis 
(EIU) model rats, demonstrating notable efficacy in treat-
ing ocular inflammation and glaucoma [42, 43]. Den-
drobium candidum polysaccharides (DCPS) inhibited 
proliferation and induced apoptosis of human corneal 
epithelial cells (HCEC) under high glucose conditions, 
repairing HCEC damage [44]. Sodium alginate (SA), a 
natural polysaccharide extracted from brown algae such 
as kelp or sargassum, exhibits polyanionic behavior in 
aqueous solutions and possesses adhesive properties, 
serving as an adjunct in cataract surgery. Additionally, 
alginate oligosaccharides (AOS) treated D-galactose 
(D-gal)-induced SOD1, SOD2, and CAT protein expres-
sion in the lenses of C57BL/6J mice, decelerating lens 
damage and aging [45]. However, these polysaccharides 
display low absorption, poor bioavailability, and unstable 
chemical structures in ocular tissues. Therefore, com-
bining polysaccharides and nanotechnology in disease 
treatment compensates for the inherent shortcomings 
of natural polysaccharides. For instance, when encap-
sulated within high molecular weight CS (HCS)-based 
nanogels, resveratrol exhibited no inflammatory or cyto-
toxic effects on ARPE-19 cells. After cellular internaliza-
tion, researchers observed an endo-lysosomal escape of 
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nanogels [46]. LBPS and DCPS were integrated with SA 
to fabricate nanomaterials, thereby enhancing drug com-
patibility and stability within the body [47]. These find-
ings serve as a positive reference for the application of 
natural plant polysaccharides in conjunction with nano-
materials for the treatment of ocular disorders.

In conclusion, carbohydrate-based nanomaterials dem-
onstrate significant potential in the field of ocular drug 
delivery, owing to their biocompatibility, biodegradabil-
ity, and unique recognition properties. The development 
of these nanomaterials has the potential to revolutionize 
the treatment of various ocular diseases, such as dry eye 
syndrome, glaucoma, DR, and AMD, by enhancing drug 
bioavailability, prolonging drug release, and improving 
therapeutic efficacy. Further research and development 
of carbohydrate-based nanomaterials are essential to 
unlocking their full potential and translating their ben-
efits into clinical applications.

Lipid‑associated nanomaterials
Lipid-associated nanomaterials, a class of nanoma-
terials comprising lipids, are highly sought after for 
applications in diverse fields such as medicine, biotech-
nology, and materials science. This category includes 
liposomes, nanoemulsions, and lipid NPs, all of which 
possess unique properties that make them well-suited 
for targeted drug delivery, imaging, and diagnostic pur-
poses. These lipid-based nanomaterials can be tailored to 
exhibit specific properties, such as size, shape, and sur-
face charge, rendering them highly versatile and effective 
in various applications. Additionally, they can self-assem-
ble and form complex structures, a characteristic that is 
particularly attractive for drug delivery and tissue engi-
neering applications. Lipid-associated nanomaterials also 
demonstrate excellent biocompatibility, biodegradability, 
and low toxicity, making them ideal candidates for bio-
medical applications.

Liposomes are spherical vesicles composed of phos-
pholipid bilayers capable of encapsulating both hydro-
philic and hydrophobic drugs. These nanoscale structures 
are highly versatile and can be engineered to possess 
specific properties, such as size and surface charge, to 
enhance their drug delivery capabilities [48]. Liposomes 
exhibit biocompatibility, biodegradability, and non-tox-
icity, making them suitable for biomedical applications 
[49]. They can protect encapsulated drugs from degra-
dation and clearance by the immune system, leading to 
improved drug efficacy and reduced side effects. Further-
more, liposomes can selectively target specific tissues or 
cells, improving drug delivery and reducing off-target 
effects. They have been employed in various applications, 
including cancer therapy [50], vaccine delivery [51], gene 
therapy [52], and cosmetic formulations [53]. Researchers 

continue to explore new formulations and modifications 
of liposomes to enhance their effectiveness and applica-
bility across diverse fields.

Nanoemulsions are a type of nanomaterial consisting of 
small droplets of one liquid dispersed within another liq-
uid. The droplets in nanoemulsions typically have a diam-
eter ranging from 20 to 200 nm [54], making them highly 
stable and suitable for various applications, including 
drug delivery, food science, and cosmetics. Nanoemul-
sions can be engineered to possess specific properties, 
such as size, surface charge, and stability, rendering them 
highly versatile and effective in different applications. 
They can also be designed to exhibit specific drug release 
kinetics, crucial for achieving optimal therapeutic effects. 
One significant advantage of nanoemulsions is their abil-
ity to enhance the solubility and bioavailability of poorly 
water-soluble drugs. Encapsulating these drugs in nanoe-
mulsions can improve their absorption and distribu-
tion within the body, leading to increased drug efficacy. 
Nanoemulsions are also highly stable and can be formu-
lated to resist aggregation and coalescence, which can 
reduce their effectiveness. They can be functionalized 
with targeting ligands, such as antibodies or peptides, 
to selectively target specific tissues or cells for improved 
drug delivery. Due to their transparency, uniform texture, 
and comfortable application, nanoemulsions are gaining 
clinical significance in ophthalmology. Kang et  al.’s pro-
spective double-blind study revealed that a novel 0.05% 
Cyclosporin A topical nanoemulsion demonstrated supe-
rior lipophilicity and water solubility, effectively improv-
ing conjunctival inflammation and ocular symptoms in 
dry eye patients compared to a conventional emulsion 
[55]. This study provides a basis for the effective utiliza-
tion of nanoemulsions in ocular drug delivery, demon-
strating their potential in the field of ophthalmology.

Lipid NPs consist of lipophilic matrices and aqueous 
phases with particle sizes ranging from 100 to 1000 nm. 
Lipid NPs can be categorized into two developmen-
tal stages: first-generation solid lipid nanoparticles 
(SLNs) and second-generation nanostructured lipid 
carriers (NLCs) [56], both exhibiting similarities in 
biocompatibility and biodegradability. Lipid NPs have 
the unique property of being able to encapsulate both 
hydrophilic (water-soluble) and hydrophobic (lipid-
soluble) substances [57]. This versatility is due to their 
composition, which includes lipids that possess both 
hydrophilic and hydrophobic regions. These lipids can 
form self-assembled structures, such as liposomes or 
lipid NPs, which can accommodate and entrap a wide 
range of drug molecules, regardless of their solubility 
properties [58]. The ability to encapsulate both hydro-
philic and hydrophobic substances make lipid NPs 
suitable for a broad spectrum of drugs, enabling their 
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effective delivery. This characteristic is advantageous 
in large-scale production because a single lipid-based 
nanoparticle formulation can accommodate different 
types of drugs, simplifying the manufacturing process 
and reducing the need for multiple formulations [57, 
59]. SLNs originate from O/W emulsions, substitut-
ing liquid lipids in emulsions with lipid matrices such 
as fatty acids and fatty alcohols, rendering them solid 
at room temperature. SLNs decrease surface tension 
between lipid and water interfaces. Clinically, most 
drugs display low solubility; thus, combining them with 
SLNs results in more soluble medications for enhanced 
absorption. Surfactant coatings preserve stability, offer-
ing higher physical stability for SLN-based nanocarriers 
compared to nanoemulsions when solid structures are 
enveloped in stable surfactant layers. Drug-SLN bind-
ing methods can be classified into three distinct models 
based on drug distribution within SLNs: The homoge-
neous matrix model, drug-enriched shell model, and 
drug-enriched core model [60]. The second-generation 
lipid NPs, NLCs, were designed to overcome the limita-
tions of first-generation SLNs. In comparison to SLNs, 
NLCs demonstrate high drug loading capacity, reduced 
aqueous content in particle suspensions, and minimal 
potential drug leakage during storage [61] (Fig. 1A). So 
far, literature reports have shown that both NLCs and 
SLNs exhibit the ability to encapsulate small-molecule 
substances, enabling easier delivery to various ocular 
tissues. However, further research is needed to inves-
tigate the delivery of large-molecule substances such as 
peptides and proteins to the ocular region, particularly 
in the case of SLNs. Lipid-drug conjugates (LDCs) rep-
resent a new class of compounds generated through the 
lipophilic modification of water-soluble or poorly sol-
uble drugs. Although SLNs and NLCs are appropriate 
for lipophilic drugs, their encapsulation efficiency for 
water-soluble drugs is quite low. This can lead to inade-
quate ocular drug delivery permeation and the inability 
to administer high doses of proteinaceous and peptide-
based drugs. LDCs tackle these challenges by modify-
ing drugs to boost absorption and therapeutic efficacy. 
Typically, LDCs are formed through the covalent bond-
ing of water-soluble drugs or compounds that are 
challenging to formulate with lipids, thereby enabling 
lipophilic modification. This process imparts pharma-
ceutical properties to the drugs, including increased 
drug loading capacity, enhanced membrane permeabil-
ity [62] and active transport, and improved drug bio-
availability. Moreover, controlled release and targeted 
delivery can be achieved [63], minimizing toxic side 
effects [64]. Lipids such as fatty acids, glycerides, and 
phospholipids are commonly employed for conjuga-
tion with drugs. LDCs present a promising strategy for 

enhancing drug delivery for a wide array of therapeu-
tic agents, including those with low solubility or poor 
permeability.

Polymer Nanomaterials
Polymer nanomaterials constitute a class of nanomate-
rials comprised of synthetic or natural polymers with 
sizes typically ranging from 1 to 100 nm. Various types of 
polymer nanomaterials include polymeric NPs, polymer 
micelles, dendrimers, polymer hydrogels, and polymer 
nanofibers. These materials possess unique properties 
that render them highly valuable for diverse applications, 
including drug delivery, tissue engineering, and nano-
electronics. Polymer nanomaterials can be engineered 
with specific properties, such as size, shape, and surface 
chemistry, which can be customized for their intended 
application. They can also be functionalized with target-
ing ligands, like antibodies or peptides, to selectively tar-
get specific tissues or cells for enhanced drug delivery. A 
significant advantage of polymer nanomaterials is their 
ability to encapsulate a broad spectrum of drug mol-
ecules, encompassing both hydrophobic and hydrophilic 
drugs. This can improve the solubility and bioavailability 
of these drugs, resulting in better therapeutic outcomes 
and fewer side effects. Polymer nanomaterials can also 
be designed to respond to particular stimuli, such as 

Fig. 1 A Schematic overview of the structural organization 
of first-generation SLNs and second-generation lipid NPs-NLCs. B The 
structural design of nanocapsules and nanospheres. This is reprinted 
from Ref. [341] with permission from MDPI
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changes in pH, temperature, or light, which can be useful 
for controlled drug release applications. Moreover, they 
can be engineered to be biodegradable or biocompatible, 
rendering them suitable for biomedical applications.

Polymeric NPs are structures that can carry drugs and 
proteins by covalently linking or adsorbing them to a pol-
ymer framework or surface [65]. They can take the form 
of nanocapsules or nanospheres and consist of natural 
or synthetic polymers [66] (Fig.  1B). Examples of natu-
ral polymers include CS, heparin, HA, and starch, while 
synthetic polymers encompass polylactic-co-glycolic 
acid (PLGA), polyglycolic acid (PGA), and polyethyl-
ene glycol (PEG). Polymeric NPs provide a matrix-type 
solid colloidal particle that can facilitate drug release 
and targeted delivery in vivo, reducing toxic side effects. 
Nanospheres, with diameters ranging from 10–1000 nm, 
consist entirely of polymer materials with drugs encap-
sulated or adsorbed within them. By adsorbing sur-
face-active agents, like poloxamine, onto nanosphere 
surfaces, NPs can evade recognition and degradation by 
the reticuloendothelial system (RES) in  vivo, promot-
ing drug circulation within the body [67]. PEA micro-
spheres containing DEX were injected into rabbit eyes to 
observe drug metabolism within the vitreous humor, and 
the results revealed a sustained drug effect lasting up to 
three months [68]. Nanocapsules, conversely, possess an 
oily liquid core and an enveloping polymer shell that can 
incorporate drugs into the oily core or adsorb them onto 
the polymer surface, rendering this approach suitable for 
hydrophobic drug delivery [69]. Astragaloside-IV loaded 
into lipid nanocapsules (ASIV-LNCs) could reach the 
retinal layer via topical eye drops to treat AMD, demon-
strating the feasibility of delivering nanocapsule-encap-
sulated drugs to the retinal layer using eye drops [70]. In 
summary, polymeric NPs offer various advantages, such 
as increased drug solubility, innovative drug administra-
tion methods, enhanced active ingredient utilization, and 
reduced cytotoxicity.

Polymer micelles, with diameters typically ranging 
from 10–100  nm, emerged as one of the most effective 
drug carriers in the 1990s [71]. These micelles are pri-
marily spherical, featuring hydrophilic heads and hydro-
phobic tails, offering an advantage in the incorporation 
and transport of numerous hydrophobic drugs. The 
loaded drugs can encompass hydrophobic small mol-
ecules and negatively charged macromolecular nucleic 
acids (DNA and siRNA). Interactions between hydro-
phobic small molecules facilitate their integration into 
the micelle interiors. When incorporating negatively 
charged nucleic acid macromolecules, longer nucleic 
acids provide more binding sites with micelles, lead-
ing to increased drug stability. Polymer micelles exhibit 
remarkably low cytotoxicity in  vivo because, following 

the disintegration of drug-loaded micelles, individual 
polymer chains are formed that can be excreted through 
renal metabolism [72]. Presently, polymer micelles have 
become one of the most extensively utilized drug carriers 
in the treatment of ocular diseases, providing exceptional 
tissue permeability upon contact with ocular tissues. 
Most notably, these polymer micelles possess high water 
solubility, enabling the production of transparent eye 
drops that neither interfere with vision nor compromise 
user comfort [73].Polymer hydrogels represent a class 
of three-dimensional, highly hydrophilic polymeric net-
works formed by water-soluble or hydrophilic polymers 
through chemical and physical interactions. They can 
be categorized into synthetic hydrogels, polysaccharide-
based hydrogels, and peptide (protein)-based hydrogels. 
Synthetic hydrogels comprise polymers such as alcohols, 
acrylic acids, and their derivatives, including polyacrylic 
acid. Polysaccharide hydrogels encompass starch, cellu-
lose, alginate, HA, CS, and others, while peptide-based 
hydrogels consist of collagen and poly-L-lysine. Due to 
their exceptional biocompatibility, environmental sensi-
tivity, abundant sources, and cost-effectiveness, natural 
polymer hydrogels are extensively employed in biomedi-
cine. André et al. discovered that biopolymeric hydrogels 
based on high-molecular-weight alginate and HA could 
serve as human vitreous substitutes, exhibiting high opti-
cal transparency and viscosity similar to vitreous. In vitro 
experiments revealed no cytotoxic effects on human 
fibroblasts, ARPE-19, and photoreceptor cells [74].

Polymer dendrimers are a class of highly branched, 
monodisperse polymers characterized by tree-like struc-
tures, formed by the linear connection of low molecu-
lar weight polymers via branching units. Dendrimers 
typically comprise a core, main polymer chains, and 
side chains of branching units. They exhibit precise con-
trol of physicochemical properties, extensive internal 
cavity structures, and densely functionalized surfaces. 
By adjusting the structure of the branching units and 
the distance between the main polymer chains, diverse 
dendrimer configurations can be prepared, facilitating 
improved combinations with various drugs for delivery. 
Commonly synthesized dendrimer components include 
polyamidoamine (PAMAM), poly(L-lysine) (PLL), poly-
ethylenimine (PEI), and poly (propylene imine) (PPI). In 
a mouse model of oxygen-induced retinopathy (OIR), 
Generation-4 hydroxyl polyamidoamine dendrimer NPs 
were employed to deliver the drug triamcinolone aceto-
nide (TA). Following intravitreal injection, dendrimer-
conjugated TA (D-TA) was observed to inhibit retinal 
microglial inflammation, mitigating OIR-induced neu-
roretinal and visual function impairment [75]. This study 
demonstrates the effective approach and solution for the 
ocular administration of corticosteroids by reducing the 
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dosage of corticosteroids through their conjugation with 
dendritic polymers. By coupling TA with dendritic poly-
mers, the complications associated with the ocular use of 
corticosteroids can be minimized, offering a promising 
strategy for the proper use of corticosteroids in ocular 
applications.

