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Exosome, the glass slipper for Cinderella G

of cancer——Dbladder cancer?
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Abstract

Exosomes are lipid bilayer vesicles with a diameter of 40-100 nm secreted by almost all cells. They have been

found play crucial regulatory roles in various diseases. With the development of exosomes engineering technol-

ogy, exosome-based drug delivery has also rapidly evolved. Bladder cancer is a worldwide disease with high mor-
bidity and recurrence but lack of funding, so it is also called Cinderella. Some explorations have demonstrated

that exosomes are important in the development, prognosis, diagnosis and drug delivery of bladder cancer. With

the rapid development of Mass spectrometry and next-generation sequencing, increasing numbers of differentially
expressed molecules derived from exosomes have been found in bladder cancer. Exosomes and their contents are
largely involved in bladder cancer progression, engineering of these exosomes with the targeted genes improves
their potential for drug delivery of bladder cancer. Furthermore, exosomes and their contents are relate to many char-
acteristics of bladder cancer. Herein, we briefly search 59 researches to explore the cargoes encapsuled in exosomes
of bladder cancer patients. We also summarize the biogenesis, function, expression profiles, engineering approaches
and biological mechanisms of exosomes and their contents for the diagnosis, prognosis and drug delivery for bladder
cancer. We aim to make it clear whether exosomes are the glass slippers of Cinderella.
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Background

Exosomes are spherical lipid bilayer vesicles with a diam-
eter of 40-100 nm [1]. “Exosome” was first put forward
by Trams et al. in 1981, referred as vesicles derived from
plasma membrane which might play important roles in
pathological and physiological function [2]. Though the
concept “exosome” was widely used, ISEV 2018 guide-
lines suggested that it should be replaced by the term
“small Extracellular Vesicles (SEVs)” [3]. For better dis-
tinction, we still refer it as “exosome” in this review. As
a subtype of extracellular vesicles, exosomes distinguish
themselves from microvesicles (MVs) and apoptotic bod-
ies based on their biogenesis, size, contents and functions
[4].The cargoes of exosomes include nucleic acids, lipids,
cytokines and proteins [4]. Exosomes are immunogenic
and can protect their contents from lysosomal degrada-
tion [5]. Exosomes have been found to play important

roles in the occurrence and development of a variety of
diseases through the cargoes they wrapped. More and
more studies have been conducted to explore the possi-
bility of exosomes as a treatment to cure a variety of dis-
eases [6].

Bladder cancer is the 4th most common male cancer
and 9th most common female malignancy, however, the
clinical outcomes remained stagnant because of the lack
of research funding. So, bladder cancer is also called Cin-
derella [7]. As a result, there are many unanswered ques-
tions associated with bladder cancer and needed to be
explored. Recently, increasing studies have shown that
exosomes play important roles in the pathological and
physiology process of bladder cancer [8]. Exosomes can
be used as liquid biopsy markers for diagnosis or prog-
nosis of bladder cancer [9]. Furthermore, exosomes have
been proposed as therapies for bladder cancer because
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they could be used for drug delivery [9]. In this review,
we summarize the characteristics of exosomes and appli-
cations of engineered exosomes for drugs delivery in
diseases, focused on the profiles, functions and clinical
applications of exosomes in bladder cancer, we wonder
whether exosomes can be the glass slippers of bladder
cancer.

Biogenesis of exosomes

The biogenesis of exosomes is intensely regulated by
many cell-specific receptors and signaling pathways [10].
The first step of exosome biogenesis is the fusion of endo-
cytic vesicles and then form early endosomes (EE) [11].
There are two pathways for EEs, one way is called “recy-
cling endosomes’, in which EEs can return the cargoes
involved in them to the plasma membrane. Or EEs can
change into “late endosomes’, which also called multi-
vesicular bodies (MVBs) through Rab5. Multivesicular
bodies and late endosomes are a subset of endosomal
compartments rich in intraluminal vesicles (ILVs) [12].
ILVs are originated in the inward budding of endoso-
mal membranes, and first discovered by Pan BT et al. in
mature reticulocytes [13].

