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Abstract 

Extracellular vesicles (EVs) in the field of spinal cord injury (SCI) have garnered significant attention for their poten-
tial applications in diagnosis and therapy. However, no bibliometric assessment has been conducted to evaluate 
the scientific progress in this area. A search of articles in Web of Science (WoS) from January 1, 1991, to May 1, 2023, 
yielded 359 papers that were analyzed using various online analysis tools. These articles have been cited 10,842 
times with 30.2 times per paper. The number of publications experienced explosive growth starting in 2015. China 
and the United States led this research initiative. Keywords were divided into 3 clusters, including “Pathophysiology 
of SCI”, “Bioactive components of EVs”, and “Therapeutic effects of EVs in SCI”. By integrating the average appearing 
year (AAY) of keywords in VoSviewer with the time zone map of the Citation Explosion in CiteSpace, the focal point 
of research has undergone a transformative shift. The emphasis has moved away from pathophysiological factors such 
as “axon”, “vesicle”, and “glial cell” to more mechanistic and applied domains such as “activation”, “pathways”, “hydro-
gels” and “therapy”. In conclusions, institutions are expected to allocate more resources towards EVs-loaded hydrogel 
therapy and the utilization of innovative materials for injury mitigation.
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Introduction
Spinal cord injury (SCI) is a severe neurological trauma 
with high morbidity and mortality [1–3]. Various primary 
factors can cause the onset of SCI, such as compression 
or contusion, while secondary effects can lead to a host 
of complications, including neuroinflammation, micro-
vascular damage, glial scar formation, and upregulation 
of inhibitory factors [4, 5]. These inhibitory factors can 
impede axonal extension and hinder progress towards 
behavioral recovery [6, 7].

At present, therapeutic effect and prognosis of SCI is 
limited. There are two primary treatment categories that 
pertain to the acute and secondary phases. During the 
acute phase, emphasis is placed on optimal clinical treat-
ments that aim to prevent secondary damage by means 
of early surgical decompression or the administration 
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of anti-inflammatory medicine [8–10]. And in cases of 
chronic phase, treatment typically involves the imple-
mentation of cell-based therapies aimed at inducing 
the renewal and revivification of neural tissue through 
the generation of neurotrophic factors, neuroprotective 
cytokines, anti-inflammatory agents, and stem cell trans-
plantation [11–13].

Extracellular vesicles (EVs) have gained attention as a 
promising and innovative option in the field of regenera-
tive and anti-inflammatory medicine [14–18]. EVs are a 
heterogeneous group of cell-derived membrane struc-
tures ranging between 100 nm and 1 µm in diameter, and 
EVs can be classified according to their biosynthesis or 
release pathway: exosomes originating in the endocytic 
pathway, 40–120 nm in diameter [19]. They contain a sig-
nificant assortment of proteins, lipids, ribonucleic acids, 
and other biologically active components for intercellular 
communication through the dissemination of these bio-
logically active factors [20, 21]. To our knowledge, EVs 
are expected to be used to treat in a variety of diseases 
such as myocardial infarction [22, 23], cancer [24, 25], 
and also SCI [26]. Studies have shown that EVs mediate 
cellular communication and play an important role in 
regulatory maintenance, tissue repair, and immune sur-
veillance [27–30]. As a result, it is imperative to develop 
a comprehensive understanding of the current status and 
trends of EVs in SCI research.

Bibliometrics is an extensively recognized method 
that facilitates the analysis of the development and 
research patterns within a particular field [31]. It pro-
vides researchers with essential data and a holistic 
view of dynamic trends, aiding them in assessing exist-
ing issues, institutions, and the quantity and quality of 
regional publications [32]. Furthermore, bibliometrics 
plays a crucial role in predicting the probable future 
directions of research and development. It is noteworthy 
to mention that bibliometric findings can be instrumen-
tal in informing government policy-making authorities 
regarding funding decisions and other pertinent areas 
[33, 34]. Consequently, bibliometrics is widely employed 
and acknowledged as a significant tool in research evalu-
ations. Given its numerous benefits, it is not surprising 
that bibliometrics continues to gain popularity among 
scholars and researchers across the globe.

Despite the growing interest in EVs in scientific 
research, there is a noticeable absence of bibliometric 
investigations that examine the evolution and analytical 
appraisal of EVs in the SCI research field. The purpose 
of this article is to fill this gap by assessing the global 
publication patterns of articles related to EVs in SCI. To 
achieve this goal, we have systematically organized and 
evaluated information on the distribution of publica-
tions stratified by country, author, journal, and impact. 

Moreover, we have analyzed the frequency and time of 
keywords in order to present the trends in the form of 
bibliometric maps and predict their possible directions 
of development in this field. By providing an in-depth 
analysis of the global development patterns of EVs in 
SCI research, this study has the potential to enhance 
readers’ comprehension and serve as a contemporary 
resource for prospective collaborative pursuits and clini-
cal implementations.