Polymer nanofibers are elongated, slender fibers with 
diameters ranging from tens to hundreds of nanom-
eters [76]. These fibers are generated via electrospin-
ning, a process that involves applying an electric field to 
a polymer solution or melt, resulting in the formation 
of a jet that is subsequently stretched and solidified into 
nanofibers [77]. Polymer nanofibers possess a high sur-
face area-to-volume ratio, offering enhanced mechanical 
properties, and high porosity, enabling their use as drug 
delivery systems. These materials have demonstrated 
promising results in drug delivery applications, particu-
larly in the treatment of ocular diseases [78]. Nanofiber-
based drug delivery systems provide improved drug 
loading capacity, sustained drug release, and targeted 
drug delivery, augmenting therapeutic efficacy while 
minimizing the risk of toxic side effects. Likewise, poly-
mer nanofibers have been investigated for retinal tissue 
engineering, with studies utilizing electrospun nanofibers 
of biodegradable polymers like polycaprolactone and pol-
ylactic acid to create 3D scaffolds for retinal cell growth 
and differentiation [79]. Moreover, polymer nanofib-
ers have also been deployed as drug delivery systems in 
ophthalmology, with electrospun nanofibers employed 
to encapsulate and deliver drugs directly to target ocular 
tissues. This approach has exhibited promise in treating 
diseases such as glaucoma and AMD [80, 81].

Inorganic nanomaterials
Inorganic nanomaterials encompass NPs composed of 
inorganic substances, including metals, metal oxides, and 
semiconductors. These materials exhibit distinctive phys-
ical and chemical properties, rendering them promising 
candidates for biomedical applications [82].

Magnetic NPs constitute a type of inorganic nano-
material characterized by unique magnetic proper-
ties. They are typically comprised of magnetic metals 
or metal oxides, such as iron, cobalt, nickel, and mag-
netite, with diameters ranging from 1 to 100  nm. For 
medical applications, magnetic particles must possess 
essential attributes, including non-toxicity, biocompat-
ibility, injectability, and high accumulation in targeted 
tissues or organs. Presently, magnetic NPs are employed 
for cell sorting, targeted drug delivery and therapy, con-
trast agents for magnetic resonance imaging, and heating 
mediums for cancer thermotherapy. In ophthalmology, 
commonly used magnetic nanomaterials include super-
paramagnetic iron oxide nanoparticles (SPIONs) and 

gold-based magnetic materials. Among these, SPIONs 
represent a distinct class of nanomaterials composed of 
magnetite  (Fe3O4) or maghemite (γ-Fe2O3), exhibiting a 
solid spherical shape. By aggregating with surfactants 
such as PEG, polyvinyl alcohol (PVA), and CS, SPIONs 
can form more stable and biocompatible nanomateri-
als [83]. During the fabrication process, SPIONs can 
be synthesized through microemulsion, hydrothermal, 
high-temperature pyrolysis, and chemical co-precipi-
tation methods [84]. Complete drug delivery systems 
can be developed by encapsulating drugs with SPIONs 
and modifying their surfaces with surfactant materi-
als, enabling targeted and precise drug therapy [85]. For 
instance, mesenchymal stem cells (MSCs) treated with 
SPIONs and intravenously injected into malnourished 
rat models demonstrated increased levels of glial-derived 
neurotrophic factor, ciliary neurotrophic factor, hepato-
cyte growth factor, and IL-10 in the rat retina compared 
to untreated MSC groups [86]. Moreover, due to their 
unique magnetic properties, SPIONs can induce tem-
perature increases in local environments when exposed 
to magnetic fields, resulting in tumor cell death. Clini-
cally, this therapeutic approach is referred to as magnetic 
nanomaterial thermotherapy. Dextran-coated iron oxide 
nanoparticles (DCIONs), upon magnetic field activation 
and at specific concentrations, could promote Y79 cell 
death by activating TNF-α activity in Y97 cells through 
the caspase-3/7 pathway. In the absence of a magnetic 
field, however, DCIONs displayed no cytotoxic effects on 
Y79 cells [87].

AuNPs are a widely researched type of nanoparticle, 
with diameters typically ranging from 1 to 100 nm, exhib-
iting different colors based on their size. Owing to their 
stable physicochemical properties, large surface-to-vol-
ume ratio, and outstanding biocompatibility, AuNPs are 
well-suited for tumor targeting therapy, bioimaging, and 
as easily distinguishable identification markers in immu-
nodetection and diagnosis due to their high density. In 
screening DR populations, color changes in AuNP-con-
taining materials employed for urine testing can indicate 
diabetes progression. After photographing and analyzing 
these test strips with software systems, DR prevalence 
can be determined [88] (Fig. 2).

Inflammation in ophthalmology diseases
Inflammation is a prevalent factor in ophthalmic dis-
eases, manifesting in a variety of symptoms, including 
redness, swelling, pain, and compromised vision. Inflam-
matory processes can impact various ocular structures, 
such as the cornea, iris, conjunctiva, choroid, retina, and 
optic nerve. This section aims to offer a comprehensive 
examination of inflammation in ophthalmic diseases, 
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elucidating its etiology, clinical manifestations, and ther-
apeutic approaches.

Eyelid inflammation
Eyelid inflammation is primarily classified into four cat-
egories: hordeolum, blepharitis, viral palpebral dermati-
tis, and contact dermatitis [89]. Hordeolum is an acute, 
purulent or nodular inflammatory condition arising 
from eyelid glandular tissue infection by Staphylococcus 
aureus. Involvement of the meibomian gland results in a 
larger, deeper swelling within the eyelid, with the extent 
of swelling constrained by the tarsal plate. Conjunctival 
hyperemia and edema may be apparent. If the Zeis gland 
is affected, a smaller and more superficial swelling occurs 
near the eyelash base. Approximately four days post-
hordeolum onset, the course of the condition depends 
on individual resistance, with Staphylococcus aureus 

reinfections within the lesion potentially spreading or 
remaining localized [90, 91]. Worsened inflammation 
may lead to eyelid cellulitis development, or an abscess 
may form, culminating in a firm, white nodule. Treat-
ment strategies encompass cold and warm compresses, 
antibiotic eye drops, ultra-short-wave therapy, and more 
[92]. Severe cases or instances of eyelid cellulitis may 
necessitate oral or intramuscular antibiotics. Once the 
abscess is localized, incision and drainage can be per-
formed for pus removal.

Blepharitis encompasses squamous, ulcerative, and 
angular forms [93]. Current research posits that chronic 
inflammation may be triggered by irritants resulting from 
the local degradation of sebum by Malassezia [94]. Treat-
ment options include a 2% sodium bicarbonate solution 
for local cleansing, short-term antibiotic ointment use 
for mild symptoms, and systemic oral lipid antibiotics to 

Fig. 2 The diagram elucidates the multifaceted applications of AuNP in the domain of ophthalmology. This is reproduced from Ref. [23] 
with the authorization of John Wiley and Sons
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reduce bacterial lipase production in severe cases. Ulcer-
ative blepharitis, characterized by chronic or subacute 
purulent inflammation of eyelash follicles and associated 
glands [95], is typically caused by Staphylococcus aureus, 
epidermidis, or coagulase-negative Staphylococcus infec-
tions, primarily affecting immunocompromised children. 
Clinical treatment involves selecting appropriate medica-
tion following bacterial culture and drug sensitivity tests, 
with strategies including local warm compresses, secre-
tion removal, and localized antibiotic application, with 
bacitracin as the preferred choice and long-term ami-
noglycoside use as an alternative [96]. Angular blephari-
tis originates from Moraxella, Staphylococcus aureus 
infections, or, rarely, vitamin B2 deficiency. Treatments 
include zinc sulfate eye drops (0.25–0.5% concentration) 
to inhibit Moraxella-produced enzymes, oral lipophilic 
antibiotics, and timely vitamin supplementation for indi-
viduals with vitamin B2 deficiency.

Viral palpebral dermatitis includes herpes simplex and 
herpes zoster forms, caused by herpes simplex virus type 
I and varicella-zoster virus infections, respectively. With 
weakened immunity, the virus can invade the eyelid, 
resulting in inflammation. Clinically, clusters of semi-
transparent, yellowish pus-filled vesicles may emerge on 
the skin [97]. Pathological scraping tests can reveal multi-
nucleated giant cells [98], while Giemsa staining may dis-
play acidophilic viral inclusion bodies, and peroxidase 
staining may yield positive results. Treatment options 
consist of topical zinc oxide and antibiotic ointments, 
local or systemic antiviral medications such as acyclovir, 
and intramuscular interferon injections, depending on 
the condition’s severity [99].

Conjunctivitis
The conjunctiva, categorized into the bulbar, palpebral, 
and fornix conjunctiva based on location [100], encom-
passes a significant portion of the eye’s surface area. Its 
direct contact with the external environment renders 
it vulnerable to pathogenic factors, including bacteria, 
which may provoke inflammation and damage. Con-
junctivitis may arise from microbial and non-microbial 
factors, as well as endogenous and exogenous factors. 
Infections can also disseminate from adjacent tissues, 
such as the nasal cavity. Microbial infections, encom-
passing bacterial, viral, chlamydial, fungal, and parasitic 
infections, constitute the most prevalent causes of con-
junctivitis [101]. The condition is primarily classified into 
bacterial conjunctivitis, immune-mediated conjunctivitis, 
chlamydial conjunctivitis, and viral conjunctivitis. Funda-
mental clinical treatment approaches for conjunctivitis 
include antibiotic eye drops, ointment application, and 
systemic administration of antibiotics or sulfonamides 
[102].

Keratitis
The cornea, an integral component of the eye’s refractive 
system, functions as the initial refractive medium for light 
entering the eye. Its convex, highly transparent structure 
is soft, avascular, and rich in sensitive nerve endings, 
rendering it essential for maintaining clear visual qual-
ity [103]. Keratitis, a primary cause of global blindness, 
is the primary reason behind corneal blindness in both 
developed and developing nations, with an approximate 
occurrence rate ranging from 2.5 to 799 cases per 100,000 
population per year [104]. The disease’s etiology com-
prises microbial infections [105], spread from adjacent 
tissues, and autoimmune systemic diseases like rheuma-
toid arthritis. Based on causative factors, keratitis can be 
categorized into infectious, immune-mediated, malnu-
tritional, and neurotrophic types. Infectious keratitis is 
most prevalent, marked by prominent symptoms such as 
photophobia, tearing, and ocular pain, along with varying 
degrees of vision loss. Primary treatments involve infec-
tion control, inflammation reduction, ulcer healing pro-
motion, and scar formation minimization. Depending on 
the causative agent, distinct medications are employed 
for various types of infectious keratitis [106]: topical or 
systemic antibiotics such as cefotaxime and tobramycin 
for bacterial keratitis; antifungal medications like nata-
mycin eye drops for fungal keratitis [107]; acyclovir or 
ganciclovir eye gels, potentially combined with corticos-
teroids for inflammation control in herpes simplex virus 
keratitis [108]; and cationic inhibitors such as chlorhex-
idine bigluconate coupled with antifungal medications 
for Acanthamoeba keratitis [109]. During treatment, 
artificial tears like sodium hyaluronate drops can serve as 
adjunctive therapy for eye moisturization. Based on the 
depth of corneal infiltration, diverse surgical approaches 
can be employed, such as amniotic membrane transplan-
tation or conjunctival flap coverage, lamellar or penetrat-
ing keratoplasty [110]. The emergence of commercial 
artificial corneas, including AlphaCor, Miok, and Boston 
II keratoprosthesis [111], offers optimism for patients 
with corneal diseases lacking corneal graft sources.

Dry eye syndrome, a distinct form of keratitis, con-
stitutes a multifactorial disease characterized by tear 
film abnormalities and ocular discomfort, fatigue, and 
other unfavorable symptoms [112]. The pathogenesis 
of dry eye is intricate, encompassing immune-inflam-
matory response, apoptosis, and neurogenic inflamma-
tion, among other factors, which interrelate and amplify 
each other, ultimately leading to or exacerbating dry eye 
[113]. Current research suggests that hyperosmotic tear 
film and immune-mediated inflammation of the lacri-
mal gland are vital factors in the persistent development 
of dry eye [113]. Various cytokines, such as IL-1β, IL-17, 
TNF-α, IL-6, and tumor growth factor-γ (TGF-γ), play 
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a significant role in dry eye pathogenesis [114]. Medica-
tions remain the primary treatment modality, and the 
field continues to be a focal point of ophthalmologic 
research. Currently available topical medications include 
artificial tears, CsA, autologous serum, corticosteroids, 
and tetracycline derivatives [115]. While artificial tears 
can alleviate mild dry eye symptoms and temporarily sta-
bilize the tear film, they cannot reverse the progression of 
dry eye inflammation or halt the disease process. Treat-
ment priorities for dry eye encompass reducing ocular 
surface inflammation (OSI), stimulating the growth and 
recovery of ocular surface epithelial cells, and enhanc-
ing lacrimal gland function. Targeting moderate to severe 
dry eye with anti-inflammatory treatment for ocular sur-
face immune-mediated inflammation represents a novel 
direction in dry eye therapy [116, 117]. The local applica-
tion of immunomodulators can improve dry eye-related 
signs and significantly reduce the expression of ocular 
surface inflammatory markers [118].

Scleritis
The sclera, representing the outermost layer of the eye-
ball, is a robust and elastic dense white tissue primarily 
composed of type I collagen, proteoglycans, and minimal 
amounts of elastin and fibrillin proteins [119]. It features 
sparse blood vessels and nerves. When collagen fibers 
experience chronic inflammation, they become infiltrated 
by inflammatory cells, resulting in diffuse or nodular 
lesions that can involve surrounding tissues [120], caus-
ing keratitis and uveitis. Approximately 30% of scleritis 
patients exhibit systemic autoimmune diseases [121], 
necessitating collaboration with internal medicine physi-
cians for diagnosis and treatment. Scleral inflammation 
is classified into episcleritis, which is the inflammation 
of the thin vascular connective tissue on the scleral sur-
face, and scleritis, an inflammation of the scleral matrix 
layer arising from collagen fiber destruction and cellular 
infiltration by inflammatory factors [122]. Inflammatory 
types predominantly involve type IV delayed or type III 
immune complex-mediated hypersensitivity reactions. 
Treatment options, contingent on severity, may encom-
pass topical corticosteroid eye drops, oral NSAIDs, 
immunosuppressants, and periocular TA injections to 
alleviate inflammation. In instances of extensive lesions, 
autologous lamellar scleral grafting or allogeneic scleral 
transplantation may be required [123]. Although scleral 
transplantation can bring significant benefits in certain 
cases, there are also limitations and challenges to con-
sider. These include a lack of donor sources, immune 
rejection reactions, surgical complications, postopera-
tive recovery, and suboptimal outcomes. It is essential for 
physicians to assess the feasibility of transplantation and 
weigh the pros and cons based on the individual patient’s 

specific condition and needs in order to formulate the 
most suitable treatment plan.

Uveitis
The uvea, a crucial component of the eyeball and one 
of the most vascularized tissues, is situated adjacent to 
the sclera and retina. It consists of the iris, ciliary body, 
and choroid, connecting the anterior and posterior seg-
ments of the eye. Due to its unique anatomical structure, 
inflammation is classified based on location: anterior 
uveitis, intermediate uveitis, posterior uveitis, and panu-
veitis [124, 125]. Inflammation typically propagates from 
the front to the middle, while posterior inflammation 
generally spreads forward, encompassing the entire uveal 
tissue. In rare instances, it may extend to adjacent tissues, 
causing inflammatory glaucoma, vitritis, and retinitis 
[126].