The sorting of cargoes wrapped in ILVs is highly regu-
lated by many specific molecules. Endosomal-sorting
complex required for transport (ESCRT) machinery is
the main mechanism mediating ubiquitinated proteins
sorted into ILVs. ESCRT apparatus are consisted of four
complexes, ESCRT-0, ESCRT-I, ESCRT-II, and ESCRT-
III [14]. ESCRT-0 can recognize mono-ubiquitinated pro-
teins via HRS heterodimer which is a cytosolic protein
related to Clathrin. Calthrin is responsible for encoun-
tering the ubiquitinated proteins [15]. Then, the combi-
nation of ESCRT-I, ESCRT-II and ESCRT-0, binding the
ubiquitinated substrates more tightly [16]. ESCRT-III
finally helps to release the complex into endosome [17]. If
the cargoes are not de-ubiquitinated by de-ubiquitinating
enzymes (DUBs), the ILVs containing these cargoes will
be targeted to fuse with the lysosome for degradation
[18].

How are the un-ubiquitinated cargoes sorted into ILVs?
As we know, Alix is a marker protein of exosomes and it
can bind to ESCRT-III and send un-ubiquitinated mol-
ecules [19]. The ESCRT-independent pathway mainly
happens in melanosomes with the help of Pmell7 and
Tetraspanin CD63 [20].

Carolina Villarroya-Beltri et al. found that the specific
motif in non-coding RNA decides whether it will be
sorted into ILVs or not. Heterogeneous nuclear ribonu-
cleo protein(hnRNP) is a ubiquitously expressed RNA-
binding protein. Sumoylated hnRNP can recognize
EXOmotifs of EXOmiRNAs and load them into ILVs.
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Then hnRNP can interact with cytoskeletal components
to help transporting RNA to exosomes [21].

Finally, MVBs undergo two intracellular destination
either fusion with lysosomes or they can move toward
the plasma membrane and release ILVs to extracellu-
lar space as exosomes [22]. MVBs transferred to cell
periphery are induced by Rab27A/B [23], then soluble
N-ethylmaleimide(NEM)-sensitive factor attachment
protein receptor(SNARE) complex drives MVBs to dock
and fuse with the plasma membrane, then exosomes are
released to the extracellular space [24]. Understanding
the biogenesis and release of exosomes is essential for
shedding new sights on therapeutic strategies (Fig. 1).

Function of exosomes

The functions of exosomes are associated with those
of mother cells and depend on the cargoes capsuled
in them, they can be derived from and transferred to
many types of cells mediating the intercellular com-
munication between cells [25]. Several studies have
indicated that exosomes might play important roles
in immune response and infection, tumor progres-
sion, neurodegeneration, metabolic and cardiovascular
diseases and inflammatory response [26]. Though no
severe immune reaction has been observed elicited by
exosomes [27]. Recently, research found that exosomes
derived from different sources, including immune
cells, epithelial, and mesenchymal cells with cargoes
could regulate both the innate and adaptive immune
system of recipient cells [28]. C. J. E. Wahlund et al.
found that exosomes derived from antigen-presenting
cells (APCs) could induce the activation of specific T
cells via p-MHC-II (major histocompatibility complex
II with antigen peptide(p)) capsuled in exosomes [29].
R. Nandakumar et al. found that the nucleic acid exo-
somal cargo, namely DNA and miRNA of intercellular
bacteria played important roles in regulating immune
responses [30]. The studies focused on roles exosomes
playing in cancer have increased rapidly. Many stud-
ies indicated that exosomes can influence neoplasia,
tumor growth and metastasis [31]. K. Stefanius et al.
found that exosomes derived from pancreatic cancer
can initiate cell transformation by inducing mutations
in NIH/3T3 recipient cells [32]. According to M.T.Le
et al.,exosomal miR-200 derived from breast can-
cer cells can enhance the metastasis of breast cancer
[33]. What’s more, exosomes are found important in
neurodegenerative disorders mainly because of their
control of misfolded protein accumulation. It has been
found that a-synuclein was rich in cerebrospinal fluid
of patients with Parkinson or amyotrophic lateral scle-
rosis [34]. What’s more, Yingkun Hu et al. demon-
strated that exosomes could regulate the inflammatory
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Fig. 1 Exosomes biogenesis. In the endosomal system, endocytic vesicles fused with each other to form early endosomes (EE). There were many
cargoes sequestered in EE. On one hand, the ubiquitinated proteins in EE could be sorted into intraluminal vesicles (ILVs) via ESCRT machinery.