Materials and methods
Literature sources and search strategy
Following the acquisition of relevant title keywords 
and their supplementation with mesh subject headings 
sourced from PubMed, we proceeded to undertake an 
exhaustive bibliographic search online through WoS, uti-
lizing the search format presented below: (TS=((Spinal 
Cord* OR Spinal Nerves OR Myelopath*) AND (Injur* 
OR Regenerat* OR Trauma* OR Wound* OR Recover* 
OR Contusion* OR Laceration* OR Transection* OR 
Therapy* OR Post Traumatic))) AND TS=(Exosomes 
OR Endosomes OR Secretory Vesicles OR Cell-Derived 
Microparticles OR Exosome Multienzyme Ribonucle-
ase Complex OR Extracellular Vesicles OR Transport 
Vesicles)—Time: Wed May 1, 2023, 14:54:52 GMT+0800 
(CST). The articles under investigation were sourced 
from a period spanning January 1, 1991 to May 1, 2023. 
A meticulous search of available literature yielded 532 
potential results which were screened, resulting in enroll-
ing 359 papers while excluding the reviews (Fig. 1).

Data collection and statistics
The raw data downloaded from WoS were first imported 
into Microsoft Excel 2019 for preliminary collation. Then 
two researchers (FZG and WJ) verified the assessment 
separately. Any discrepancies were taken for re-assess-
ment by a third party and immediately followed by a 
three-way harmonization. Finally, we extracted the bib-
liometric parameters: the quantity of papers, frequency 
of citations and H-index [35]. Statistical methods include: 
importing the collated data into the bibliometric online 
analysis platform (https:// bibli ometr ic. com/) for statis-
tical analysis on total volume; and forming mathemati-
cal fitting curves by SPSS24 (Statistical Product Service 
Solutions 24) to analyze the temporal trends in the num-
ber of publications published. After 2010, the cumulative 
number of publications in the literature had a better fit-
ting relationship, and we used the mathematical growth 
model f(x) = k/[1 + a * e^(− b * x)] to fit and predict the 
future trend of literature accumulation [36]. Graphs were 
drawn using GraphPad Prism 8 (GraphPad Software Inc., 
CA, USA). The model equation f(x) denotes the cumu-
lative number of papers and x represents the year. The 

https://bibliometric.com/
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global inflection point of the fitted curve is the point in 
time when the growth rate of the publication accumu-
lation turns from positive to negative. According to the 
logistic growth model, when in the inflection period, it is 
obtained from f(x) = k/2 [37].

Using the java program VoSviewer (Leiden University, 
Leiden, Netherlands), a clustering analysis of keywords 
based on their occurrence in the title and abstract was 
performed [38, 39]. The frequency and interconnection 
of different keywords were also described by the color, 
size and connecting lines of the circles [40]. In addition, 
burst-citation analysis of keywords was performed by 
CiteSpace [41]. The strength was used to describe the 
frequency of the keywords’ occurrence [42]. The begin 
and end times describe the temporal distribution of the 
keywords. Hotspots were defined as high-frequency sub-
keywords in popular scientific fields [43].

Results
Statistical analysis of global literature
Publication numbers sorted by year
Our search and filtering efforts encompassed 359 arti-
cles, as outlined in Additional file  2: Table  S1. As dem-
onstrated in Fig. 2A, we examined the number of articles 
by year, with the earliest relevant article being published 
in 1991. Between 1991 and 2015, publication numbers 
exhibited a gradual upward trend with occasional years 
lacking new contributions (e.g., 1999). A more substantial 
increase in publications occurred after 2015. Figure  2B 
illustrates the logistic growth curve f(x) = 1007.36/[1 + 1
544.47 *  e(−0.215*(x−1991))] for the global publication accu-
mulation. The model’s inflection point, which marks the 
transition from positive to negative growth rate, is pro-
jected to occur in 2025.15 as determined by the function 

f(x) = k/2. It is anticipated that this field will sustain a 
favorable development trend over an extended period.

Citation frequency and H‑index
Based on the data gathered from WoS, the enrolled 359 
publications have received a cumulative total of 10,842 
citations. The mean citation frequency per article was 
found to be 30.2 citations, with an H-index of 56. In-
depth analysis indicates that the top 100 papers, in terms 

Fig. 1 The inclusion and exclusion process of EVs in SCI research

Fig. 2 Contribution characteristics of EVs in SCI research. A 
Annual publication volume of global exosome and SCI studies. 
B Model-fitted curves of the cumulative number of publications 
on exosomes and SCI globally
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of citation frequency, accounted for 75.62% of the total 
citations, with an average of 91.99 citations per paper. 
Similarly, the top 50 papers received 54.90% of total cita-
tions and had an average citation frequency of 119.04.