Uveitis is categorized into infectious and non-infec-
tious types based on the cause. Infectious uveitis fur-
ther divides into endogenous and exogenous types 
[127]. Exogenous uveitis results from direct invasion by 
bacteria, fungi, and viruses, while endogenous uveitis 
arises from antigen–antibody and complement system 
responses to pathogens. Autoimmune factors involve 
antigens such as melanocyte-associated antigens and 
retinal S-antigens, instigating pathological changes 
through T helper cell 17 (Th17)-derived inflammatory 
cytokines like IL-23 and IL-17 [128]. Trauma-related 
factors activate arachidonic acid, generating prostaglan-
dins and thromboxane A2 via cyclooxygenase and leu-
kotrienes through lipoxygenase, leading to uveitis [129]. 
Immune genetic factors have linked various types of 
uveitis to HLA antigens, with HLA-B27-positive ankylos-
ing spondylitis patients being susceptible to uveitis [130] 
and Vogt-Koyanagi-Harada syndrome correlating with 
HLA-DR4 positivity [131]. Based on the findings of these 
studies regarding the association between HLA and ocu-
lar inflammatory diseases, testing for HLA genotypes in 
patients can aid in predicting the risk and type of uvei-
tis. For individuals at high risk, regular eye examinations 
and early intervention are crucial for early detection and 
treatment of uveitis.

Treatment options encompass ciliary muscle paralyt-
ics such as M-receptor blockers like atropine and tropi-
camide for mydriasis and relief from ciliary and sphincter 
muscle spasms [132]. Corticosteroids, including DEX 
and prednisone, are the primary medications for uveitis 
in Western medicine. Topical corticosteroid eye drops 
can be employed for localized anterior uveitis, while sys-
temic oral or intravenous administration is reserved for 
severe cases [133]. Antibiotics sensitive to the causative 
agent should be utilized for infectious uveitis. NSAIDs 
like diclofenac sodium and indomethacin, which inhibit 
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prostaglandins and suppress inflammatory responses, 
can be employed [134]. Given that immune reactions 
contribute to uveitis pathogenesis, combined corticoster-
oid and immunosuppressive therapy (e.g., methotrexate) 
may be considered for recurrent cases [135, 136]. Inter-
mediate and panuveitis with vascular lesions and macu-
lar edema can be treated with intravitreal corticosteroid 
injections (e.g., TA or Ozurdex) combined with laser 
or cryotherapy [137, 138], while surgical excision of the 
affected tissue may be required in severe cases.

Retinitis
Inflammatory retinal disorders originate from infectious 
and non-infectious sources, as well as inflammation in 
the systemic or nearby tissues extending to the retina. 
Conditions in this category include cytomegalovirus reti-
nitis (CMVR), retinal vasculitis, DR, and AMD [139]. A 
prime example of an infectious retinal inflammatory con-
dition is CMVR, which is the predominant ocular oppor-
tunistic infection in AIDS patients and a leading cause of 
blindness [140]. During the initial phase of cytomegalovi-
rus infection, viral DNA is introduced into the nuclei of 
uninfected retinal cells, instigating viral DNA transcrip-
tion and the production of viral particles, thereby initiat-
ing an immune response [141, 142]. This triggers retinal 
inflammation, characterized by yellow-white necrotic 
lesions interspersed with red hemorrhages along blood 
vessels, radiating from the posterior pole to the periph-
ery. Diagnosis involves detecting cytomegalovirus anti-
gen PP65, CMV-mRNA, CMV isolation, or inclusion 
bodies [143]. Elevated intraocular IL-8 and mannose-
binding lectin (MBL) levels also hold diagnostic signifi-
cance in CMV infection. Ganciclovir, sensitive to CMV, 
is typically administered intravenously or through intra-
vitreal injection [144], and vitrectomy is performed in the 
presence of complications such as preretinal membranes 
and proliferative vitreoretinopathy.

Retinal vasculitis, a vascular injury disease mediated by 
immune complexes, arises from autoimmune or infec-
tious factors [145]. Frequently affecting both arterioles 
and venules, it presents as flame-shaped hemorrhages 
of varying sizes, dot-like and blotchy hemorrhages, tor-
tuous blood vessels accompanied by white sheathing, 
and late-stage retinal neovascularization and vitreous 
hemorrhage. Fluorescein fundus angiography (FFA) 
serves as the gold standard for diagnosing retinal vascu-
litis [146]. Treatment depends on the specific condition: 
patients with mild retinal vasculitis without macular cys-
toid edema, significant vitreous inflammation, or severe 
ischemic alterations on FFA may not require treatment 
but need close monitoring. Macular cystoid edema 
can be treated with intravitreal anti-vascular endothe-
lial growth factor (VEGF) medications [147] or DEX 

implants [148]. Retinal ischemia and non-perfusion cap-
illaries necessitate retinal laser photocoagulation to elim-
inate ischemic regions. Infectious retinal vasculitis calls 
for the identification of the responsible microorganism 
and targeted anti-infective therapy. Surgical intervention 
is warranted when retinal detachment or significant vit-
reous hemorrhage occurs that is incapable of independ-
ent absorption, provided inflammation is managed with 
medication.

DR, a retinal disorder triggered by chronic hyperglyce-
mia, exhibits a strong association with inflammation in 
its progression. Key indicators include increased retinal 
vascular permeability, infiltration of inflammatory cells, 
and expression of inflammatory and chemotactic factors, 
ultimately leading to retinal tissue deterioration, capillary 
degeneration, and neovascularization [149]. Takeuchi 
et al. observed significantly elevated expression levels of 
inflammatory cytokines IL-4, IL-6, IL-17A, IL-21, IL-22, 
and TNF-α in the vitreous cavity of patients with pro-
liferative diabetic retinopathy (PDR) compared to the 
patients’ own serum concentrations and higher than the 
concentrations in the vitreous cavity of patients with 
epiretinal membranes or macular holes [150]. Clinically, 
macular edema resulting from DR can be treated with 
Ozurdex administered into the vitreous cavity [151].

AMD is a prevalent retinal degenerative disease 
affecting central vision and a leading cause of blindness 
in individuals over 50. Pathological features primar-
ily manifest as the loss of RPE and the degeneration of 
photoreceptor cells. The intricate pathogenesis involves 
inflammation, hypoxia, oxidative stress, edema, and the 
disease’s development is accompanied by neovasculariza-
tion and macular edema [152]. Liu et  al. [153] detected 
significantly elevated expression levels of IL-17 in the 
serum of 23 AMD patients compared to age-matched 
healthy individuals. Biopsy of local retinal tissue in AMD 
patients also revealed increased expression levels of reti-
nal IL-1β and IL-23. These studies indicate the involve-
ment of inflammatory cytokines in the pathogenesis of 
AMD. Corticosteroids play a unique role in the treat-
ment of AMD by inhibiting the pro-angiogenic effects 
of inflammatory cytokines and targeting extracellular 
components of choroidal neovascularization [154], such 
as inflammatory cells and fibroblasts. Due to the com-
plexity of AMD pathogenesis, combined treatment (cor-
ticosteroids + anti-VEGF drugs) is a logical approach 
to address the disease progression mechanism. Vakalis 
et  al. observed a reduction in retinal thickness follow-
ing intravitreal injections of DEX combined with beva-
cizumab [155]. Kiernan et  al. posited that combined 
therapy was superior to standard anti-VEGF treatment in 
cases of exudative AMD unresponsive to standard treat-
ment, reducing the number of intravitreal injections and 
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stabilizing or improving visual acuity [156]. The com-
bined treatment approaches proposed in these studies 
undoubtedly yield better results for AMD compared to 
monotherapy. However, there is no single method that 
can perfectly cure AMD without adverse reactions. Natu-
ral products may be safer than synthetic chemicals and 
have simpler administration routes, as they have been 
used for the treatment of diseases for a long time, with 
many being suitable for oral administration. However, 
more research and effort are needed to determine their 
ability to penetrate the blood-retinal barrier (BRB) and 
their metabolic rates within the eye.

Optical neuritis
Optic neuritis (ON) comprises a group of inflammatory 
diseases affecting the optic nerve and represents one of 
the prevalent neuro-ophthalmic disorders encountered 
in clinical practice [157]. ON is primarily classified into 
multiple sclerosis-related optic neuritis (MS-ON), neu-
romyelitis optica-related optic neuritis (NMO-ON), and 
infection-related ON.

MS-ON is an inflammatory demyelinating disease of 
the nervous system, with a majority of ON patients con-
currently experiencing MS [158]. The two conditions 
are closely intertwined, with ON signifying the ocular 
manifestation of MS. The principal pathogenic mecha-
nisms involve the loss of myelin sheaths and a relative 
reduction in nerve cells. Activation of autoreactive T 
cells, B cells, and macrophages releases cytokines, caus-
ing inflammation [159]. Infiltration of inflammatory 
cells into neuronal cells leads to oligodendrocyte death-
mediated demyelination, activation of neuroglial cells 
(including microglia and astrocytes), and axonal degen-
eration [160, 161]. Pathological changes in ON lesions 
resemble those in chronic inactive MS plaques [162, 163], 
with each neural lesion exhibiting characteristics of long-
term damage. NMO-ON, also known as Devic’s disease, 
preferentially affects the optic nerves and spinal cord, 
involving unilateral ON, brainstem, cerebral, and dien-
cephalic syndromes [164]. The pathogenesis is associated 
with antibodies against astrocyte water channel protein 
4 (AQP4-IgG) or MOG [165]. Current research con-
centrates on mitigating astrocyte damage and necrosis, 
as well as oligodendrocyte damage and demyelination. 
AQP4-IgG binds to astrocyte foot processes, activating 
complement, antibody-dependent cell-mediated cytotox-
icity, and complement-induced eosinophil degranulation, 
resulting in severe central nervous system inflammation 
and astrocyte damage. Furthermore, AQP4-IgG binding 
to AQP4 receptors disrupts astrocyte transcellular water 
transport or receptor internalization [166]. By regu-
larly monitoring the levels of AQP4-IgG, the progres-
sion of the disease can be assessed, enabling clinicians 

to adjust treatment plans and take appropriate interven-
tion measures to control the inflammatory response. This 
provides patients with more accurate prognostic assess-
ment and management strategies. Infection-related ON, 
induced by various pathogenic microorganisms, elicits 
immune-mediated ON, serving as a precipitating fac-
tor for MS-ON. Other optic neuropathies are associ-
ated with autoimmune disorders such as systemic lupus 
erythematosus (SLE), Sjögren’s syndrome, autoimmune 
thyroiditis, and myasthenia gravis [167, 168], often coin-
ciding with NMO-ON. Current treatments and research 
aim to suppress such inflammatory cascades and alleviate 
symptoms. Clinically, high-dose corticosteroid therapy 
(oral, intravenous, and periocular injections) significantly 
improves patients’ visual acuity, while immunosuppres-
sants like methotrexate reduce the recurrence rate of ON 
[169]. Other treatment options include plasma exchange, 
intravenous immunoglobulin, antibiotics, and neuro-
trophic medications.

Anti‑inflammatory properties of nanomaterials 
in ophthalmology diseases
Nanomaterials, characterized by their small size and high 
surface area, have gained considerable interest in vari-
ous fields, including biomedicine. One area of particular 
interest is their potential anti-inflammatory properties, 
which can be attributed to their interactions with bio-
logical systems, such as cells, tissues, and whole organ-
isms. In this discussion, we will explore common types 
of nanomaterials with anti-inflammatory properties 
and their potential applications in ophthalmic diseases 
(Fig.  3). Recent research suggests that the anti-inflam-
matory properties of nanomaterials can be attributed to 
two distinct mechanisms: the nanoknife mechanism and 
the electron transfer mechanism. The nanoknife mecha-
nism refers to the sharp-edged structure of nanomateri-
als, which can puncture the cell walls of microorganisms 
such as bacteria, causing cellular disruption, dysfunction, 
and ultimately leading to the death of microorganisms. 
The electron transfer mechanism involves charge trans-
fer between nanomaterials and bacteria, resulting in the 
oxidation and damage of essential cellular structures or 
components. Positively charged NPs can alter the func-
tion of the electron transport chain within bacteria, 
extracting electrons directly and causing oxidative stress 
in lipoproteins and other substances on the bacterial cell 
wall, thereby inhibiting bacterial growth and producing 
anti-inflammatory effects. Literature reports that ZnO-
NPs, Ag-NPs, graphene materials (GMs), nanoceria, and 
nano-flower structured  MoS2 exhibit antibacterial prop-
erties through this mechanism [170–172].

Ocular bandages, encompassing natural amniotic 
membrane variants and synthetic alternatives, serve a 
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vital role in treating ocular injuries [173, 174]. Electro-
spun fibrous membranes (EFMs) are employed as syn-
thetic wound dressings due to their facile production 
and accessible sources [174]. Nonetheless, their use in 
ophthalmic applications is restricted, as they lack anti-
bacterial capabilities [175, 176]. Recently, silver nano-
particles (Ag-NPs) have been extensively integrated into 
medical material scaffolds for their exceptional antibacte-
rial properties. Yan and colleagues coated Ag-NPs onto 
EFMs and poly (lactic acid) (PLA) composite scaffolds, 
which significantly impeded the growth of Escherichia 
coli, Staphylococcus aureus, and Fusarium spp. in bac-
terial culture dish experiments [177]. Consequently, Ag-
NPs coated EFMs and PLA composite scaffolds exhibited 
potential for treating fungal and bacterial keratitis by 
promoting corneal and conjunctival epithelial cell prolif-
eration, inhibiting elevated expression of inflammatory 
factor IL-6, and facilitating wound healing. This study 
paves the way for the development of advanced bioma-
terial-based strategies for ocular tissue engineering, 
offering a promising solution for improving ocular cell 
proliferation and combating infections in the field of oph-
thalmology. Cai et  al. discovered that inorganic cerium 
oxide NPs (nanoceria) exhibited antioxidative properties, 
rendering them suitable for endogenous reactive oxygen 
species (ROS) scavengers with enzyme-mimetic cata-
lytic activity [178]. These enzymes encompass superoxide 

dismutase (SOD), hydrogen peroxide enzymes, peroxi-
dases, and oxidases. Additionally, research has unveiled 
the anti-inflammatory effects of nanoceria, which, fol-
lowing intravitreal injection, not only downregulated 
VEGF expression and inhibited neovascularization [179] 
and the expression of inflammatory factors IL-3 and IL-7 
[180] in  VLDLR−/− mice but also suppressed Müller cell 
gliosis in mouse retinal tissue via the JNK/NF-κB sign-
aling pathway [181]. Qian et al. observed that nanoceria 
attenuated inflammatory corneal lesions in rat models 
and in  vitro HCECs by inhibiting IKB/NF-κB-mediated 
inflammatory responses through the suppression of oxi-
dative stress [170]. These findings indicate that nanoceria 
may constitute a novel therapeutic strategy for manag-
ing ocular inflammatory neovascular diseases. Carbon 
nanostructured materials, including carbon nanotubes 
(CNTs) and graphene, are distinctive nanomaterials 
boasting exceptional biocompatibility and mechani-
cal stretchability. They have demonstrated the ability to 
maintain the elasticity and rigidity of collagen fibers for 
treating corneal lesions while exhibiting good biocom-
patibility in the eye without evidence of active inflamma-
tion upon blue Alcian staining [182]. Lin et al. devised a 
remote monitoring and treatment system for chronic OSI 
utilizing carbon nanostructured materials, comprising a 
smart contact lens and a thermotherapy eye patch [183]. 
Graphene, a carbon nanomaterial, possessed outstanding 

Fig. 3 The image illustrates the varying capacities of different nano-formulations to traverse distinct barriers and reach diverse tissues 
within the eye, as dictated by their individual properties. This is referenced from Ref. [342], reproduced with permission from Royal Society 
of Chemistry Advances
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electrical conductivity, enabling a graphene field-effect 
transistor (FET) to remotely monitor the OSI biomarker 
MMP-9 concentration in tear fluid via a smartphone 
[184]. A diagnosis of OSI is established when the con-
centration surpasses 200 ng/ml. Transparent, stretchable 
eye patches were fabricated using Ag-NPs and an elasto-
mer film (polydimethylsiloxane). These patches adhere to 
the eye during the application, utilizing the exceptional 
thermal conductivity and stable mechanical deformation 
resistance of Ag-NPs to deliver thermotherapy for OSI 
treatment. This approach has shown promising therapeu-
tic results in both animal experiments and human trials 
[183].