ILVs were formed through inward budding of the membrane with selected cargoes. While RNA-binding proteins heterogeneous nuclear
ribonucleoprotein (hnRNP) could recognize the EXOmotifs of miRNAs and help them sorted into ILVs. On the other hand, some cargoes could be
returned to the plasma membrane, called recycling endosomes. In addition, cargoes could also originate from trans-Golgi network and cytoplasm.
These ILVs constituted the late endosomes /multivesicular body (LE/MVBs). The ubiquitinated targeted ILVs could be degraded within lysosome

or rescue by DUBs. MVBs could also be transferred to the cell periphery via Rab27A/B. Finally, SNARE complex could help MVBs dock and fuse

with plasma membrane to release ILVs into the extracellular space as exosomes

response mainly through NF-kB signaling pathway
[26]. In addition to participating in the pathologi-
cal and physiological processes of various diseases,
exosomes also have numerous applications in clinical
settings including designing more effective personal-
ized treatments [35]. Although there have been many
studies conducted to explore the function of exosomes,
what is the core capsuled in these exosomes that maxi-
mally affect the recipient cells remains vague.

Approaches for exosomes studies

Exosomes exert their effects depending on the cargo
enclosed within them. For a long time, exosomes were
considered merely as a mechanism for transporting cel-
lular waste, however, with the development of mass
spectrometry and next-generation sequencing, the explo-
ration of exosomal contents has improved a lot [36]. The
mostly used methods for verification of exosomes include
Western blotting, NTA and TEM. Many approaches,
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including PCR, Western blotting, Northern blotting and
ELISA are widely used to validate the cargoes capsuled in
exosomes [37]. Separation of exosomes is the first step to
all the exploration and utilization, many methods on exo-
some isolation and purification poured out in these years,
namely ultracentrifugation, ultrafiltration, size-exclusion
chromatography, Immunoaffinity, polymer precipita-
tion and many commercial separation kits [38]. The large
improvements in methods and experimental approaches
help us learn the biogenesis and function of exosomes
better (Fig. 2).

Approaches of designing exosomes used for drug delivery

The characteristics of exosomes make them a suit-
able platform for drug delivery [39]. Although natural
exosomes have many advantages, they still have many
limitations for clinical application, such as low targeting
capability and a low concentration of functional mole-
cules [40]. Engineered exosomes can effectively overcome
these limitations. There are two main approaches to
designing exosomes: parental cell-based exosome engi-
neering and direct exosome engineering. The engineer-
ing procedures of the former occur before the isolation
of exosomes, while the latter occurs after the isolation of
exosomes. Parental cell-based exosome engineering can
be divided into two classes. In the first class, non-specific
way, it can be conducted through the transfection of
parental cells with plasmids or mimics of interest. These
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procedures exclude any packaging and sorting. The other
class involves specific loading of molecules, which can
also be divided into two subgroups: exosomal surface dis-
play and loading into the lumen.Exosomal surface display
utilizes exosomal signal peptides, including Lamp2b (lys-
osome-associated membrane protein 2b) fusion proteins
[41], tetraspanins (CD63, CD9, CD81) [42], GPI (glyco-
sylphosphatidylinositol) [43], PDGFRs (platelet-derived
growth factor receptors) [44], lactadherin (C1C2 domain)
[45], and VSVG (vesicular stomatitis virus glycoprotein)
[46]. Fuse an interested protein to the signal peptide can
present the protein on the exosomes’ surface. Loading
of the molecules into the lumen of exosomes is based
on molecule sorting modules (MSMs). Various methods
with different MSMs exist, including engineered ubiq-
uitin tags [47], WW tags [48], non-functional mutants
of the HIV-I Nef protein [49], EXPLORs (exosomes for
protein loading via optically reversible protein—protein
interaction) for loading proteins, and EXOtic (exosomal
transfer into cells) devices, TAT (Trans-activator of tran-
scription)—TAR (Trans-activating response RNA loop)
protein-RNA interaction strategies, and RNA binding
modules for loading RNA into exosomes [50].Techni-
cally, direct exosome engineering is simpler compared
to methods based on parental cells. In this approach,
electroporation, sonication, incubation, bio-conjuga-
tion, freeze—thaw, and extrusion can be applied directly
to design exosomes after their isolation from cells [51]
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Fig. 2 Common separation techniques. A Ultracentrifugation; B ultrafiltration; C Size-exclusion chromatography; D Immunoaffinity
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Approaches of Engineering Exosomes Used For Drug Delivery
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Fig. 3 Engineering approaches of exosomes. Two main approaches of designer exosomes include parental cell-based exosome engineering
and direct exosome engineering, in which the engineering procedures of parental cell-based exosomes occur before exosomes isolation
from cells while direct exosome engineering occur after exosomes isolation. There are also many different methods in each class. GP/
Glycosylphosphatidylinositol, PDGFRs Platelet-derived growth factor receptors, VSVG Vesicular stomatitis virus glycoprotein, MSMs Molecule
sorting modules, EXPLORs Exosomes for protein loading via optically reversible PPIs, EXOtic Exosomal Transfer Into cells, TAT-TAR Trans-activator
of transcription, Trans-activating response RNA loop, RBP RNA binding proteins;