Quantity and citations among different nations
China and the USA were the most prominent countries, 
with the highest publications and citations. Figure  3A 
presents a global perspective of publications in this field, 
and China has the highest number of publications in this 
field. The USA has established a leading position in other 
key metrics such as total citations, average citations, and 
H-index (Table 1). As indicated in Fig. 3B, the USA has 
the highest number of interconnected targets in terms of 

Fig. 3 A Comparative map of the cumulative number of papers published in each country. B Cooperation networks in countries around the world

Table 1 The top 10 productive countries

Country N Total citations Average 
citations

% H-index

China 191 4246 22.23 53.20 34

USA 76 3806 50.08 21.17 31

Japan 15 267 17.80 4.18 8

England 14 574 41.00 3.90 12

Spain 13 452 34.77 3.62 9

Germany 12 376 31.33 3.34 9

France 10 370 37.00 2.79 9

Iran 10 173 17.30 2.79 6

Australia 8 195 24.38 2.23 6

Sweden 8 247 30.88 2. 23 8
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country cooperation (25 countries, including China, the 
United Kingdom of Great Britain and Northern Ireland, 
Germany, Spain, and Sweden). It is suggested to increase 
efforts to strengthen international cooperation and 
communication.

High‑contributing journals and funding agencies
The top 10 journals in terms of publication volume pub-
lished a total of 82 papers (22.84%, Table  2). Among 
them, Stem Cell Research Therapy has the highest num-
ber of publications (14), while Journal of Neuroscience has 
the highest total citations (836), average citations (76), 
and H-index (11).

The top 10 funding agencies are listed in Table  3. 
National Natural Science Foundation (NSFC) of China 
supported 113 studies, ranking the first (31.48%). The 
National Institutes of Health and the U.S. Department 
of Health Human Services each funded 41 researches. 
Within the ranking of top funding agencies, four belong 
to Chinese entities, while three are held by USA organi-
zations, two by Japanese establishments and one by the 
EU.

Author collaboration network graph
Using VoSviewer to generate author collaboration 
network graphs, a total of 96 authors with more than 
3 published articles formed the 16 clusters shown in 
Additional file 1: Fig. S1. Fifteen clusters remained after 
excluding single authors as clusters. Cluster 1 is pri-
marily comprised of researchers hailing from Nanjing 
Medical University, with its central figure being Prof. 
Cai Weihua. These researchers have established collab-
orations with Cluster 9, led by Prof. Xu Tao. Cluster 2, 
led by Prof. Feng Shiqing of Tianjin Medical University, 
consists of researchers from both Tianjin University 
and Zhejiang University. The core figure of Cluster 3 is 
Prof. Cao Yong, affiliated with Central South Univer-
sity and closely collaborating with Prof. Huang Jianghu 
and others from Fujian Medical University of Cluster 
9. Clusters 4, 5, and 6 are made up of researchers from 
Bengbu Medical College, Universidade de Aveiro, and 
Anhui Medical University, respectively. Inter-cluster 
cooperation is limited to Clusters 1 and 8, and clusters 
3 and 9, with no collaboration discernible between the 
remaining clusters.