Nanomaterial‑based drug delivery systems 
are a promising approach for the treatment 
of ophthalmology diseases
Nanomaterial-based drug delivery systems have emerged 
as a highly promising approach for the treatment of oph-
thalmology diseases due to their numerous advantages 
(Table 1). The unique properties of nanomaterials enable 
precise control over drug release, enhanced drug stabil-
ity, improved bioavailability, and targeted delivery to spe-
cific ocular tissues. These systems utilize nanoparticles 
or nanocarriers to encapsulate drugs and protect them 
from degradation, ensuring their efficacy and prolonged 
shelf life. By employing nanotechnology, ophthalmol-
ogy drugs can be administered using non-invasive routes 
such as eye drops, minimizing patient discomfort and 

improving treatment adherence. Furthermore, nano-
materials facilitate the penetration of drugs across ocu-
lar barriers, allowing them to reach the target tissues 
more effectively [185]. Additionally, the ability to design 
nanocarriers with surface modifications enables targeted 
delivery to specific areas of the eye, reducing systemic 
exposure and potential side effects [186–188]. The ver-
satility of nanomaterial-based drug delivery systems also 
allows for combination therapy, wherein multiple drugs 
or therapeutic agents can be co-delivered, enabling com-
prehensive treatment of complex ophthalmology condi-
tions. With ongoing advancements in nanotechnology, 
these innovative drug delivery systems hold immense 
potential to revolutionize the treatment of ophthalmol-
ogy diseases, offering improved therapeutic outcomes 
and enhancing the quality of life for patients.

The delivery of glucocorticoids
Glucocorticoids, or corticosteroids, comprise a class 
of steroid hormones naturally produced by the adrenal 
glands and can be artificially synthesized for medical 
applications. They are frequently employed in ophthal-
mology to address various inflammatory eye conditions, 
such as uveitis, scleritis, and ON, by suppressing the 
immune system and diminishing inflammation. Corti-
costeroids serve as potent inhibitors of the phospholi-
pase A2 (PLA2) enzyme, which can curtail the synthesis 
of arachidonic acid. As a precursor of numerous inflam-
matory mediators, the judicious use of corticosteroids in 

Table 1 Advantages of nanotechnology for ocular drug delivery

Advantages Descriptions

Enhanced drug bioavailability Nanoparticles used in ocular drug delivery can increase drug solubility, stability, and permeability, leading 
to improved bioavailability and therapeutic efficacy

Prolonged drug release Nanocarriers can be designed to release drugs in a sustained and controlled manner, prolonging the therapeu-
tic effect and reducing the need for frequent administration

Targeted delivery Nanoparticles can be surface-functionalized with ligands that specifically bind to ocular tissues, allowing 
targeted drug delivery to the desired site, such as the cornea, conjunctiva, or retina. This minimizes systemic 
exposure and reduces side effects

Protection of drugs Nanocarriers provide protection to drugs from degradation by enzymes and other physiological factors present 
in the ocular environment, ensuring drug stability and prolonged shelf life

Improved ocular penetration Nanoparticles can enhance drug penetration across ocular barriers, such as the cornea and blood-retinal barrier, 
enabling drugs to reach the target tissues more effectively

Reduced frequency of administration The prolonged release and enhanced bioavailability offered by nanotechnology allow for reduced dosing 
frequency, improving patient compliance and convenience

Minimized toxicity Nanoparticles can encapsulate drugs, reducing their toxicity and enhancing their safety profile. Moreover, tar-
geted delivery minimizes systemic exposure, further reducing the potential for systemic side effects

Non-invasive delivery Nanotechnology-based ocular drug delivery systems offer non-invasive administration routes, such as eye drops 
or ophthalmic gels, avoiding the need for injections or invasive procedures

Combination therapy Nanotechnology enables the co-delivery of multiple drugs or therapeutic agents within a single nanocarrier, 
allowing for combination therapy to address complex ocular diseases or conditions

Potential for personalized medicine Nanoparticles can be customized with specific drug formulations, release profiles, and targeting ligands, ena-
bling personalized treatment approaches tailored to individual patient needs
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ocular inflammatory diseases can effectively suppress the 
inflammatory response and avert diverse complications.

Multiple studies have investigated the employment of 
nanomaterial-based drug delivery systems for target-
ing ocular tissues and achieving sustained corticoster-
oid release (Table  2). For instance, Alami et  al. utilized 
polycaprolactone-polyethylene glycol-polycaprolactone 
(PCL-PEG-PCL) micelles loaded with DEX to treat endo-
toxin-induced anterior uveitis in rabbits, demonstrating 
that DEX-loaded micelles could mitigate inflammation 
and attain the maximum therapeutic effect within 36  h 
[189]. Likewise, polymeric TA NPs prepared using PLGA 
polymer had proven effective in decreasing the expres-
sion of inflammatory factors NO and PGE2 in a rab-
bit anterior uveitis model induced by endotoxin [190]. 
Furthermore, polymer micelles and nanomicelles, pre-
pared using various monomers and surfactants, have 
been explored for uveitis treatment. These delivery sys-
tems have been observed to maintain a prolonged effec-
tive drug concentration in the choroid and retina while 
significantly reducing ocular inflammation in rabbits. 
For example, Pradip et  al. employed cationic NLCs of 
the drug triamcinolone acetonide (cTA-NLC) to treat 
anterior uveitis, demonstrating sustained drug release 
for up to 24 h [191]. Nanoemulsion eye drops have also 
received approval from the US FDA for ocular disease 
treatment. Difluprednate (DFAB or Durezol), a nanoe-
mulsion eye drop developed by Sirion Therapeutics, has 
found widespread use in treating anterior scleritis due to 
its ability to penetrate the scleral barrier and access the 
uveal tissue [192]. Mahmoud et al. discovered that Dur-
ezol exhibited more potent anti-inflammatory activity 
than prednisolone in controlling inflammation, reduc-
ing corneal edema, clearing anterior chamber cells (ACs), 
and maintaining stable intraocular pressure in patients 
undergoing cataract surgery [193]. In summary, nano-
material-based drug delivery systems hold significant 
promise for treating ocular inflammatory diseases using 
corticosteroids.

The delivery of antibiotics and antiviral agents
Antibiotics and antiviral agents constitute a category 
of medications employed to combat bacterial and 
viral infections by either eliminating or inhibiting the 
growth of bacteria and viruses. Healthcare profes-
sionals frequently prescribe these medications, which 
can be administered orally, topically, or intravenously, 
depending on the type and severity of the infection. 
Currently, antibiotics are widely utilized in ophthalmol-
ogy to address bacterial eye infections, including eye-
lid inflammation, conjunctivitis, corneal ulcers, and 
endophthalmitis. Topical antibiotics in the form of eye 
drops or ointments are often recommended for mild to 

moderate infections, while severe infections may necessi-
tate intravenous antibiotics. Commonly used antibiotics 
in ophthalmology encompass fluoroquinolones, amino-
glycosides, macrolides, and tetracyclines. Nanomaterial-
based drug delivery systems have demonstrated potential 
in ophthalmology for treating microbial infections. Anti-
biotics or antiviral agents can be encapsulated within 
nanocarriers such as liposomes, dendrimers, and NPs to 
augment drug delivery and enhance treatment outcomes. 
These nanocarriers can safeguard the antibiotic from 
degradation and boost its penetration through ocular 
barriers, resulting in sustained release and improved effi-
cacy. Research has indicated that antibiotic- and antiviral 
agent-loaded NPs can effectively treat ocular infections 
like bacterial keratitis and endophthalmitis while mini-
mizing systemic side effects (Table 3).

Voriconazole (VRC) is a broad-spectrum antifungal 
agent utilized in ophthalmology for treating fungal kera-
titis [219] caused by Aspergillus or Candida species and 
endophthalmitis [220]. CS-VE-copolymer micelles modi-
fied with PBA form nanomicelles capable of specifically 
binding to sialic acid residues in mucin, extending the 
corneal residence time of the drug and enhancing VRC’s 
bioavailability and therapeutic efficacy for fungal kerati-
tis [207] (Fig. 4). Furthermore, Andrade et al. developed 
ocular administration of VRC based on cationic NLCs, 
which demonstrated effective drug concentration in cor-
neal tissues within 30  min of application in  vitro, play-
ing a role in treating fungal keratitis [208]. Fluconazole, 
another broad-spectrum antifungal, was formulated 
into liposomes using the reverse-phase evaporation 
technique, yielding longer drug action time and quicker 
therapeutic effects in rabbit models of Candida keratitis 
compared to conventional fluconazole [209]. Nanofiber 
scaffolds provide not only structural and nutritional sup-
port but also deliver drugs or cells for eye implantation, 
facilitating drug dissolution and absorption. Acyclovir, 
an effective antiviral drug used for treating viral kerati-
tis, has limited solubility and bioavailability; combin-
ing it with nanomaterials broadens its applicability. The 
development and application of electrospinning poly-
mer-free, free-standing acyclovir/cyclodextrin nanofib-
ers enhanced the solubility of acyclovir [217] (Fig.  5). 
Hydrophilic PVP and slow-dissolving PCL form a fibrous 
membrane structure encapsulating acyclovir and cip-
rofloxacin, extending drug release in the eye [218]. This 
scaffold could function as an ocular implant, gradu-
ally releasing medication for treating vitritis and retini-
tis. Fluoroquinolones, a class of synthetic antimicrobial 
drugs including moxifloxacin, ofloxacin (OFX), ciproflox-
acin, and levofloxacin, demonstrated exceptional activ-
ity against common Gram-positive and Gram-negative 
ocular pathogens [221, 222]. Combining these drugs with 
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Fig. 4 The effectiveness of PBA-CS-VE-VRC in treating fungal keratitis is illustrated, highlighting its role in minimizing ocular irritation 
while enhancing corneal permeability and extending immediate retention time for the administration of topical ocular medications. A The structure 
of PBA-CS-VE-VRC nanocelles and their role in treating corneal diseases is diagrammed. B The HET-CAM assay, an in vitro surrogate for ocular 
stimulation, is employed to assess the irritation potential of various preparations, namely: Sanitary saline, Sol-VRC, CS-VE-VRC, PBA-CS-VE-VRC, 
and 0.1 M NaOH solution on the chick embryo chorioallantoic membrane. C Fluorescent preparations of Sol-C6 (a), CS-VE-C6 (b), or PBA-CS-VE-C6 
(c) were prepared and their respective uptake rates by the HCE-T cell line (human immortalized corneal epithelial cells) were observed using 
confocal fluorescence microscopy at 2 h and 4 h D intervals. Scale bar equals 20 μm. This figure has been reprinted from Ref. [207] with permission 
from Elsevier
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nanomaterials enhances their bioavailability in the eye. 
Hosny et  al. prepared a liposomal hydrogel formulation 
containing ciprofloxacin. The mucoadhesive properties 
of the hydrogel matrix ensured close contact between 
liposomes and corneal epithelial cells, promoting drug 
penetration and preventing rapid elimination through 

tear circulation. The permeability of the liposome hydro-
gel was five times higher than that of the aqueous solu-
tion, and encapsulating ciprofloxacin prolongs its release. 
Such formulations decreased the dosing frequency in 
ocular inflammation treatment [211]. Levofloxacin-
loaded SLNs optimized using Box-Behnken experimental 

Fig. 5 The electrospinning process for the creation of polymer-free and free-standing acyclovir/cyclodextrin nanofibers, notable for their 
exceptional histocompatibility and facilitation of drug release in the treatment of viral keratitis. A Chemical structures of (a) HP-βCD, (b) PVP, and (c) 
acyclovir are presented, (d-e) alongside schematic diagrams demonstrating their interrelationships. B Experimental data confirms the solubility 
of acyclovir/HP-βCD nanofibers and acyclovir/PVP nanofibers in an artificial saliva environment. Adapted from Ref. [217] with permission 
from Elsevier
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design exhibited favorable therapeutic effects in treating 
conjunctivitis. Salman et  al. found that NPs encapsulat-
ing the drug achieved a drug release rate of 0.2493  μg/
cm2/h on excised goat corneas, extending drug release 
time and demonstrating excellent antimicrobial activ-
ity against Staphylococcus aureus and Escherichia coli-
induced conjunctivitis [212]. OFX-loaded NLCs prepared 
by the high shear homogenization method, with glyc-
erin as a plasticizer, exhibited increased bioadhesion, six 
times longer residence time in the anterior eye segment, 
and improved corneal inflammation and swelling in rab-
bits infected with Staphylococcus aureus within seven 
days compared to traditional formulations [213]. Dapto-
mycin, a lipopeptide antibiotic, is employed to treat bac-
terial infections caused by Gram-positive bacteria such 
as Staphylococcus aureus and Streptococcus viridans, 
and it also exhibits some efficacy against drug-resistant 
strains. Silva et  al. prepared CS NPs encapsulating dap-
tomycin, proposing them as an ocular delivery system for 
the antibiotic to treat bacterial endophthalmitis, thereby 
enhancing local therapeutic effects and avoiding systemic 
drug toxicity [214].

In conclusion, nanomaterial-based drug delivery sys-
tems hold significant potential for improving the treat-
ment of ocular inflammatory diseases by enhancing the 
solubility, bioavailability, and therapeutic efficacy of 
antibiotics. These advanced systems may lead to more 
effective and targeted treatments for a variety of ocular 
conditions.

The delivery of nonsteroidal anti‑inflammatory drugs
Nonsteroidal anti-inflammatory drugs (NSAIDs) rep-
resent a class of medications frequently employed to 
alleviate pain, diminish inflammation, and reduce fever. 
Their mechanism of action involves the inhibition of 
COX enzymes, which are instrumental in the synthesis 
of prostaglandins—chemical messengers implicated in 
the inflammatory response. In the field of ophthalmol-
ogy, NSAIDs are utilized to address various conditions, 
including uveitis, OIS, and macular edema. They exert 
their effects by suppressing prostaglandin production, 
which in turn mitigates pain, redness, and swelling in 
the eye. Topical NSAIDs are favored in ophthalmol-
ogy due to their rapid onset and localized therapeutic 
impact. Widely used NSAIDs in this domain encompass 
indomethacin, ketorolac, bromfenac, nepafenac, and 
diclofenac. Researchers have also investigated nano-
material-based drug delivery systems for NSAIDs as a 
potential approach to treating ophthalmological diseases 
(Table 4). These systems endeavor to address challenges 
linked to the topical delivery of NSAIDs to the eye, such 
as inadequate drug penetration, limited bioavailability, 
and brief residence time.

Indomethacin is a viable treatment for ocular inflam-
matory conditions such as conjunctivitis, uveitis, and 
other anterior segment inflammations. However, its poor 
solubility and stability present challenges in formulat-
ing topical ophthalmic solutions, as less than 5–10% of 
administered indomethacin reaches intraocular tissues. 
Prachetan et  al. employed nanocarriers to encapsulate 
indomethacin and enhance its ocular penetration into 
posterior eye tissues [223]. The researchers developed 
indomethacin-loaded SLNs and NLCs and modified 
SLNs with CS chloride, a cationic water-soluble pen-
etration enhancer. They assessed the in vitro release and 
in vivo distribution of the three formulations in corneal 
and sclera-choroid-RPE tissues. Results showed that 
indomethacin-loaded NLCs exhibited superior drug-
loading capacity and elevated indomethacin levels within 
ocular tissues. Moreover, indomethacin-CS-SLN dem-
onstrated enhanced permeation properties compared to 
indomethacin SLN [237, 238].