(Fig. 3). The emergence and application of increas-
ingly numerous and advanced engineered methods pro-
vide better tools and prospects for exosome-based drug
delivery.

Bladder cancer(Cinderella)

Bladder cancer is the 4th most common cancer in male
and 9th in female. The prevalence and incidence keep
increasing worldwide. However, the clinical outcomes
have stayed static for 25 years for the small investment
in bladder cancer research, therefore, bladder cancer
is also known as “Cinderella’; often neglected though
important [7]. There are three main pathological types
of bladder cancer of which bladder urothelial carcinoma
(BUC) accounting for 90% [52]. BUC can be composed
of muscle-invasive BCa (MIBC) and non-muscle-invasive
BCa (NMIBC) and NMIBC accounts for approximately
75% [53]. The treatments of bladder cancer were often
endoscopic resection and adjuvant intravesical therapy
and patients with advanced disease were treated with
immunotherapy. Though the treatments for BCa have
improved a lot through years, postoperative recurrence
and distant metastasis are still severe, making it of great
importance to explore the potential ways for treatment,
early diagnosis, prognosis and prevention [54, 55].

Researches of exosomes in BCa
A full review was conducted with Web of science, Pub-
Med and Embase to search reports with the key words
(“exosomes” or “extracellular vesicles”) and (“bladder
cancer” or “bladder urothelial carcinoma” or “blad-
der neoplasm” or “bladder tumor”) for 10 years since
January 2013-March 2023 Additional file 1. The studies
finally involved in this review are listed in Additional
file 2: Table S1. Research associated with exosomes and
their contents involved in bladder cancer has increased
annually. Collectively, recent studies validate exosomes
derived from bladder cancer cells, or biofluid of bladder
cancer patients can wrap up mRNAs, miRNAs, IncR-
NAs, proteins and bacteria which are crucial in the for-
mation and metastasis of bladder cancer [56, 57].
Increasing methods have been conducted to explore
the contents of exosomes. RNA sequencing (RNA-seq),
microarray, 16S metagenomic sequencing and Mass
Spectrometry are widely used for identification and
quantification of exosomes. Western Blotting, Reverse
transcription polymerase chain reaction (RT-PCR),
and Enzyme linked immunosorbent assay (ELISA) are
main approaches used to further verify the contents of
exosomes.
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To explore the function and application of exosomes
more comprehensively, conveniently and efficiently,
numerous exosomes-associated public databases have
been established, including EVmiRNA, ExoRBase, Exo-
Carta, EV-TRACK, MiRandola and so on. For example,
ExoRBase contains the information of exosomal cir-
cRNA, IncRNA and mRNA from human serum sam-
ples. EV-miRNA provides organ- and disease-associated
miRNA annotations [58-66]. The characterization of
other databases is listed in Table 1.

The profiles of exosomal cargoes in bladder cancer

Many novel dysregulated exosomal cargoes have been
found in bladder cancer cell lines and biofluid of blad-
der cancer patients, demonstrating that exosomes play
important roles in bladder cancer development and
progression. From Additional file 2: Table S1, we found
Joanne L et al. presented the first proteomics analysis of
exosomes derived from bladder cancer cell lines in 2010,
they reported 353 high quality identifications of which 72
proteins were not found by other human exosome stud-
ies before, what’s more, authors found that basigin 5T4
and galectin-3 were confirmed positive in exosomes
derived from urine of bladder cancer patients, indicat-
ing they might play important roles in bladder cancer
formation [67]. Dennis et al. found 58 significantly dif-
ferent exosomal proteins derived from bladder cancer
cells with or without the metastatic process, indicating
exosomes could affect the metastasis and progression of
bladder cancer [68]. Microarray showed urinary exoso-
mal miR-375 and miR-146a could be used as biomark-
ers for high-grade and low-grade bladder cancer [69].
In another study, next generation sequencing revealed