Table 2 The top 10 related popular journals

Journal N % Total citations Average 
citations

H-index IF-2022 JCR

Stem Cell Research Therapy 14 3.90 271 19.36 10 7.5 Q1

Journal of Neuroscience 11 3.06 836 76.00 11 5.3 Q1

Neuroscience 9 2.51 342 38.00 8 3.3 Q3

Neurochemical Research 8 2.23 69 8.63 4 4.4 Q2

Journal of Nanobiotechnology 8 2.23 174 21.75 4 10.2 Q1

Molecular Neurobiology 8 2.23 128 16.00 5 5.1 Q2

Frontiers in Neuroscience 6 1.68 266 44.33 4 4.3 Q2

Journal of Neurotrauma 6 1.68 457 76.17 6 4.2 Q2

Journal of Neuroinflammation 6 1.68 237 39.50 5 9.3 Q1

Neural Regeneration Research 6 1.68 33 5.50 2 6.1 Q2

Table 3 The top 10 related funding agencies

Funding agency N %

National Natural Science Foundation of China NSFC 113 31.48

National Institutes of Health NIH USA 41 11.42

United States Department of Health Human Services 41 11.42

NIH National Institute of Neurological Disorders Stroke Ninds 12 3.34

European Commission 9 2.51

Natural Science Foundation of Hunan Province 9 2.51

Natural Science Foundation of Jiangsu Province 9 2.51

Japan Society for The Promotion of Science 7 1.95

National Natural Science Foundation of Guangdong Province 7 1.95

Ministry of Education Culture Sports Science and Technology Japan Mext 7 1.95
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Characteristics of the top 10 most cited research articles
According to Table  4, the top 10 most cited articles 
have been referenced 2,149 times (19.82%). The article 
with the earliest publication date in 2013 published by 
Prof. Xin was also one of the most referenced, having 
been cited 485 times with an annual average of 44.09 
citations [44]. An article by Prof. Liu’s received the 
highest average annual citation count of 46.75 [45]. 
Among the top 10, four articles were produced by aca-
demic institutions located in the USA, with three of 
them ranking in the top three cited articles [44, 46–48]. 
Additionally, four articles were attributed to Chinese 
academic institutions [15, 45, 49, 50], with Prof. Liu’s 
work ranking fourth in terms of citations [45]. Further-
more, the scholarly works produced by Prof. Guo [49], 
and Prof. Hervera [51] have been disseminated through 
international collaborations. Consequently, the articles 
that rank highly in terms of citations could be consid-
ered of great significance for scholars who specialize in 
this area of research.

Keyword analysis of global research
Keyword co‑existence network analysis
The keywords were filtered from the existing data, and a 
total of 333 words were obtained, which could be divided 
into 3 clusters (Fig.  4A). Cluster 1: “Pathophysiology of 
SCI” denotes green, Cluster 2: “Bioactive components of 
EVs” represents blue, and Cluster 3: “Therapeutic effects 
of EVs in SCI” is indicative of red. The magnitude of the 
keyword circle within each cluster is commensurate 
with the frequency of its appearance (Additional file  3: 
Table S2). The main terms comprising cluster 1 are “axon” 
[52, 53], “day” [54, 55], “immunoreactivity” [56, 57] and 
“glial cell” [58, 59]. Meanwhile, cluster 2 is character-
ized by the core keywords “vesicle” [60–62], “source” [63, 
64], “miRNAs” [65, 66] and “biomarker” [67–69]. Lastly, 
cluster 3 is distinguished by “bone marrow mesenchymal 
stem cells” [70–72], “lipopolysaccharide” [73, 74], “angio-
genesis” [75–77], “apoptosis” [78, 79], “polarization” [80, 
81], “migration” [82, 83], “hydrogel” [84, 85], “cell com-
munication” [86, 87], and “mechanism” [88, 89] as its core 
keywords.

VoSviewer marks the keywords in the figure with dif-
ferent colors depending on the average appearing year 
(AAY) of the keywords. The purple keywords appeared 
earlier than the blue and yellow ones (Fig. 4B). The shift 
from purple to yellow delineates the progression of key-
word advancement. Figures  5, 6, 7 provides a compre-
hensive overview of the focal point of the researchers’ 
investigation, which encompasses keywords with 3 clus-
ters, including “Pathophysiology of SCI”, “Bioactive com-
ponents of EVs”, and “Therapeutic effects of EVs in SCI”.

Citation bursts analysis
Although VoSviewer effectively displays the co-occur-
rence status of keywords, it presents limitations in 
illustrating changes in keyword prominence. It solely 
visualizes the annual activity of publications and neglects 
to indicate the start and end time and sudden bursts of 
keywords. To address this issue, we utilized CiteSpace 
software to extract the citation burst for all keywords, 
with a particular focus on the top 20 keywords. The most 
significant citation burst belongs to “stromal cell”. Nota-
bly, since 2020, the keywords “mesenchymal stromal 
cell”, “repair”, “neural stem cell”, “recovery”, “regeneration”, 
“microglia”, “activation”, “pathway”, and “therapy” have 
been more prominently concentrated, indicating promis-
ing developments (Fig. 8).

Discussion
Research of EVs in SCI is currently garnering significant 
attention and interests
In recent years, there has been a noteworthy escalation 
in scholarly publications concerning EVs in SCI. Addi-
tionally, the field has undergone a remarkable upsurge 
in worldwide publications since 2015. According to the 
logistic growth model, the global inflection point might 
occur in 2025, thus this field will still have a strong 
momentum in the next a few years. It seems to be attrib-
uted to the 2013 Nobel Prize in Physiology or Medicine, 
which was conferred upon three distinguished scientists, 
James E. Rothman [90, 91], Randy W. Schekman [92, 93], 
and Thomas C. Sudhof [94, 95], for their contributions to 
unraveling the mechanisms of transport and regulation of 
EVs. It has brought EVs to widespread attention and has 
attracted the participations and supports from research 
institutions in various countries. Accordingly, the num-
ber of studies on the relationship between EVs and SCI is 
gradually increasing.