NLCs combined with the thermoresponsive polymer, 
 Pluronic® F-127, were formulated as eye drops to deliver 
ibuprofen with anti-inflammatory effects in the eye. This 
nanocarrier formulation exhibited excellent stability in 
Y-79 human retinoblastoma cells and extended the drug 
release profile of ibuprofen in the eye [226]. García et al. 
developed two different concentrations of dexibuprofen-
loaded PEGylated PLGA nanospheres (0.5 and 1.0 mg/ml, 
with zeta potentials of -14.1 and -15.9 mV, respectively). 
Ex  vivo experiments measured drug concentrations in 
the vitreous, aqueous humor, cornea, and sclera, reveal-
ing release curves lasting up to 12 h in both cornea and 
sclera. Notably, higher drug retention and permeability 
were observed in the ex vivo cornea. Cell viability assays, 
Hen’s egg test-chorioallantoic membrane (HET-CAM) 
test, and Draize tests confirmed the low cytotoxicity, 
non-irritating nature, and anti-inflammatory properties 
of dexibuprofen-loaded PEGylated PLGA nanospheres 
[230]. Vega et al. prepared poly(lactic/glycolic) acid NPs 
loaded with flurbiprofen (FB) and evaluated their anti-
inflammatory effects in a rabbit ocular inflammation 
model induced by sodium arachidonate (SA) [227]. FB-
loaded NPs effectively suppressed inflammation when 
administered 30  min before SA-induced inflammation 
and exhibited a longer residence time in inflamed eye 
tissues compared to healthy eyes. These findings suggest 
that FB-loaded PLGA-NPs possess excellent anti-inflam-
matory efficacy, potentially due to increased adhesion 
between the drug and biological cell membranes, pro-
longed drug residence time on the ocular surface, and 
sustained drug release from NPs.

Fujisawa et  al. utilized the calcium acetate gradient 
method to encapsulate diclofenac within liposomes, 
achieving a 97% encapsulation efficiency [233]. In animal 
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studies, this eye drop formulation resulted in a 1.8-fold 
increase in retinal-choroidal drug concentration com-
pared to conventional diclofenac eye drops. Attama et al. 
used human corneal endothelial cells (HENC), stromal 
fibroblasts, and epithelial cells CEPI 17 CL 4 for bio-engi-
neering human cornea construct (HCC) experiments, 
observing the permeability of diclofenac sodium-loaded 
SLNs on HCC. Analysis of permeation flux and permea-
tion coefficients indicated superior corneal permeability 
per unit time and area, suggesting potential application 
for the prevention and treatment of preoperative and 
postoperative inflammatory responses in cataract surgery 
[232].

Bromfenac sodium eye drops are commonly used to 
treat conjunctivitis caused by various factors and to pre-
vent inflammation preoperatively and postoperatively 
in ophthalmic surgeries. However, low corneal perme-
ability, rapid tear turnover, and swift nasolacrimal drain-
age result in a short ocular residence time for bromfenac 
sodium. Tara et al. developed chondroitin sulfate-CS NPs 
encapsulating bromfenac sodium [229]. The formulation 
displayed a biphasic release curve, and compared to con-
ventional eye drops, the permeation and corneal reten-
tion rates of bromfenac sodium were 1.62 and 1.92 times 
higher, respectively. The HET-CAM test was employed 
to assess the safety and drug toxicity of this formulation, 
demonstrating its non-toxicity and suitability for ocular 
drug delivery, with scores consistent with those of the 
saline group (negative control).

Lornoxicam (LX) is a selective COX-2 inhibitor used 
to treat various ocular inflammations and to alleviate 
postoperative inflammation and macular edema follow-
ing cataract surgery [239]. However, LX is a hydrophobic 
drug, and its absorption and efficacy in the eye present 
significant challenges. Salama utilized a mixed micel-
lar system made of poly (ethylene oxide)-poly (propyl-
ene oxide) to encapsulate LX [231], which was dissolved 
and encapsulated in the hydrophobic core of the micelles 
through hydrophobic interactions [240]. This approach 
aimed to improve permeation and increase residence 
time on the ocular surface to overcome ocular barri-
ers [241]. Results indicated that the polymer micelles 
increased the solubility of LX from 0.0318 mg/ml to over 
2.34 mg/ml, an enhancement of approximately 73-fold. In 
animal studies using rabbit eyes, histopathological exam-
ination and confocal laser scanning microscopy revealed 
the non-irritating nature and excellent penetration of the 
developed nanocarrier formulation on rabbit corneas. 
Consequently, polymer micelles encapsulating LX pro-
longed the drug’s residence time on the ocular surface 
and improved corneal permeability.

In conclusion, nanomaterial-based drug delivery 
systems hold promise for enhancing the delivery and 

efficacy of NSAIDs in treating various ophthalmic dis-
eases. Nonetheless, further research is required to opti-
mize these systems and evaluate their safety and efficacy 
in clinical settings.

The delivery of immunosuppressants
Immunosuppressants represent a category of pharma-
ceuticals designed to attenuate or diminish the potency 
of the body’s immune response. These medications are 
frequently prescribed to inhibit the immune system from 
attacking transplanted organs or tissues in transplant 
recipients, as well as to address autoimmune diseases, 
such as those affecting the eyes. For severe inflammatory 
eye conditions, particularly in instances of various uvei-
tis where corticosteroid therapy proves ineffective or is 
contraindicated due to systemic illness or dependence, 
immunomodulatory drugs are utilized to alleviate the 
adverse consequences of prolonged corticosteroid use. 
Notable immunomodulators encompass antimetabo-
lites, alkylating agents, T-lymphocyte inhibitors like CsA 
and rapamycin, and biological agents. Presently, numer-
ous nanomaterial-based drug delivery systems have 
been established for the targeted and controlled release 
of immunosuppressants, encompassing liposomes, poly-
meric NPs, hydrogels, dendrimers, and micelles (Table 5).

Research has demonstrated that 0.05% CsA can effec-
tively address dry eye syndrome [255–257]. To develop 
NP drug carriers with enhanced hydrophilicity, density, 
and stability, scientists have formulated poly (D, L-lactic 
acid) and dextran (PLA-b-Dex) NPs [242]. These NPs 
had been surface-modified with PBA to adhere to car-
bohydrates on ocular mucosa via covalent bonding with 
cis-diol groups [258]. The efficacy of CsA-loaded PBA-
modified NP formulations was compared to  Restasis® 
in induced mouse and rabbit dry eye experiments. The 
investigation revealed that the NPs delivered a near-
infrared fluorescent dye to the eye for over 24 h, while the 
free dye was predominantly cleared from the ocular sur-
face within 3 h. Following one month, NP eye drop for-
mulations containing 0.005–0.01% CsA reduced corneal 
lymphocytes and polymorphonuclear leukocytes, miti-
gated inflammation symptoms, and aided in the recovery 
of ocular surface goblet cells. In contrast, administering 
Restasis to mice three times daily did not restore ocular 
surface goblet cells. The mucoadhesive nanoparticle eye 
drop platform extended ocular surface retention time 
and effectively treated dry eye while reducing the total 
CsA dosage by 50 to 100 times, thus diminishing side 
effects and lengthening the dosing interval. CsA encapsu-
lated in lipid-based nanomaterials such as SLN and NLC 
has been extensively investigated for ocular treatments. 
Researchers loaded CsA into SLNs and administered it to 
rabbit eyes in vivo [243]. Aqueous humor samples were 
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collected at different time points, and CsA concentra-
tions were measured using HPLC. The results displayed 
a sharp increase in CsA concentration in the aqueous 
humor at 4 h, reaching a peak concentration of 50.53 ng/
mL at 6 h, without causing significant irritation in rabbit 
eyes. SLNs exhibited sustained drug release and high per-
meability, further enhancing drug utilization when for-
mulated within SLNs. Shen et al. synthesized Cys-NLC as 
potential nanocarriers for topical ocular administration 
of CsA [244]. rapidly crosslinked under simulated physi-
ological conditions. Thiolated NLCs did not cause dis-
comfort or irritation and displayed sustained drug release 
in  vitro. In rabbit eye experiments, Cys-NLCs were 
administered twice, with each dose containing 500 µg of 
CsA and a 90-s interval between administrations. HPLC 
analysis of CsA levels in various eye tissues revealed that 
Cys-NLCs had significantly higher CsA content than oil 
solutions and non-thiolated NLCs. Consequently, thi-
olated NLCs may represent a promising strategy for 
treating ocular surface disorders and anterior segment 
inflammatory diseases, such as uveitis. Luschmann et al. 
discovered that cyclosporine, enclosed in in-situ nano-
suspension (INS) and a MS, demonstrated significantly 
higher concentrations in rabbit corneal tissue (1683 ± 430 
 ngCsA/gcornea and 826 ± 163  ng CsA/gcornea) than  Restasis® 
(350  ngCsA/gcornea) and cationic emulsions (750  ng CsA/
gcornea) [245]. These findings underscore the broad use 
and remarkable efficacy of nano-encapsulated CsA in 
inflammatory eye diseases.

Rapamycin, a macrolide immunosuppressant generated 
by the bacterium Streptomyces hygroscopicus, impedes 
the transition of T cells from the G1 phase to the S phase 
of the cell cycle by inhibiting IL-2-mediated signaling 
pathways, thus exerting anti-inflammatory activity [259, 
260]. Owing to its high hydrophobicity, orally or intrave-
nously administered rapamycin cannot achieve effective 
drug concentrations for uveitis treatment. Cholkar et al. 
developed mixed nanomicellar formulations (MNFs) of 
rapamycin (0.2%) with VE tocopherol polyethylene gly-
col succinate and octoxynol-40 (Oc-40) as a polymeric 
matrix [246]. They administered 50ul of 0.2% rapamycin 
MNF into the rabbit conjunctival sac, and after 60 min, 
they collected retinal-choroidal tissue and extracted vit-
reous humor. The concentration of rapamycin in the 
tissue was 362.35 ± 56.17  ng/g tissue, while rapamycin 
remained undetected in the vitreous humor. These exper-
imental outcomes suggest that the formulation exhibits 
drug-targeting effects in the treatment of uveitis (Fig. 6).

Analogous to rapamycin, tacrolimus (also known as 
TAC or FK506) demonstrates similar efficacy when 
incorporated with nanomaterials for treating ocular 
inflammation. Wu et  al. devised TAC-loaded methoxy 
poly (ethylene glycol-block-poly (d, l)-lactic-co-glycolic 

acid) nanoparticles (TAC-NPs) using nanotechnology 
to surmount corneal transplant rejection and minimize 
local inflammatory responses [261]. In rats undergoing 
allogeneic penetrating keratoplasty, TAC-NPs enhanced 
the concentration of TAC in the aqueous humor and cor-
nea compared to conventional 0.1% TAC eye drops and 
exhibited potent inhibitory effects on IL-2, IL-17, and 
VEGF expression in tissues. Liu et al. investigated FK506/
NH2-PEG-b-PLA/HPMC nanomicelles [247] and TAC-
loaded mPEG-b-PLGA micelles, discovering that, rela-
tive to traditional TAC eye drops, TAC incorporated into 
mPEG-b-PLGA micelles could diminish the expression 
of NFAT, CD4, and CD8 in animal tissue sections, dis-
playing a significant inhibitory effect on immune rejec-
tion reactions following corneal allograft transplantation 
(Fig. 7). The use of these formulations can reduce the risk 
of immune system attack on the transplanted cornea, 
thereby increasing the success rate of transplantation sur-
gery and the survival rate of the transplanted cornea. This 
breakthrough advancement brings great hope to the field 
of corneal transplantation, and through ongoing research 
and development, these formulations are expected to be 
further improved and widely adopted, providing more 
effective immunosuppressive strategies for corneal trans-
plant patients. Kalam et al. optimized TAC (TAC)-loaded 
PLGA-NPs to augment their TAC encapsulation capac-
ity [249]. In vitro experiments using rabbit corneal tissue 
demonstrated that PLGA-NPs enhanced the bioavail-
ability of TAC in the corneal, conjunctival, and aque-
ous humor, indicating their potential in treating ocular 
inflammation. Deepika et al. developed TAC gellan gum 
nanoparticles (TGNPs) for dry eye syndrome treatment. 
In a rabbit eye experiment, TGNPs exhibited prolonged 
drug release and elevated corneal retention within 12 h. 
Pharmacological studies indicated that TGNPs effec-
tively treated DED symptoms [250]. Mayara et  al. inte-
grated TAC and MSNAPTES into silica NPs [251]. They 
examined the particles’ toxicity and biocompatibility in 
ARPE-19 and CAM models and assessed the safety of 
intravitreal injections using electroretinography (ERG) 
and rat ocular histology. No retinal, vitreous, or optic 
nerve lesions were detected. Moutaz et  al. encapsulated 
TAC in a CS-based amphiphile to generate water-soluble 
nanoparticles (MET-TAC) [252]. One hour post-admin-
istration, TAC concentrations in the rabbit cornea and 
conjunctiva reached 4452 ± 2289 and 516 ± 180  ng/g of 
tissue, respectively. The formulation achieved effective 
drug concentrations in affected tissues and delivered suf-
ficient TAC to treat moderate to severe atopic keratocon-
junctivitis (AKC) and vernal keratoconjunctivitis (VKC). 
Rebibo et  al. formulated nano-capsules (NCs) loaded 
with TAC, which significantly mitigated LPS-induced 
keratitis and experimental autoimmune uveitis (EAU) 
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inflammatory responses [253]. The NCs inhibited the 
expression of inflammatory and chemotactic cytokines 
such as KC, MIP-2, IL-6, and GCSF in a mouse corneal 
inflammation model. Clinical and histological efficacy 
was demonstrated in a mouse (EAU) model. Sun et  al. 
discovered that a novel in  situ gel of TAC-loaded SLNs 
could suppress the release of inflammatory media-
tors from conjunctival mast cells, down-regulate IL-4 
in serum, thereby inhibiting B cell antibody reactions 
from IgM to IgE, reducing IgE synthesis, up-regulating 

IFN-γ in serum, inhibiting Th2 cell proliferation and IL-4 
function, suppressing the conversion of Th1 to Th2, and 
maintaining the dynamic balance of Th1 and Th2. Fur-
thermore, it inhibited the expression of OVA-sIgE, IFN-γ, 
and IL-4 in a mouse conjunctivitis model, controlled type 
I allergic reactions, and treated immune-mediated con-
junctivitis [254]. Collectively, these experimental studies 
demonstrate that biodegradable polymeric nanomateri-
als for drug delivery of TAC hold significant potential in 
enhancing clinical therapeutic effects.

Fig. 6 The schematic diagram demonstrates the pathway of a drug through the conjunctiva, sclera, and onward to the choroid and retinal 
tissue following the injection of 50 μl of 0.2% Rapamycin MNF into the conjunctival sac of rabbits. Reproduced from Ref. [246] with permission 
from Springer Nature
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Fig. 7 The use of Tacrolimus-loaded mPEG-b-PLGA micelles in the treatment of corneal immune rejection subsequent to allogeneic penetrating 
corneal transplantation in rats A. (a) presents a schematic diagram of the composition and ocular application of Tacrolimus-loaded mPEG-b-PLGA 
micelles, while (b) shows the detection of mPEG-b-PLGA by a 1H NMR spectrometer. (c) provides a scanning electron microscope (SEM) image 
of Tacrolimus-loaded mPEG-b-PLGA micelles with a scale bar denoting 50 nm. The immunofluorescence assay was used to observe the inhibitory 
effect of Tacrolimus-loaded mPEG-b-PLGA micelles (administered either via subconjunctival injection, or solution drops) on the phosphorylation 
of NFAT B, CD4 C and CD8 D, key factors in immune rejection, across various layers of corneal tissue in comparison to blank controls and standard 
0.05% tacrolimus eye drops. E showcases a statistical graph of the percentage of fluorescence intensity. Values are represented as mean ± SD, 
with statistical significance denoted as *p < 0.05, **p < 0.01, ***p < 0.001. This figure is reproduced from Ref. [248] with permission from Elsevier
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In conclusion, nanomaterial-based immunosuppres-
sive agents constitute a group of medications aimed at 
attenuating or inhibiting the body’s immune response. 
Frequently prescribed for the prevention of immune-
mediated organ or tissue rejection in transplant recipi-
ents, these drugs also serve as treatment options for 
autoimmune diseases such as rheumatoid arthritis, lupus, 
and multiple sclerosis. In recent years, the exploration of 
alternative nanocarriers, including hydrogels, dendrim-
ers, and micelles, for ocular drug delivery has broadened 
the scope of nanotechnology applications in the field of 
ophthalmology. Despite considerable advancements in 
the development of nanomaterial-based drug delivery 
systems for ocular conditions, further research and clini-
cal trials are imperative to comprehensively assess their 
safety and effectiveness. Future investigations should 
prioritize the optimization of nanoparticle proper-
ties, assessment of long-term impacts, and resolution of 
potential challenges related to drug stability, biocompat-
ibility, and immunogenicity.