Table 1 Database for exosomes research
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that HOTAIR and four additional IncRNAs, including
HYMAI, LINC00477, LOC100506688 and OTX2-AS1
enriched in the exosomes of UBC patients, suggesting
that UE-derived IncRNA could be served as biomark-
ers and therapeutic targets [70]. In addition, second-
ary bioinformatic analyses based on Gene Expression
Omnibus (GEO), the Cancer Genome Atlas (TCGA) and
exosome-related databases were used to identify differ-
entially expressed exosomal protein, mRNAs and non-
coding RNAs. Nitu Kumari et al. found that exosomal
catanin, PAK1, CDC42 and NF2 were overexpressed in
bladder cancer patients via Exocarta database and veri-
fied them in the urine samples of bladder cancer patients
[71]. Bioinformatic analysis of the tissues of bladder can-
cer patients constructed a panel of five urinary exoso-
mal mRNAs, then exosomes derived from urine samples
were used to validate the ROC of the panel, indicating the
panel a potential diagnosis of bladder cancer [70]. RNA-
seq, or Mass spectrometry data analysis, paired t tests or
non-parametric Mann-whitney U tests are conducted to
analyse differences between groups in microarray. Fold
change>2.0 is treated as significantly different and the
false discovery rate (FDR) is recommended to be<0.05.
For RT-PCR or Western blotting of exosomes, an exter-
nal reference is usually used instead of internal reference.

Biological functions of exosomes in bladder cancer
Exosomes regulate the hallmarks of bladder cancer
Proliferative signaling, Growth suppressors, Cell death,
Replicative immortality, Angiogenesis and Invasion and
metastasis are important hallmarks of bladder cancer
[72]. Here, we summarize the exosomes involved in the
progression of bladder cancer to explore the association

Database URL Function Ref./PMID
EVMIRNA http://bioinfo.life.hust.edu.cn/EVmMIRNA/  Database contains miRNA expression profiles in EVs from 17diseases 30335161
ExoRBase http://www.exorbase.org/ Database is a repository of circular RNA (circRNA), long non-coding 34918744
RNA (IncRNA) and messenger RNA (mRNA) derived from human blood
exosomes
Exocarta https://www.exocarta.org/ Database provides the contents that were identified in exosomes in multi- 26434508
ple organisms
EV-TRACK http://evtrack.org/ Database contains the methodological parameters of EVs related research 28245209
EMBL-EBI QuickGO  https://www.ebi.ac.uk/QuickGO/ Database provides annotation for exosomal proteins 34697638
Vesiclepedia http://www.microvesicles.org/ Database contains proteins, mMRNA, miRNA, lipid, apoptotic blebs 26861301
and microparticles
Urinary exosome  http://hpcwebapps.cit.nih.gov/ESBL/ Database contains exosomal proteins from urine of healthy volunteers 15326289
protein database  Database/Exosome/
ExRNA Atlas http://exrna-atlas.org/exat/ Database includes miRNA derived from biofluids of human and mouse 30668638
MiRnadola http://mirandola.iit.cnr.it Database provides comprehensive manual classification of various types 29036351

of extracellular circulating non-coding RNA

URL uniform resource locator
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between exosomes and the hallmark features of cancer
(Fig. 4). There are more and more studies indicated that
exosomes could be involved in cell proliferation, apopto-
sis, invasion, migration, metastasis, angiogenesis and cis-
platin chemoresistance of bladder cancer. We summarize
the main signaling pathways involved in these processes
in Fig. 5.