Research initiatives have already been undertaken in 
the area of EVs and SCI in several countries, with China 
and the United States leading the charge. Of the 359 arti-
cles retrieved, 191 (53.20%) were published in mainland 
China, and 76 (21.17%) were in the USA. In particular, 
mainland China has an explosive growth in production 
since 2015, while the USA has a continuously steady 
growth since 1991. In terms of inter-country coopera-
tion, the network demonstrates universal collaboration 
comprises a significant fraction from the USA (Fig. 3B), 
while Chinese study mostly occurred among domestic 
institutes. In addition, the top 10 most prolific authors 
in this field are all from China. Prof. Cai and Prof. Liu 
from China are leaders in the field and they might remain 
leading the development of the field. Theoretically, these 
top scholars are the optimal choices for cooperation and 
communication.
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Table 4 The top 10 most cited research papers

No First author Journal Year Citations Citation 
frequency 
per year

Descriptions

1 Xin, Hongqi [44] STEM CELLS 2013 485 44.09 MiR-133b is transferred by MSC-released EVs, which can 
promote neurite remodeling and brain plasticity by regulat-
ing genes associated with neuronal growth, such as CTGF 
and RhoA. It can be inferred that EVs may play potential 
roles in SCI by mediating gene expression regulation, neurite 
regeneration, modulating inflammation, immune responses, 
and intercellular communication pathways

2 Rebecca, P. Seal [46] NATURE 2009 302 20.13 Dorsal root ganglion (DRG) neurons transmit sensory infor-
mation to the spinal cord using the excitatory transmitter 
glutamate, a process that depends on glutamate transport 
into synaptic vesicles for regulated exocytotic release. 
Persistent pain caused by injury is associated with a low 
abundance of the vesicular glutamate transporter VGLUT3 
expressed by a small subset of cells in the DRG

3 Veronica, J. Tom [47] J NEUROSCI 2004 206 10.31 Time-lapse movies demonstrated that dystrophic endings 
after SCI continually send out membrane veils and endocy-
tose large membrane vesicles at the leading edge, which 
were then retrogradely transported to the rear of the “growth 
cone”

4 Liu, Wei [45] J NEUROINFLAMM 2020 187 46.75 Hypoxia preconditioning represents a promising and effec-
tive approach to optimize the therapeutic actions of MSC-
derived EVs. And a combination of MSC-derived EVs 
and miRNAs may present a minimally invasive method 
for treating SCI

5 Guo, Shaowei [49] ACS NANO 2019 168 33.61 EVs therapy promotes recovery from SCI: MSC-Exo, 
administered intranasally, can cross the blood–brain barrier 
and migrate to the injured spinal cord area. ExoPTEN loaded 
in MSC-Exo reduces PTEN expression, enhances axonal 
growth and neovascularization, decreases microgliosis 
and astrogliosis, improves structural and electrophysiologi-
cal function, and significantly promotes functional recovery 
in rats with complete SCI

6 Huang, Jianghu [50] J NEUROTRAUM 2017 167 23.86 Systemic administration of MSCs-EVs attenuated cell 
apoptosis and inflammation, promoted angiogenesis, 
and promoted functional recovery post-SCI, suggesting 
that MSCs-EVs hold promise as a novel therapeutic strategy 
for treating SCI

7 Gimona, Mario [169] INT J MOL SCI 2017 163 23.29 In this article, they discussed the requirements for manu-
facturing, safety, and efficacy testing of EVs along their 
path from the laboratory to the patient. They also deliber-
ated the rationale for testing MSC-EVs in selected diseases 
with an unmet clinical need such as critical size bone 
defects, epidermolysis bullosa and SCI

8 Hervera, Arnau [51] NAT CELL BIOL 2018 161 26.83 ROS promote axonal retraction and degeneration, but they 
are also necessary for axonal regeneration and recov-
ery after SCI. EVs contribute to spinal cord regeneration 
after injury by activating the NOX2-PI3K-p-Akt signaling 
pathway

9 Sun, Guodong [15] MAT SCI ENG C-MATER 2018 155 25.83 HucMSC-derived EVs can promote SCI healing by suppress-
ing inflammatory response. They modulate the polarization 
of inflammatory cells and downregulate inflammatory 
factors, improving functional recovery. These findings offer 
a new perspective and therapeutic strategy for SCI treatment

10 Vaccari, J. De Rivero [48] J NEUROCHEM 2016 155 19.83 EVs act as carriers to deliver siRNA and inhibit inflamma-
some activation, thereby suppressing neuroinflammatory 
responses following SCI. This provides a novel therapeutic 
approach for treating inflammation and cellular damage 
induced by central nervous system injuries
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Within this domain, there are certain journals and 
funds that worth the attention of researchers. The jour-
nals listed in Table 2, such as Stem Cell Research Ther-
apy, Journal of Neuroscience, Neuroscience, and Journal 
of Nanobiotechnology, are probably the core journals 
in this field, hence submitting relevant papers to these 

journals is recommended. Researchers also need to 
pay more attention to the latest articles published in 
these journals. In addition, the funding agencies listed 
in Table  3, such as the NSFC, the NIH and the U.S. 
Department of Health Human Services, are worthy 
choices for researchers to apply for.