The delivery of TNF‑α inhibitor
TNF-α inhibitors represent a group of medications 
designed to obstruct the function of TNF-α, a cytokine 
implicated in systemic inflammation and immune sys-
tem regulation. Widely employed in the management 
of autoimmune diseases such as rheumatoid arthritis, 
psoriasis, and inflammatory bowel disease, these drugs 
include infliximab, etanercept, adalimumab, golimumab, 
and certolizumab pegol [262]. TNF-α is recognized as a 
crucial factor in the development of numerous inflam-
matory ocular conditions, encompassing uveitis, scleritis, 
and ocular surface disorders like dry eye disease [263–
266]. Consequently, TNF-α inhibitors exhibit consider-
able potential in treating various ophthalmic ailments. 
Recently, nanomaterial-based drug delivery systems 
have demonstrated promising outcomes in addressing 
ophthalmic diseases using TNF-α inhibitors. Infliximab, 
a TNF-α inhibitor, has been proven to effectively miti-
gate chronic uveitis. Zhang et  al. employed liposomes 
loaded with infliximab in an experimental autoimmune 
uveoretinitis rat model, administering the drug via intra-
vitreal injections. Owing to the liposomes’ desirable bio-
compatibility and sustained drug release properties, a 
significantly enhanced reduction in inflammatory cell 
infiltration, diminished retinal damage, and decreased 
intraocular inflammation were observed in comparison 
to traditional infliximab, indicating potential advantages 
for efficient ocular tissue drug delivery [267]. This study 
thus highlights the potential of nanomaterial-based drug 
delivery systems in ophthalmology for the effective man-
agement of TNF-α mediated inflammatory conditions.

The delivery of genes
The clinical implementation and advancement of nucleic 
acid therapeutics are intimately linked to effective and 
safe delivery systems that must accommodate the prop-
erties of genetic material and target tissues. Delivery 
is considered the primary obstacle in gene therapy, and 
it is particularly crucial to the success of corneal gene 
therapy in ophthalmic diseases. Presently, virus-medi-
ated nucleic acid delivery, involving retroviruses, lenti-
viruses, and adenoviruses, is the most prevalent method 
for selecting gene therapy vectors and has been exten-
sively employed in the investigation and treatment of 
ophthalmic conditions. However, immune rejection and 
inflammatory reactions are inescapable [268]. As a result, 
non-viral gene therapy, utilizing NPs as gene carriers for 
treating eye diseases, has gained prominence [269–272]. 
Commonly employed nanoscale gene carriers include 
SLNs [270], HA, CS [269], AuNPs [271], and magnetic 
NPs [273]. These carriers exhibit greater safety and 
reduced harm during production, while offering more 
convenience than viral carriers in clinical or practical 
applications.

Numerous studies have demonstrated that gene ther-
apy can deliver specific anti-inflammatory factors to 
alleviate various types of corneal inflammation. IL-10 
is an immune regulatory factor involved in antigen 
presentation, which can inhibit the production of pro-
inflammatory cytokines IL-1, IL-6, IL-8, and TNF-α 
[268, 274–278], and has potent anti-inflammatory effects 
[279]. The plasmid encoding IL-10 was first formulated. 
In cell experiments, HA-SLN transfected with pUNO1-
hIL10 plasmids to transfect HCE-2 cells for 72  h, IL-10 
was detected in the culture medium at a concentration of 
9.1 ± 0.8  ng/mL. Following local administration to wild-
type and IL-10 knockout (KO) mice, it was discovered 
that the addition of PVA enhanced the corneal perme-
ability of liposomes. IL-10 expression was observed in 
the corneal epithelium after three days of local adminis-
tration of HA-SLN encoding IL-10 plasmids [280]. The 
use of NPs as carriers for therapeutic genetic material, 
delivering them to target tissues and addressing various 
eye diseases, has gained popularity [281, 282]. Fuente 
et al. compared the efficacy of a novel DNA nanocarrier 
coated with HA and CS [269], finding that CS-derived 
NPs increased alkaline phosphatase expression in a 
human corneal epithelial model. Plasmid DNA coated 
with both types of NPs could enter corneal and conjunc-
tival epithelial cells, effectively delivering DNA. Conse-
quently, these NPs may represent innovative strategies 
for gene therapy in diverse eye diseases. MUC5AC is 
a high-molecular-weight glycoprotein that forms a gel 
layer on mucous membrane surfaces, providing tissue 
protection. Its reduced expression is closely related to 
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the pathogenesis of dry eye syndrome. Contreras-Ruiz 
et  al. developed NPs carrying plasmids encoding modi-
fied MUC5AC protein (pMUC5AC) [283]. In an experi-
mental dry eye (EDE) mouse model, tear production 
improved significantly after pMUC5AC-NP treatment. 
Fluorescent staining of lesion tissue revealed normal 
structure and morphology, while immunohistochemistry 
showed decreased CD4 or T cell infiltration and reduced 
inflammatory responses. MUC5AC protein expression 
encapsulated in nanospheres was higher in ocular surface 
tissues than in the control group.

Employing nanomaterials as gene carriers enables 
the targeting of specific genes involved in inflammation 
for silencing, resulting in decreased inflammation and 
improved disease outcomes. In summary, nanomaterial-
mediated gene silencing represents a novel and prom-
ising approach for the treatment of inflammatory eye 
diseases, with the potential to enhance patient outcomes.

The delivery of natural products with anti‑inflammatory 
properties
Natural substances possessing anti-inflammatory proper-
ties have long been employed in treating various inflam-
matory conditions. Often derived from plants and fungi, 
these substances have demonstrated efficacy in reduc-
ing inflammation and promoting overall health. Nano-
material-based drug delivery systems have emerged as a 
promising approach to enhance the therapeutic potential 
of these anti-inflammatory natural substances in oph-
thalmic diseases (Table 6). Such systems offer numerous 
advantages, including improved solubility, targeted deliv-
ery, enhanced bioavailability, and controlled release of 
the natural products [284, 285].

Resveratrol, a bioactive component found in grape 
juice and Polygonum cuspidatum, had demonstrated 
efficacy in reducing BRB permeability and lowering 
TNF-α, MCP-1, IL-6, and IL-1β mRNA expression in 
the retina by inhibiting the phosphorylation of NF-κB 
and ERK in STZ-induced DR in rats when delivered via 
gold nanoparticle-coated resveratrol nanopreparations 
[286]. The anti-angiogenic effect of these nanoprepa-
rations suggests potential therapeutic value in inflam-
matory neovascular eye diseases. Myricetin (Myr) 
is a natural flavonol compound utilized in treating 
organism lesions. Its anti-inflammatory properties are 
beneficial for degenerative and inflammatory eye dis-
eases, such as dry eye syndrome and chronic anterior 
uveitis [290–293]. To address Myr’s poor water solu-
bility and low stability, researchers encapsulated Myr 
in PVCL-PVA-PEG polymer micelles, which resulted 
in increased water solubility and stability. In  vivo 
anti-inflammatory experiments demonstrated a dose-
dependent anti-inflammatory effect with 4 mg/ml Myr 

micelle eye drops exhibiting strong anti-inflammatory 
effects, comparable to pranoprofen eye drops [293]. 
Curcumin (CUR), a bioactive component found in tur-
meric, has been extensively researched and employed 
in the treatment of ocular diseases due to its capacity 
to inhibit corneal epithelial cell neovascularization, 
lens epithelial cell proliferation, protect retinal gan-
glion cells, and suppress choroidal neovasculariza-
tion [294, 295], as well as its anti-inflammatory and 
neuroprotective properties [296]. Li et  al. encapsu-
lated CUR within PVCL-PVA-PEG polymer micelles, 
observing that combining CUR with nanomaterials 
significantly enhanced corneal bioavailability and ocu-
lar tolerance [287]. Moreover, 4.5  mg/ml nanomicelle 
CUR demonstrated anti-inflammatory effects com-
parable to pranoprofen. In another study, Ganugula 
et  al. combined CUR with PLGA and encapsulated 
the mixture in double-headed polyester NPs [185]. 
Oral administration of PLGA-GA2-CUR enabled the 
detection of CUR content in aqueous humor, sug-
gesting that PLGA-GA2-CUR can traverse the BRB. 
In an acute anterior uveitis beagle model, oral admin-
istration of PLGA-GA2-CUR significantly amelio-
rated aqueous humor inflammation and intraocular 
edema (Fig.  8). Pentacyclic triterpenoids constitute 
a diverse and widespread class of natural compounds 
with a wealth of resources. Numerous studies have 
highlighted their wide-ranging pharmacological and 
biologically significant activities, particularly in the 
domains of anti-inflammatory and immune regulation, 
garnering significant interest. Oleanolic acid (OA) and 
ursolic acid (UA) are anti-inflammatory compounds 
extracted from the leaves of Thymus broussonetii and 
Thymus willdenowii, which are part of the Lamiaceae 
family and are rich in these compounds [297]. These 
triterpenoids impede inflammation progression by 
inhibiting cyclooxygenase (COX) and PLA2 activity, 
blocking the release of cytokines, histamine, and ser-
otonin, and interacting with serine/threonine kinases 
[298]. Helen et  al. optimized PLGA-NPs loaded with 
OA and UA using a  23 + star CCRD [289]. The study 
revealed that OA/UA-loaded nanomaterials (NM OA/
UA NPs) exhibited excellent permeability and safety 
in corneal tissue during in  vitro rabbit corneal tis-
sue penetration experiments and HET-CAM studies. 
Additionally, NM OA/UA NPs maintained a higher 
concentration of drugs in the corneal tissue compared 
to the standard mixture (SM) post-administration. The 
anti-inflammatory effects of SM or NM OA/UA NPs 
were assessed 30 min after administration, followed by 
the application of SA solution (SAS) and quantifica-
tion of intraocular inflammation using the Draize test. 
The results indicated that NM OA/UA NPs displayed 



Page 39 of 60Wei et al. Journal of Nanobiotechnology          (2023) 21:282  

Ta
bl

e 
6 

Th
e 

ap
pl

ic
at

io
n 

of
 n

an
om

at
er

ia
ls

 in
 c

om
bi

na
tio

n 
w

ith
 n

at
ur

al
 a

nt
i-i

nfl
am

m
at

or
y 

ag
en

ts
 in

 th
e 

tr
ea

tm
en

t o
f o

cu
la

r d
is

ea
se

s

N
at

ur
al

 p
ro

du
ct

s
N

an
om

at
er

ia
ls

Si
ze

 (n
m

)
Pr

od
uc

tio
n 

m
et

ho
d

Ce
lls

(in
 v

itr
o)

A
ni

m
al

s
(in

 v
iv

o)
A

dm
in

is
tr

at
io

n 
ro

ut
e

Ch
ar

ac
te

ri
st

ic
s 

an
d 

eff
ec

ts
Re

fs
.

Re
sv

er
at

ro
l

A
uN

Ps
20

Ec
of

rie
nd

ly
 s

yn
th

et
ic

 
m

et
ho

d
–

ST
Z-

in
du

ce
d 

di
ab

et
ic

 ra
ts

O
ra

l
Re

sv
er

at
ro

l-l
oa

de
d 

A
uN

Ps
 

ex
hi

bi
te

d 
de

cr
ea

se
d 

BR
B 

pe
rm

ea
bi

lit
y,

 in
cr

ea
se

d 
re

tin
al

 e
xp

re
ss

io
n 

of
 P

ED
F, 

de
cr

ea
se

d 
VE

G
F-

1 
ex

pr
es

si
on

, a
nd

 re
du

ce
d 

re
tin

al
 m

RN
A

 e
xp

re
s-

si
on

s 
of

 V
EG

F-
1,

 T
N

F-
α,

 
M

C
P-

1,
 IC

A
M

-1
, a

nd
 IL

-6
, 

an
d 

IL
-1

β

[2
86

]

M
yr

PV
C

L-
PV

A
-P

EG
 p

ol
ym

er
ic

 
na

no
m

ic
el

le
s

60
.7

2 
±

 1
.0

9
Th

in
-fi

lm
 h

yd
ra

tio
n 

m
et

ho
d

H
C

EC
s

Ra
bb

it 
an

d 
m

ou
se

Ey
e 

dr
op

s
M

yr
-lo

ad
ed

 P
VC

L-
PV

A
-P

EG
 p

ol
ym

er
ic

 
na

no
m

ic
el

le
s 

ex
hi

bi
te

d 
en

ha
nc

ed
 a

qu
eo

us
 

so
lu

bi
lit

y 
an

d 
ch

em
ic

al
 

st
ab

ili
ty

, s
up

er
io

r s
to

r-
ag

e 
st

ab
ili

ty
, f

av
or

ab
le

 
ce

llu
la

r t
ol

er
an

ce
, 

im
pr

ov
ed

 c
el

lu
la

r u
pt

ak
e 

an
d 

co
rn

ea
l p

er
m

ea
bi

lit
y,

 
an

d 
im

pr
ov

ed
 a

nt
io

xi
da

nt
 

an
d 

an
ti-

in
fla

m
m

at
or

y 
eff

ec
t

[2
87

]

C
U

R 
PV

C
L-

PV
A

-P
EG

 n
an

om
i-

ce
lle

s
50

.1
 ±

 1
.0

So
lv

en
t e

va
po

ra
tio

n 
an

d 
fil

m
 h

yd
ra

tio
n 

m
et

ho
d

H
C

EC
s

Ra
bb

it 
an

d 
m

ou
se

Ey
e 

dr
op

s
C

U
R-

lo
ad

ed
 P

VC
L-

PV
A

-P
EG

 n
an

om
ic

el
le

s 
ex

hi
bi

te
d 

ph
ys

ic
al

 
st

ab
ili

ty
, f

av
or

ab
le

 c
el

lu
la

r 
to

le
ra

nc
e,

 h
ig

h 
co

rn
ea

l 
pe

rm
ea

bi
lit

y,
 a

nd
 a

nt
io

xi
-

da
nt

 a
nd

 a
nt

i-i
nfl

am
m

a-
to

ry
 e

ffe
ct

[2
88

]

C
U

R 
PL

G
A

-G
A

2 p
ol

ye
st

er
 N

Ps
25

0
Si

ng
le

 e
m

ul
si

fic
at

io
n 

m
et

ho
d

H
C

EC
s

H
om

ol
og

ou
s 

le
ns

 
pr

ot
ei

n-
in

du
ce

d 
uv

ei
tis

 
in

 b
ea

gl
es

or
al

C
U

R-
lo

ad
ed

 P
LG

A
-G

A
2 

po
ly

es
te

r N
Ps

 e
xh

ib
ite

d 
no

 o
bs

er
ve

d 
cy

to
to

xi
ci

ty
, 

at
ta

in
m

en
t o

f e
ffe

ct
iv

e 
dr

ug
 c

on
ce

nt
ra

tio
n 

in
 a

qu
eo

us
 h

um
or

, 
an

d 
in

hi
bi

tio
n 

of
 in

tr
ao

c-
ul

ar
 in

fla
m

m
at

io
n

[1
85

]

O
A

 a
nd

 U
A

Po
lo

xa
m

er
 1

88
 p

ol
ym

er
ic

 
N

Ps
 <

 2
25

So
lv

en
t d

is
pl

ac
em

en
t 

m
et

ho
d

Is
ol

at
ed

 c
or

ne
as

 
of

 ra
bb

its
 a

nd
 H

ET
-

C
A

M
 te

st

SA
-in

du
ce

d 
oc

ul
ar

 
in

fla
m

m
at

io
n 

in
 ra

bb
its

Ey
e 

dr
op

s
O

A
 a

nd
 U

A
-lo

ad
ed

 N
Ps

 
ex

hi
bi

te
d 

ex
ce

lle
nt

 c
or

-
ne

al
 p

er
m

ea
bi

lit
y,

 re
m

ar
k-

ab
le

 s
af

et
y,

 a
nd

 p
ot

en
t 

an
ti-

in
fla

m
m

at
or

y 
eff

ec
ts

[2
89

]

ST
Z 

st
re

pt
oz

ot
oc

in
; M

yr
 m

yr
ic

et
in

; C
U

R  
cu

rc
um

in
; P

VC
L-

PV
A-

PE
G

 p
ol

yv
in

yl
 c

ap
ro

la
ct

am
-p

ol
yv

in
yl

 a
ce

ta
te

-p
ol

ye
th

yl
en

e 
gl

yc
ol

; G
A 

ga
m

bo
gi

c 
ac

id
; O

A 
ol

ea
no

lic
 a

ci
d;

 U
A 

ur
so

lic
 a

ci
d



Page 40 of 60Wei et al. Journal of Nanobiotechnology          (2023) 21:282 

superior anti-inflammatory activity compared to the 
simple OA/UA mixture.