Cell proliferation

Bladder cancer can sustain proliferative states through
activating cell proliferation signaling pathways [55]. Nor-
mal cells derived exosomes could regulate NF2 to inhibit
tumor growth and progression of bladder cancer [71].
The PI3K/AKT/NE-kB/STAT3 signaling pathway is an
important regulatory pathway. FAN LIN et al. found that
exosomal miR-21 derived from bladder cancer cells could
promote M2 phenotypic polarization through inhibiting
phosphatase and tensin homolog activation of PI3K/AKT
pathway, and finally lead to cancer progression [73]. Phos-
phatase and tensin homologue (PTEN) is a negative reg-
ulator of PI3BK/AKT pathway. Rui Zheng et al. found that
exosomes derived from normal cells transferred PTENP1

Cell proliferation
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to bladder cancer cells, then exosomal PTENP1 acted
as a miR-17 decoy to regulate PTEN, suppressing blad-
der cancer progression [74]. Consistent with the results,
Shu -Cheng Liu et al. revealed BMSC-derived exosomal
PTENP1 suppressed the bladder cancer by upregulating
the expression of SCARAS5, making it a potential target
for bladder cancer therapy [75]. Exosomes derived from
MB49, a kind of mouse bladder cancer cells, induced
macrophage M2 polarization via down-regulation of
PTEN and activation of AKT/STAT3/6 signaling [76].
MiR-663b generated from exosomes of bladder cancer
cells could act as a tumor promoter via targeting Ets2-
repressor factor [77]. Exosomal miR-133b could suppress
bladder cancer proliferation by upregulating dual-spec-
ificity protein phosphatasel(DUSP1) [78]. Cheng Shuo
Huang et al. presumed that exosome-derived LINC00960
and LINC02470 from high-grade bladder cancer cells
promote the malignant progression by upregulating
B-catenin signaling, Notch signaling, and Smad2/3 sign-
aling [79]. Exosomal miR-375-3p and LINCO01133 were
also found to be a suppressor of bladder cancer and could
inhibit proliferation and metastasis via Wnt/p-catenin

miR-21,miR-663b, miR-133b,miR-375-3p,miR-93-5p
PTENP1/PTEN, EphA2, CDC6
LINC00960,LINC02470,LINCO01133

miR-663b, EDIL3,HOTAIR, ELNAT 1, KRT6B

miR-375-3p,miR-4792

miR-375-3p,miR-133b

GFAT1, EDIL-3,CTSB

“«

LINCO00355

Fig. 4 The signaling pathways involved in exosomes regulating bladder cancer progression. Exosomes and their contents can regulate cell
proliferation, cell cycle, invasion and migration, metastasis, angiogenesis and cisplatin chemoresistance in bladder cancer. The main signaling
pathways involved in these processes including Wnt/B-catenin pathway, PI3K/AKT pathway, STAT3 pathway and NF-kB signaling pathway
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Fig. 5 The relationship between exosomes and bladder cancer. Exosomes and their contents regulate cell proliferation, apoptosis, invasion,
migration and metastasis, angiogenesis, and cisplatin chemoresistance in bladder cancer

pathway [80, 81]. What’s more, exosomal miR-93-5p sup-
pressed BTG2 expression and promoted bladder cancer
cells progression, exosomal EphA2 promoted the inva-
sion and migration of bladder cancer cells, exosomal
CDC6 effectively repressed the malignant process of
bladder cancer cells [82—-84].

Additionally, dysregulated of cell cycle regulators
played important roles in bladder cancer cell growth
and progression [85].C-MYC and Cyclin D1 are two key
genes regulating the cell growth [56]. As reported by Qi
Li, exosomal miR-375-3p could block the expression of
Cyclin D1 and c-Myc and then inhibited cell growth [80].
Jian-Hong Wu et al. also provided the first evidence that
the exosome-mediated delivery of miR-4792 could down-
regulate c-Myc, inhibiting aerobic glycolysis [86].

Apoptosis

Apoptosis is one of the major mechanisms resulting in
controlled cell death which can be controlled by cancer
cells. Many tumor cells can avoid apoptosis, thus they
can multiplicate infinitely [87]. Qi Li et al. found that

exosomal miR-375-3p suppressed bladder cancer growth
through promoting apoptosis in BC cells [80]. Blad-
der cancer cell-derived exosomes could inhibit tumor
cell apoptosis via activating Akt and ERK pathways [88].
Chia-Hao Wu et al. demonstrated that tumor-derived
extracellular vesicles (TEVs) could promote malignant
transformation of predisposed cells by inhibiting pro-
apoptotic signals [89]. According to Xiaoxiao Cai et al.,
exosomal miR-133b could induce apoptosis in BC cells
[78].