Fig. 4 Keyword co-occurrence network and keyword evolution over time. A Keyword co-occurrence network is divided into 3 clusters of different 
colors according to the evolution of the research hotspots. B The color of a keyword indicates the average publication time of articles containing 
that keyword
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Research focus shifts from pathophysiological mechanisms 
to innovative materials
The combination of bibliometrics and visual mapping has 
become an effective way of quantitatively and systemati-
cally assessing trends in a particular field, and can also 
predict possible research directions. In this study, key-
words were divided into 3 clusters: “Pathophysiology of 
SCI” (Cluster 1, green), “Bioactive components of EVs” 
(Cluster 2, blue), and “Therapeutic effects of EVs in SCI” 
(Cluster 3, red). And in Fig. 4B, it shows that interests of 
researchers’ investigation gradually shift from Cluster 1 
to Cluster 2, and then Cluster 3.

Cluster 1: “pathophysiology of SCI”
As shown in the Cluster 1, the main terms are “axon”, 
“day”, “immunoreactivity”, and “glial cell”. This cluster 
of terms is summarized as pathophysiological mecha-
nisms of SCI, encompassing the development of the 
injury, influences of glial cells, as well as the impor-
tance of axonal regeneration (Fig.  5). Further stud-
ies for an in-depth understanding of the mechanism of 

Fig. 5 Schematic illustration of Cluster 1: “Pathophysiology of SCI”. 
The temporal window, which can be counted by day, is of paramount 
importance in the treatment of SCI. The initial mechanical trauma 
to the spinal cord initiates a secondary injury cascade in the acute 
phase (2–48 h): oedema, hemorrhage, ischemia, neuron death, 
and activation of M1 type microglia. The activation of innate 
immunity by M1 type microglia leads to the subacute phase (2d–2w): 
persistent inflammatory cell infiltration and cytokine storm, glia scar 
formation by astrocytes. Chronic SCI (> 2w): glia scar maturation, cyst 
formation, and inhibition of axon regeneration. Created with Figdraw.
com

Fig. 6 Schematic illustration of Cluster 2: “Bioactive components of EVs”. A Structure, bioactive components, and distribution in the EV. (Reprinted 
with permission from Ref. [168], Copyright 2023, Frontiers.) B EVs present in blood and cerebrospinal fluid, demonstrate stability while exhibiting 
changes in the concentration of bioactive compounds that they carry or discharge. These changes are linked to the pathological state of SCI, 
making them a potential diagnostic tool and reliable biomarker for identification. C EVs derived from diverse cells are known to contain a multitude 
of bioactive components that can activate distinct molecular pathways involved in the process of axonal regeneration and repair. Created 
with BioRender.com
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pathophysiology in SCI may be beneficial for the devel-
opment of novel therapeutic strategies.

Firstly, gaining a comprehensive understanding of the 
temporal trajectory of SCI is essential for devising effec-
tive treatment strategies that can mitigate the negative 
impact of this debilitating condition [96, 97]. The initial 
mechanical trauma to the spinal cord initiates a second-
ary injury cascade in the acute phase (2–48 h), which is 
featured with oedema, haemorrhage, ischaemia, neu-
ron death, and activation of M1 type microglia. Subse-
quently, the activation of innate immunity by M1 type 
microglia leads to the subacute phase (2d–2w), which is 
manifesting with persistent inflammatory cell infiltration 
and cytokine storm, glia scar formation by astrocytes. 

Moreover, in the long time of chronic SCI (> 2w), the glia 
scar maturation and the cyst formation finally inhibited 
of axon regeneration [98]. The temporal dimension of this 
condition refers to the critical period during which the 
injury occurs and subsequently evolves [99]. For exam-
ples, endothelial-specific expression of plasmalemmal 
vesicle associated protein-1 (PV-1) showed expression as 
early as 1-day post-SCI, with levels decreasing by 14 days, 
which was associated with microvessels in the injury 
epicenter and penumbral zone, with the time course 
and distribution correlated with progressing peripheral 
inflammatory cell infiltration [100]. Up to date, single-cell 
transcriptomic analyses provide a comprehensive map-
ping of cellular/molecular pathological changes along the 

Fig. 7 Schematic illustration of Cluster 3: “Therapeutic effects of EVs in SCI”. A EV producer cells are summarized in Fig. 6. Gene-modification and 3D 
co-cultures are regularly used to further enhance cellular loading of known biological mediators. B For functional cargo makeup on EV surface, 
techniques are utilized such as surface modification, passive incubation, pH gradient, sonication, electroporation. C For clinical use of engineered 
EV, local injection and vein injection are effective ways, and hydrogel implantation can achieve sustained controlled release. D EVs have been 
reported of therapeutic effects such as immunomodulation, glia cell proliferation, and finally axonal regeneration. Created with BioRender.com
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temporal axis after SCI [101]. As a result, the manifesta-
tion and progression of SCI represents a complex process 
that is influenced by a multitude of factors [101, 102]. 
And this timeframe is of paramount importance, as it 
plays a crucial role in determining the extent of the dam-
age and the potential for recovery.