In conclusion, the integration of natural products with 
nanomaterial-based drug delivery systems has the poten-
tial to amplify their anti-inflammatory properties, which 
could pave the way for the development of more effective 
and targeted therapies for addressing inflammation and 
associated diseases.

Other pharmacological activities of nanomaterials 
in ophthalmology diseases
The applications of nanomaterials in ophthalmology 
reach far beyond their well-established anti-inflam-
matory effects and drug delivery capabilities. These 

minuscule particles offer a range of multifunctional 
properties that can be harnessed for diverse therapeu-
tic purposes, including antioxidation, anticancer, tissue 
engineering and regeneration, ocular imaging, and cor-
rection of refractive errors. In this section, we will dis-
cuss the potential benefits of nanomaterials as well as the 
challenges that must be addressed to successfully imple-
ment them in clinical practice (Fig. 9).

Antioxidation
Oxidative stress has been implicated in various ocular 
diseases, such as AMD [225] and cataractss [299]. NPs 
can be engineered to neutralize free radicals and inhibit 
oxidative damage, potentially preventing or decelerating 

Fig. 8 The synthesis of PLGA-GA2-CUR and its resultant therapeutic impact on a beagle uveitis model. A The schematic diagram illustrates 
the composition of PLGA-GA2-CUR. B A dynamic size distribution of light scattering describes the model particle of PLGA-GA2-CUR. C SEM 
provides microstructure images of PLGA-GA2-CUR. D The anti-inflammatory effect of topical PLGA-GA2-CUR is demonstrated in a canine model 
of acute endophthalmitis. Following an intraocular injection of lens protein at t = 0 h, the semiquantitative preclinical ocular toxicology scoring 
(SPOTS) was employed, incorporating scores for aqueous flare (a), pupillary light reflex (b), and conjunctival swelling (c). Local administration 
of PLA-GA2-CUR showed statistical significance when compared to topical prednisolone acetate (PA) and untreated controls, as assessed 
by two-way ANOVA. Statistical significance is denoted as *p < 0.05, **p < 0.01, ***p < 0.001, and ****p < 0.0001. This figure is reproduced from Ref. 
[185] with permission from the American Association for the Advancement of Science
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the progression of these diseases. Wet AMD is a cho-
roidal neovascularization disease that originates from 
endothelial cell dysfunction. Research indicates that oxi-
dative stress is involved in the development of AMD and 
is positively correlated with pathological vascular lesions 
[300–302]. Regrettably, there is a scarcity of effective 
drugs based on antioxidant damage therapy for treat-
ing AMD, making the development of drugs capable 
of effectively clearing ROS to treat wet AMD a critical 
endeavor. Nanomedicine has facilitated the development 
of novel ROS-clearing techniques, employing a variety 
of functional nanomaterials to address ROS-related dis-
eases [303]. Experimental evidence demonstrates that 
biocompatible and stable nanoceria formulations, such 
as glycol CS-coated ceria nanoparticles (GCCNPs), 
exhibit potent antioxidant activity. In  vitro experiments 
reveal that GCCNPs could suppress the expression of 

VEGF in ARPE19 cells and HUVECs induced by  H2O2, 
inhibit the vascular formation and migration of HUVECs 
induced by  H2O2, and inhibit the oxidative reaction prod-
uct 4-HNE and the chemokine stromal-derived factor-1 
(SDF-1) and its receptor CXCR4 in laser-induced choroi-
dal neovascularization C57 model mice following intra-
vitreal injection. GCCNPs accumulated more at the site 
of laser-induced CNV injury (RPE layer) [304] (Fig. 10). 
Many drug-loaded nanomaterials also exhibit strong 
antioxidant properties, in addition to the nanomateri-
als themselves. For example, eye preparations based on 
dipotassium glycyrrhizinate (DG)-loaded nanomicelles 
carrying thymol (THY) display enhanced  Fe3+ reduc-
tion activity in FRAP tests compared to free THY [305]. 
In vivo and in vitro experiments show that nanomaterials 
effectively mitigate oxidative stress and suppress inflam-
matory reactions in ocular lesions, offering advantages 

Fig. 9 A schematic illustration of the diverse aspects of nanomaterial application in ocular biomedicine. This figure is reproduced from Ref [343]. 
with permission from John Wiley and Sons
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over corresponding free drugs by producing more 
favorable outcomes and preserving drug efficacy stabil-
ity during transportation and storage. As a result, the 
antioxidant capacity of nanomaterials warrants further 

investigation in the treatment of ocular diseases, as an 
efficacious and safe therapy for various conditions associ-
ated with oxidative stress.

Fig. 10 The inhibitory effect of GCCNPs on neovascularization in a laser-induced choroidal neovascularization mouse model. A A schematic 
diagram depicting the synthesis, structure, and morphology of GCCNP is presented. The protective role of GCCNP on laser-induced lesions 
is highlighted in a mouse model of choroidal neovascularization. The control group received a vitreal injection of saline B, while the experimental 
group was administered a vitreal injection of GCCNPs C. Observations of the repair of damaged fundus vessels by the drug were conducted 
both prior to and 14 days post-injection using fundus fluorescein angiography, plain fundus photography, and OCT. Laser-induced lesion sites are 
indicated by red arrows. The representations include fluorescein angiography (FA) and bright field (BF) images. This figure is reproduced from Ref. 
[304] with permission from the American Chemical Society
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Anticancer
Ocular neoplasms encompass tumors of the eyelids, 
conjunctiva, various layers of the eyeball, and ocular 
appendages. These neoplasms are classified as benign 
or malignant based on their pathological characteris-
tics, each displaying distinct features and age of onset 
within the population. Retinoblastoma (RB) represents 
the most common intraocular malignancy affecting 
children, originating from mutations or deletions in the 
RB1 tumor suppressor gene within developing retinal 
cells—an autosomal dominant inherited disorder [306]. 
The typical clinical manifestation in affected children is a 
yellow-white glow within the pupillary region, accompa-
nied by reduced vision, ocular discomfort, and inflamma-
tion. Currently, numerous treatment modalities for RB 
exist, including intravenous and arterial chemotherapy, 
external radiation, cryotherapy, and enucleation [307]. 
However, repeated administration of these treatments 
may induce systemic and cellular toxicity, tumor dissemi-
nation, infection, and additional complications. Recent 
advancements in nanotechnology have facilitated pro-
gress in RB treatment. NPs have been utilized to reduce 
chemotherapy toxicity and overcome challenges in drug 
transport across the ocular barrier. NPs have been uti-
lized to reduce chemotherapy toxicity and overcome 
challenges in drug transport across the ocular barrier 
[308, 309].

Melphalan is the primary chemotherapeutic agent used 
for arterial RB treatment; however, repeated injections 
and anesthesia may prove harmful. Lee et al. employed a 
double emulsion synthesis technique to encapsulate mel-
phalan within PLGA-NPs, observing increased efficacy 
and an extended interval between successive injections 
[309]. MicroRNA plays a crucial role in regulating the 
development of various diseases, including RB. MiRNA-
181a was downregulated in RB and other cancerous cells 
[310, 311]. Combining microRNA and chemotherapeutic 
agents may enhance treatment effectiveness by modulat-
ing the chemical susceptibility of malignant cells [312–
314]. Tabatabaei et  al. developed a lipid nanoparticle 

delivery system for melphalan and miRNA-181a, result-
ing in superior transfection efficiency and reduced toxic-
ity in Y79 cells and RB heterotopic transplant rat models 
[315] (Fig. 11).

Targeted therapy has attracted considerable attention 
in cancer treatment due to its increased specificity and 
efficacy. Sugar receptors are overexpressed in retino-
blastoma, and Rutika et al. designed an innovative sugar 
receptor-targeted drug delivery system for Etoposide 
(ETP) [316]. ETP-PLGA-NPs were synthesized using the 
solvent displacement method, demonstrating sustained 
drug release for 32 h. In Y79 cells with an excess of sugar 
receptors, ETP-PLGA-NP uptaked exceeded that of non-
binding ENP, and the NPs exhibited higher cancer cell 
apoptosis rates compared to pure ETP.

Metal NPs possess anti-inflammatory properties and 
unique advantages in RB treatment. AgNPs derived 
from pure algal aqueous extract solutions were char-
acterized, exhibiting significant cytotoxicity in Y79 cell 
lines. Incorporating polysaccharides into the synthesized 
AgNPs reduced their toxicity in Y79 cells and enhanced 
free radical elimination [316]. While the formulation 
has undergone toxicological validation through in  vitro 
cell experiments, it is well-known that in  vivo animal 
studies provide a better simulation of the real biologi-
cal environment and offer more comprehensive data and 
assessments. Therefore, in future research, it is necessary 
to conduct further in vivo animal experiments to gain a 
better understanding of the formulation’s performance in 
living systems and evaluate its potential effects in treat-
ment or other applications.In contrast to conventional 
cancer therapies, nanomaterials-mediated drug delivery 
offers superior efficacy, decreased toxicity, and ligand-
specific targeting, thus managing cellular toxicity and 
improving cost-effectiveness. The emerging trend of mul-
tifunctional and biocompatible ligands is strategically 
improving the treatment and diagnosis of RB, signaling a 
new era in overcoming challenges associated with tradi-
tional therapy.

(See figure on next page.)
Fig. 11 The therapeutic impact of surface-modified melphalan nanoparticles (NPs) on retinoblastoma (RB). A A schematic depiction 
of the preparation and concentration of melphalan is provided. B Structural schematic diagrams and scanning electron microscope (SEM) images 
of four distinct NP preparations are depicted: Surface-unmodified PLGA NPs loaded with melphalan (a), surface-modified PLGA NPs loaded 
with melphalan by TET1 (b), surface-modified PLGA NPs loaded with melphalan by PEG (c), and surface-modified PLGA NPs loaded with melphalan 
by MPG (d), scale bar = 200 nm. C In an in vitro cellular assay, four different NP formulations in 1 mg/mL and 10 mg/mL melphalan configurations 
were used to treat Y79 cells for 24 h to observe their cytotoxic effects. MPG NPs were identified as the most effective treatment group. IC50 values 
for TET1, PEG, and unmodified NPs were higher than those for free melphalan, while MPG NPs demonstrated statistically similar efficacy to free 
melphalan. IC50 values are displayed as mean ± SD; statistical significance is indicated by *P ≤ 0.05, **P ≤ 0.01, ***P ≤ 0.001, ****P ≤ 0.0001. D The 
influence of surface modification of NPs on Y79 cell binding (black) and internalization (gray) was assessed using flow cytometry. Surface-modified 
NPs showed increased cell binding and internalization compared to unmodified NPs at 1.5 h (a) and 24 h (b). Data is represented as mean ± SD; 
statistical significance is indicated by *P ≤ 0.05, **P ≤ 0.01, ***P ≤ 0.001, ****P ≤ 0.0001. This figure is reproduced from Ref. [344] with permission 
from the Association for Research in Vision and Ophthalmology Inc
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Tissue engineering and regeneration
Regenerative medicine presents a renewed prospect for 
restoring aged and diseased organs, with notable pro-
gress in ocular medicine, particularly concerning cor-
neal, crystalline lens, and retinal disorders, facilitating 
the recuperation of compromised tissue functionality. 

Nanomaterials provide an optimal scaffold for corneal 
tissue regeneration, exhibiting stability. Iriczalli et  al. 
had enhanced traditional nanoscaffolds by incorporat-
ing natural wool keratin fibers into polycaprolactone 
nanoscaffolds. A composite scaffold with superior light 
transmittance and reduced fiber keratin degradation was 

Fig. 11 (See legend on previous page.)
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created when mixed in a 1:1 ratio. MSCs were cultivated 
on these scaffolds, sustaining growth and metabolism for 
up to two weeks [18]. Limbal epithelial stem cells pro-
liferate and differentiate during corneal injury, repair-
ing damaged tissue. Exogenous SDF-1α augments stem 
cell proliferation, chemotaxis, and migration, increasing 
the expression of differentiation-related genes in  vitro 
in LESC and MSCs. Tang et al. found that in a rat alkali 
injury model, treatment with SDF-1α-loaded thermo-
sensitive CS-gelatin hydrogel (CHI hydrogel) for 13 days 
resulted in the proliferation, thickening, and orderly 
arrangement of corneal epithelial cells, as observed via 
transmission electron microscopy. This mechanism may 
involve the secretion of growth factors in the SDF-1/
CXCR4 chemotactic axis to regulate cell proliferation 
[317]. Subsequently, the researchers discovered that com-
bining MSC-derived exosomes with thermosensitive CHI 
hydrogel could downregulate the expression of type I and 
V collagen. The exosome-contained miR-432-5p inhibits 
Translocation-associated Membrane Protein 2 (TRAM2), 
preventing extracellular matrix deposition and effectively 
promoting the repair of damaged corneal epithelium and 
stromal layer, reducing scar formation and accelerating 
the healing process [318].

The enigma of lens regeneration in the eye has persisted 
throughout history, in addition to corneal stem cell regen-
erative therapy. Lin et al. investigated the central roles of 
Pax6 and Bmi1 in eye development and lens induction. In 
mice obtained from breeding the ROSAmTmG membrane-
bound GFP reporter strain with (P0-3.9-GFPcre) mice, 
robust GFP expression was observed in lens epithelial 
cells (LECs) under fluorescence microscopy. This indi-
cated that Pax6 LECs derived from embryonic or adult 
lenses contributed to mouse lens fiber cell regenera-
tion. In Pax6P0-3.9-GFPcre mouse lens anterior capsule, 
 Pax6+ (GFP-positive) LECs exhibited higher Bmi1, Sox2, 
and Ki67 expression levels compared to  Pax6− (GFP-
negative) LECs (Fig.  12). Furthermore, the researchers 
devised an innovative capsulorhexis method, tested in 
rabbits, 1–3-month-old macaques, and children under 
two years old with congenital cataracts, resulting in lens 
regeneration and exceptional visual axis transparency. 
This groundbreaking approach minimizes wound size, 
mitigates anterior capsule damage during capsulorhexis, 
and shifts the capsular opening from the central visual 
axis to the periphery, substantially preserving lens epithe-
lial cells and promoting lens regeneration [17] (Fig. 13). 
In both congenital and age-related cataract patients, the 
amalgamation of enhanced surgical techniques, the injec-
tion of stem cells and LEC growth-promoting compo-
nents, and the employment of nanomaterial scaffolds to 
expedite LEC proliferation may potentially maximize lens 
regeneration.