Secondly, it is important to note that glial cells play a 
crucial role in shaping the microenvironment surround-
ing axons [103]. Glial cells have both beneficial and det-
rimental effects on the recovery process of axons, when 
the level of immunoreactivity is raised. The heightened 
immunoreactivity in glial cells can be observed as soon 
as 1  day after the injury and remains present for an 
extended period of time [104]. In addition, the inciting 
traumatic incident and its resulting neurophysiological 
disturbance elicit immune, endocrine, and multisystemic 
dysregulation, subsequently impacting the patient’s men-
tal state and overall health [105]. Therefore, it is essential 
to understand the immunoreactivity that arises after such 
injuries in order to develop effective treatments and ther-
apies. Gaining insight into immunoreactivity after SCI 
will facilitate the development of treatments that can aid 
in the recovery process of those suffering from neurologi-
cal disorders [106].

Finally, regeneration of axons is a primary focus and 
challenge in the treatment of SCI [107]. Axons have a cru-
cial function to transmit messages between nerve cells, 

and their proper functioning is necessary to maintain 
the sensation and movement of the human body [108]. 
However, SCI can cause extensive damage to axons, lead-
ing to a significant reduction in a patient’s ability to feel 
or move [109, 110]. Therefore, the discovery of effective 
methods to stimulate the regeneration of axons within 
the spinal cord is of utmost importance to researchers 
and clinicians. This research area holds immense poten-
tial to enhance the quality of life of SCI patients, and as 
such, this field of study should be given due attention and 
investment [111–113].

Cluster 2: “bioactive components of EVs”
Cluster 2 is characterized by the core keywords “vesi-
cle”, “source”, “miRNAs” and “biomarker”. In this cluster, 
bioactive components of EVs can be summarized for the 
usage of diagnosis and treatment (Fig. 6).

On one hand, the identification of a biomarker for 
SCI diagnosis could be achieved by analyzing the con-
tents of EVs. These vesicles were found to carry specific 
microRNAs (miRNAs) [114], lncRNAs [3] and proteins 
that reflect the physiological state of the injured tissue 
[69]. From analyzing SCI-induced changes in circulat-
ing plasma EVs, it resulted in multifaceted changes in 
total plasma EVs at 1d post-injury including a decrease 
of miR-206, miR-145-5p, miR-34c-5p, miR-214-3p, miR-
132-3p, miR-24-3p, miR-532-5p, and miR-22-3p, and 

Fig. 8 Top 20 keywords with the most robust citation bursts
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an increase of miR-125b-5p, miR-47, miR-996-3p, miR-
451a, miR-21-5p, miR-296-3p [60, 115]. By pinpointing 
the biomarkers present in these vesicles, it could be pos-
sible to establish a diagnosis for spinal cord injury with 
a higher degree of accuracy, and ultimately facilitate the 
development of novel therapies [116–119].

On the other hand, EVs derived from various sources 
can be useful for treating SCI. EVs exert their effects 
through enhancing cell communication, promoting 
regeneration, and reducing inflammation in injured tis-
sues, which inherited from the parent cells [107, 120–
126]. The source of EVs should be carefully considered 
before clinical applications as it may have an impact on 
their therapeutic efficacy. The sources of EVs such as 
mesenchymal stem cells [26, 49, 127–135], neural stem 
cells [136–139], and Schwann cells [52, 140, 141] have 
shown promising results in promoting regeneration and 
functional recovery. And for therapeutic cargos, the 
bibliometric data in this study showed that “miRNAs” 
appeared 32 times [65, 142, 143], and the most represent-
ative one is the miR-216a-5p studied by Prof. Liu [45]. 
Therefore, research in this area holds significant promise 
for the development of more effective diagnostic tools 
and treatments for SCI patients.

Cluster 3: “therapeutic effects of EVs in SCI”
Figure 4A illustrates the distinguished keywords in Clus-
ter 3 as “bone marrow mesenchymal stem cells”, “angio-
genesis”, “apoptosis”, “polarization”, “migration”, and 
“hydrogel”. The focus of this particular cluster is to elu-
cidate the concept of “therapeutic effects of EVs in SCI”. 
To provide a comprehensive understanding of this topic, 
we intend to delve into four distinct facets: the use of 
EVs producer cells, functional cargo makeup on EVs sur-
face, EVs delivering, and EVs treating effects (Fig. 7). By 
exploring these areas, we aim to present a well-rounded 
perspective on the potential benefits and limitations of 
EVs-based therapies for SCI.