The retina consists of blood vessels, nerves, and vari-
ous photoreceptor cells, maintaining a diverse array 
of visual functions in animals. Retinal photoreceptors, 
including rods and cones, are responsible for detect-
ing dim and bright light stimuli, respectively. When 
these cells become impaired, visual disturbances arise. 
Glucocorticoids are among the most commonly pre-
scribed medications for retinal diseases, with the pri-
mary treatment method being intravitreal injections, 
delivering drugs directly into the vitreous to exert anti-
inflammatory, immunosuppressive, and vasoconstrictive 
effects [319–321]. Wang et  al. optimized this formula-
tion by synthesizing nanoscale zirconium-porphyrin 
metal–organic frameworks (NPMOF) to encapsulate 
methylprednisolone (MPS) [16]. Injecting this drug into 
the vitreous cavity of zebrafish with light-induced reti-
nal photoreceptor damage promoted the proliferation 
of cone cells, rod cells, and Muller cells, thereby enhanc-
ing retinal visual function regeneration. Although there 
are differences between zebrafish eyes and human eyes, 
the importance of zebrafish as an experimental animal 
model in ophthalmic research cannot be overlooked. 
The study of zebrafish retina provides valuable informa-
tion and a platform for the development of treatments 
for ocular diseases in humans, thus driving forward new 
therapeutic strategies and drug development. Kang et al. 
combined injectable tauroursodeoxycholic acid and CUR 
with alginate to form a composite nanoscale hydrogel, 
which demonstrated increased adhesion to diseased tis-
sue in vivo. Moreover, they found a 41% and 23% increase 
in the proliferation rate of RPE cells compared to the 
pure alginate group [322, 323].

In summary, tissue engineering and regeneration hold 
immense potential for the development of innovative 
therapies for various ophthalmic diseases. Although sig-
nificant challenges remain, including the need for long-
term safety and efficacy studies, these approaches offer 
a potential solution to the limitations of conventional 
treatments and may provide hope for patients with cur-
rently incurable eye diseases.

Ocular imaging
Due to the distinctive architecture of the eye and the het-
erogeneous composition of ocular tissues, nanotechnol-
ogy has made considerable progress in detecting various 
ocular diseases and enhancing imaging techniques. The 
exceptional functions and potential applications in biol-
ogy and medicine render nanomaterials indispensable for 
augmenting disease detection in ocular imaging systems, 
thus facilitating clinical diagnoses.

AuNPs provide numerous advantages in ocu-
lar applications compared to traditional diagnostics 
[324]. Fu et al. found that femtosecond laser-prepared 
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Fig. 12 The pivotal roles of Pax6, Bmi1, and Ki67 in ocular development and lens-induced regeneration. A This panel illustrates the role of Pax6 
in eye and lens development. In progeny derived from crossing the ROSAmTmG membrane-bound GFP reporter strain with (P0-3.9-GFPcre) mice, 
robust GFP expression was noted in lens epithelial cells (LECs) under fluorescence microscopy, indicating that Pax6 LECs from embryonic 
or adult lenses contribute to the regeneration of mouse lens fiber cells. B The part shows that deletion of Bmi-1 results in diminished Pax6 + and 
Sox2 + expression in LECs. The vertical axis represents the percentage of Pax6 + and SOX2 + cells. Data are presented as mean ± SD; statistical 
significance is denoted by *P < 0.001. The part C reveals that the absence of Bmi1 leads to a decrease in LEC proliferation. The proportion 
of BrdU + LECs was calculated for each eye at 2 m, 7 m, and 12 m. Statistical significance was determined via a two-tailed Student’s t-test; *P < 0.05. 
Part D displays Nestin (green) staining images of wild-type mice at E13.5, E18.5, and 2 months of age, as observed through fluorescence microscopy. 
Part E depicts the histological examination (HE staining) of eyeballs from 2 m, 7 m, and 12-month-old Bmi1fl/fl control mice and Nestin-cre; 
Bmi1fl/fl mice, to observe the development of cataracts. After using Nestn-creER to delete Bmi-1 in 6-week-old mice and following 10 months 
of tamoxifen treatment, the HE morphology of mouse eyes showed no cataract phenotype. All scale bars equal 100 μm. Reproduced from Ref. [345] 
with permission from Springer Nature



Page 47 of 60Wei et al. Journal of Nanobiotechnology          (2023) 21:282  

AuNPs, coated with polyethylene glycol, synthesized 
PEG-AuNPs (20.0 ± 1.5 nm), function as excellent con-
trast agents for photoacoustic microscopy (PAM) and 
OCT [325]. In vitro bovine retinal endothelial cells and 
in  vivo rabbit experiments demonstrated no signifi-
cant cytotoxicity or multi-organ toxicity. Simultane-
ously, the detection of blood vessels in the retina and 
choroid was enhanced, increasing by 82% in PAM and 
45% in OCT. Subsequently, the research team coupled 
AuNPs with arginine-glycine-aspartic acid (RGD) pep-
tides (CGNP clusters-RGD), synthesizing a contrast 
agent with a red-shifted peak wavelength of 650  nm. 
In a rabbit choroidal neovascularization model, fol-
lowing auricular vein injection of CGNP clusters-RGD, 
retinal examination using PAM and OCT revealed 
signal intensity increases of 1700% and 176% [14], 
respectively. This evidence provides improved clar-
ity for subretinal neovascularization, assisting disease 
diagnosis and treatment plan formulation. As a high-
quality contrast agent, AuNPs can also contribute to 
the development and application of ocular detection 
imaging systems. Maryse pioneered a novel OCT scan-
ning method—Photothermal OCT (PT-OCT) [326], 
addressing the limitations of traditional methods, 
which exhibit poor detection specificity with contrast 
agents in a scattering background [327]. Utilizing reti-
nal melanin as an endogenous detection material and 
intravenously injected gold nanorods as exogenous 
detection material, PT-OCT observes the photother-
mal effects on endogenous and exogenous substances 
in the retina, effectively adding a new source of con-
trast for structural OCT and marking a new era in 
ocular OCT examinations.

In conclusion, ocular imaging techniques play a vital 
role in understanding the applications and potential of 
nanomaterials in ophthalmology. As research in this 
area advances, it is anticipated that the utilization of 
nanomaterials will lead to improved diagnosis, treat-
ment, and management of various ocular diseases.

Vision correction
With societal progression and technological advance-
ment, myopia prevalence has escalated among popula-
tions, including adolescents and working adults. Myopia 

arises from a combination of genetic and environmental 
factors, typified by increased axial length and thinning 
of the sclera at the eye’s posterior pole. Complications 
linked with myopia, such as vitreous opacities, retinal 
detachment, and macular degeneration, follow. As a 
challenging condition to treat that significantly affects 
patients’ daily lives and work, no effective pharmaceutical 
therapy for myopia currently exists. While myopia treat-
ments continue to develop, existing methods primarily 
concentrate on rectifying the condition.

Myopia correction techniques encompass eyeglasses, 
contact lenses (CLs), orthokeratology lenses, corneal 
laser surgery, and implantable collamer lens (ICL) sur-
gery. Eyeglasses are the primary choice, while CLs are 
also widely employed, and surgical correction may be 
considered in specific cases. The market is saturated 
with a diverse range of CLs, composed of various mate-
rials and exhibiting unique physical properties, result-
ing in different patient experiences. The application of 
nanomaterials in vision correction is a swiftly advanc-
ing field that holds tremendous potential for enhanc-
ing the treatment of various vision issues. Researchers 
have been exploring inventive methods to integrate 
nanomaterials into CLs, intraocular lenses, and even 
artificial retina development. These advancements aim 
to provide more effective and less invasive solutions 
for common vision problems such as myopia, hypero-
pia, presbyopia, and astigmatism, as well as more 
severe conditions like cataracts and macular degen-
eration. To further minimize spherical and chromatic 
aberrations, Lina et  al. investigated the beneficial role 
of nanomaterials in optical refraction [328]. Titanium 
dioxide nanoparticles  (TiO2 NPs) are a remarkable 
material for augmenting high refractive index (RI). Lina 
et  al. synthesized  TiO2 NPs using the sol–gel method 
and polymethyl methacrylate (PMMA) via free-radi-
cal polymerization, combining them in specific ratios 
to create PMMA-TiO2 polymer CLs. The researchers 
examined the performance parameter changes in ocu-
lar aberrations under polychromatic light sources, with 
and without the addition of  TiO2 in CLs. PMMA-TiO2 
CLs exhibited a high RI value of approximately 1.615, 
low dispersion (νd = 31), and high transparency in the 
visible region (T > 95%). The retinal image sharpness 

(See figure on next page.)
Fig. 13 A novel minimally invasive surgical technique for promoting lens regeneration. A A minimally invasive ocular surgery conducted 
on a rabbit eye, employing a capsulorhexis size of 1–1.5 mm. The procedure targets a 1.2 mm2 region surrounding the lens, with photographic 
evidence of lens regeneration observed via a slit-lamp microscope from day 1 to 4 weeks post-surgery. B A similar minimally invasive ocular 
operation was executed in a macaque model. Slit lamp microscopy demonstrates the regenerated lens tissue expanding from the periphery 
towards the lens center between 2–5 months post-surgery. Direct illumination reveals a translucent visual axis. C The minimally invasive procedure 
was also performed on infants with congenital cataracts. Lens regeneration was observed from week 1 to 5 months post-surgery, with almost 
all eyes (95.8%) attaining visual axis transparency. The surgical incision remained peripheral, and the anterior capsule wound scar tissue kept 
away from the visual axis was less than 1.5 mm in diameter. This novel surgical approach significantly mitigated visual axis opacity compared 
to the current standard surgical approach. Reproduced from Ref. [345] with permission from Springer Nature
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Fig. 13 (See legend on previous page.)
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(spatial frequency value) and contrast (MTF value) 
experiments revealed that CLs with  TiO2 demonstrated 
higher image contrast at low frequencies (less than 
20 cycles/mm) and achieved optimal corrected visual 
acuity at 0.01 PMMA-TiO2 CL. This not only reduced 
spherical, coma, and astigmatism aberrations but also 
enhanced visual image quality. However, the evalua-
tion of NPs’ toxicity is crucial for the development of 
new products, which can ensure that the addition of 
 TiO2 NPs in contact lenses does not have any negative 
impact on ocular health, thereby ensuring the reliability 
and usability of the new product. Although the appli-
cation of nanomaterials in vision correction remains a 
developing field, the potential benefits are substantial. 
As research progresses, we can anticipate more effec-
tive and less invasive solutions for a broad range of 
vision problems, improving the quality of life for mil-
lions of people worldwide.

Safety and toxicity of nanomaterials 
in ophthalmology diseases
In recent years, the employment of nanomaterials 
has emerged as a promising strategy for addressing 
and diagnosing a wide array of ophthalmic disorders. 
Due to their unique physicochemical properties and 
enhanced bioavailability, these materials hold tremen-
dous potential to revolutionize ocular therapeutics. 
However, alongside their numerous advantages, con-
cerns regarding the safety and toxicity of nanomateri-
als in ophthalmology have also arisen [329] (Fig.  14). 
The size and shape of nanomaterials may influence 
their interaction with ocular tissues, potentially lead-
ing to unforeseen consequences. Small particles can 
easily penetrate ocular barriers and reach sensitive 
tissues, while specific shapes may affect their cellular 
uptake and biodistribution [257]. Furthermore, fac-
tors such as surface charge, hydrophobicity, and the 

Fig. 14 Ocular pathologies induced by the improper utilization of nanomaterials. The image showcases irritation and toxic responses elicited 
by nanomaterials interacting with the eye surface (cornea, conjunctiva), intraocular structures (e.g., iris, ciliary body, choroid, and lens), or various 
regions of the retina, macula, and optic nerve. Reproduced from Ref. [346] with permission from John Wiley and Sons
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presence of functional groups on nanomaterials can 
significantly impact their biocompatibility and inter-
action with ocular tissues. Surface modification tech-
niques may be employed to enhance biocompatibility 
and reduce potential toxicity [330–332]. Additionally, 
the tendency of certain nanomaterials to aggregate in 
physiological environments can induce complications, 
such as occlusion of ocular blood vessels and inflam-
matory responses [333]. Moreover, the rate at which 
nanomaterials degrade and are eliminated from the 
body plays a crucial role in determining their potential 
toxicity. Substances that break down too quickly may 
release harmful byproducts, while those that degrade 
slowly may accumulate in tissues, causing prolonged 
damage [334]. To harness the full potential of nano-
materials in ophthalmology while mitigating their 
associated risks, several approaches can be adopted to 
minimize their toxicity: (1) Optimizing size, shape, and 
surface properties: By carefully selecting the dimen-
sions, structure, and surface characteristics of nano-
materials, researchers can reduce potential adverse 
effects on ocular tissues. For instance, smaller parti-
cles with a more neutral surface charge are less likely 
to cause irritation and inflammation [335–337]; (2) 
Biodegradable materials: Choosing biodegradable sub-
stances that can be safely metabolized and removed 
from the body can help minimize the risk of lasting 
toxicity and tissue accumulation [338]. (3) Surface 
modification: Surface modification techniques, such 
as the addition of hydrophilic polymers, can be used 
to improve the biocompatibility of nanomaterials and 
decrease their tendency for aggregation and occlusion 
[339]. (4) Targeted delivery: Developing targeted drug 
delivery systems that can specifically deliver nanoma-
terials to the desired site of action within the eye can 
help reduce off-target effects and minimize potential 
toxicity [316]. (5) Preclinical assessment: Thorough 
preclinical evaluation of nanomaterials in relevant ani-
mal models and in  vitro assays is essential to identify 
and address potential safety concerns before progress-
ing to clinical trials [340].

In summary, nanomaterials have the potential to 
transform the field of ophthalmology, offering innovative 
solutions for the treatment and diagnosis of various ocu-
lar conditions. However, concerns regarding their safety 
and toxicity must be thoroughly addressed to ensure the 
successful translation of these technologies to clinical 
applications. By implementing strategies to minimize 
toxicity, optimizing material properties, and conduct-
ing rigorous preclinical testing, researchers can pave the 
way for the safe and effective use of nanomaterials in 
ophthalmology.

Conclusion and perspective
In conclusion, the emergence of next-generation nano-
materials holds the potential to substantially advance 
the domain of ocular anti-inflammatory drug therapy. 
These groundbreaking materials present unparalleled 
prospects for devising novel drug delivery systems and 
augmenting the efficacy of existing treatments, ulti-
mately ameliorating patient outcomes for a wide array of 
ocular conditions. By exploiting the unique attributes of 
nanomaterials, researchers can tackle challenges linked 
with conventional therapies, such as limited bioavail-
ability, off-target effects, and the necessity for frequent 
administration.

As we gaze into the future, the sustained development 
and refinement of nanomaterials for ocular drug delivery 
will likely result in breakthroughs in the management of 
inflammatory eye diseases. Investigators will strive to 
optimize the physicochemical properties of nanomate-
rials, including size, shape, surface charge, and biodeg-
radability, to attain superior biocompatibility, targeted 
delivery, and controlled drug release. Moreover, the 
incorporation of stimuli-responsive mechanisms and 
multifunctional capabilities may lay the foundation for 
intelligent, personalized therapies tailored to individual 
patient requirements.

Furthermore, interdisciplinary cooperation among 
material scientists, ophthalmologists, and pharmaceuti-
cal researchers will be pivotal in propelling the translation 
of these avant-garde technologies from the laboratory to 
the clinical setting. Rigorous preclinical evaluation and 
meticulously designed clinical trials will be essential in 
verifying the safety and efficacy of nanomaterial-based 
ocular therapies, ensuring compliance with regulatory 
standards and garnering acceptance within the medical 
community.

However, concomitant with the substantial prom-
ise of nanomaterials in ocular anti-inflammatory drug 
therapy, it is vital to remain attentive to potential safety 
concerns and adverse effects. Researchers must assidu-
ously appraise the biocompatibility and toxicity of these 
materials, implementing strategies to minimize potential 
hazards while maximizing therapeutic advantages. In 
doing so, the full potential of next-generation nanomate-
rials can be harnessed to transform the landscape of ocu-
lar drug therapy, providing improved treatment options 
and ultimately enhancing the quality of life for millions of 
patients globally.
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