Initially, EVs producer cells are summarized in Fig.  6. 
It is imperative to emphasize the importance of MSCs 
regarding the application of EVs. Scientific researches 
have demonstrated that EVs originating from MSCs, 
particularly those from bone marrow MSCs, possess a 
remarkable ability to modulate the immune system, effec-
tively controlling the inflammatory damage that results 
from SCI [144–148]. Additionally, MSC-derived EVs 
have been shown to stimulate angiogenesis, promote the 
proliferation of oligodendrocytes, facilitate axonal regen-
eration, remyelination, and mitigate fibrosis, thereby 
promoting the healing of neurons [107, 149–153]. These 
findings, supported by numerous studies and publica-
tions, highlight the potential of EVs derived from MSCs 
as a critical therapeutic tool for SCI. Additionally, to 

enhance cellular loading of known biological mediators, 
gene-modification and three-dimensional co-cultures 
are regularly used. Studies showed that EVs derived from 
CD73 modified human umbilical cord MSCs amelio-
rated inflammation after SCI [26], and EVs enriched with 
miR-219a-5p using a gene-modified HEK293T cell line 
improved experimental autoimmune encephalomyelitis 
[154]. And three-dimensional microenvironments pro-
vide increased control over spatial distribution of mate-
rials (e.g. bioactive components, cells, drug depots, etc.) 
that might improve the therapeutic effects of EVs [155, 
156]. As a result, cells source and cells microenviron-
ments are critical determinant of EV bioactivity.

EVs can be further modified to act as nanodrug carriers 
and have shown therapeutic potential for central nerv-
ous system disorders. Modified EVs function through the 
nucleic acids (mRNA, microRNA, non-coding RNAs) 
and proteins they transport [19, 65]. Considering that the 
standard loading of endogenous non-coding RNA into 
EVs can be as low as a single functional copy of a specific 
miRNA per vesicle, this may not result in a significant 
alteration of gene expression in the intended recipient 
cells [157]. Therefore, it becomes imperative to increase 
the potency of EVs by enhancing their ability to carry and 
deliver therapeutic cargo. Several techniques are utilized 
for functional cargo makeup on EV, such as surface mod-
ification, passive incubation, pH gradient, sonication, and 
electroporation [115, 158].

In addition, it is noteworthy that hydrogels have been 
established as a suitable medium for delivering EVs to 
injury sites. The use of hydrogels holds immense value 
as it enables the targeted delivery of therapeutic agents 
to specific regions of the injury site. Additionally, the 
sustained and controlled release of these agents from 
hydrogels further enhances the potential effectiveness of 
treatment. Relevant scholarly sources [85, 106, 120, 131, 
149, 159, 160] have also supported this notion. Conse-
quently, the utilization of EVs holds immense promise for 
the development of therapeutic interventions aimed at 
improving outcomes for individuals with SCI [85].

Finally, EVs-mediated signaling targets CNS-specific 
regenerative processes after SCI, such as immunomodu-
lation, remyelination, glial scar formation, and axonal 
regeneration. It is due to their ability to cross the blood-
spinal cord or blood–brain barrier, as evidenced in stud-
ies [161–165]. Profiling of EVs associated cargo can be 
used to identify and validate any critical bioactive com-
ponents that may mediate therapeutic benefit.

Strengths and limitations
In this study, the combination of bibliometrics and visual 
analysis can provide readers with systematic information 
on the study of EVs in SCI, helping them to easily access 
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the progress and trends of research in this field. Addi-
tionally, our work can provide potential partnerships as 
well as reliable information for scientists and funding 
agencies, as it based on different regional, institutions, 
and researcher stratification.

However, there are some limitations in this study. 
First, only English papers from the WoS database were 
included, and papers in other languages failed to be 
included in the study. The concept of Science Citation 
Index is based on Bradford’s law in bibliometrics, which 
can be used to define a core set of journals or publica-
tions, and the journals included in the WoS Science Cita-
tion Index Extended (SCI-E) database are described as 
world-leading journals due to their rigorous selection 
process [166]. Thus, publications included in WoS can be 
representative of research in the discipline. Second, new 
papers published after the search date were not included 
in the study because the database was kept open [167]. 
Moreover, the growth trend of the paper may last longer 
than the mathematical model predicts.

Conclusion
Since 2015, there has been a notable increase in the 
number of publications in the field of EVs in SCI, with 
Mainland China and the United States emerging as high 
productivity nations. As research progresses, there has 
been a shift in focus towards investigating mechanisms of 
injury mitigation and the integration of innovative mate-
rials. It is expected that institutions will allocate greater 
resources towards the advancement of EVs-loaded 
hydrogel therapy. To achieve substantial advancements 
in this area, it is recommended to designate emphasis 
on key topics such as “glial cells”, “neuroregeneration”, 
“angiogenesis”, “cell scorching”, “cell communication”, and 
“hydrogels”.
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