Invasion and metastasis

The invasion of tumor cells into lymphatic and blood
vessels is important for the metastasis of solid tumor
to distant organs [90]. While epithelial-mesenchymal
transition (EMT) plays an important role in the inva-
sion and metastasis process, for which epithelial cells
lose their cell polarity and cell-cell adhesion [91].
Dennis et al. found the exosomal proteins derived
from bladder cancer cells with or without metastasis
were significantly different, indicating the important
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roles these proteins might play in the metastasis pro-
cess [68]. Carla et al. revealed that exosomal EDIL3
derived from bladder cancer could activate epidermal
growth factor receptor signaling which induced cell
migration [92]. CA Franzen et al. demonstrated that
exosomes derived from bladder cancer cell were able to
induce the expression of several mesenchymal markers
in recipient urothelial cells [93]. Claudia et al. showed
that IncRNA HOX transcript antisense RNA(HOTAIR)
was increased in exosomes derived from the serum of
bladder cancer patients, loss of this IncRNA in UBC
cells altered expression of epithelial-to-mesenchyme
(EMT) [70]. EV-mediated ELNAT1 was proved to pro-
mote lymphangiogenesis and LN metastasis in bladder
cancer via UBC9/SOX18 regulatory axis, EV-medi-
ated ELNAT1 was also correlated with a poor prog-
nosis [94]. Consistent with these results, Changhao
Chen et al. declared that bladder cancer cell-derived
exosome-mediated lymphangiogenesis promoted LN
metastasis in bladder cancer through a VEGF-C-inde-
pendent manner [95]. MicroRNA (miR)-663b was found
increased in plasma from patients with bladder can-
cer (BC), while it could promote epithelial-mesenchy-
mal transition via targeted Ets2-repressor factor [78].
KRT6B, a molecule significantly related to epithelial-
mesenchymal transition and immune mechanisms, was
detected elevated in bladder cancer-derived exosomes,
indicating its crucial role in the invasion and metastasis
of bladder cancer process [96].

Angiogenesis

The growth and progression of tumor are highly relied
on the nutrients and oxygen supplied by angiogenesis.
Without angiogenesis, the size of tumor will only be lim-
ited to 200 um [97]. Vascular endothelial growth factor
(VEGE) is one of the most potent inducers of angiogen-
esis [98]. Exosomal GFAT1 derived from bladder cancer
was reported to promote tumor angiogenesis by induc-
ing HBP-related metabolic reprogramming and SerRS
O-GlcNAcylation in endothelial cells, this may shed light
on novel targets for bladder cancer antiangiogenetic ther-
apy [99]. As illustrated by Carla J et al., exosomes isolated
from high grade bladder cancer cells could promote angi-
ogenesis and migration of bladder cancer cells. Exosomal
EDIL-3 was one of the proteins that activated epidermal
growth factor receptor signaling, inducing bladder can-
cer cell migration [92]. According to Xinyuan Li, cath-
epsin B (CTSB) was upregulated in exosomes derived
from serum of bladder cancer patients, directly ingesting
EV-CTSB prominently activated TPX2-mediated phos-
phorylation of the AURKA-PI3K-AKT axis, increased
VEGFA expression, finally promoted angiogenesis [100].
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Cisplatin chemoresistance

Cisplatin resistance is a problem for bladder cancer
although bladder cancer is relatively sensitive to chemo-
therapy. Previous studies have indicated that exosomes
can promote chemotherapy resistance [101]. Consistent
with these results, Guangyue Luo found that exosomal
LINCO00355 derived from CAFs promoted the cisplatin
chemoresistance of bladder cancer via the miR-34b-5p/
ABCBI axis [102].

Clinical significance of exosome in Bca

Bladder cancer is the second most common urology
malignancy worldwide [103]. The high mortality makes it
important to promote its early diagnosis and prognosis.
Currently, the gold standard of the diagnosis in bladder
cancer is cystoscopic examination of bladder and histo-
logical evaluation of the bladder tissue [104]. However,
it is an invasive examination. Urine cytology is another
common method for bladder cancer diagnosis, however
its low sensitivity for low-grade tumors prevents it from
widely used [105]. Exosomes are membrane-bound vesi-
cles that most cells release into body fluids and they have
been treated as mediators of tumor progression over past
decades [106]. What's more, exosomes are stable and they
can protect their cargoes from degradation by enzymes
[107]. Therefore, many studies have focused on the clini-
cal applications of exosomes (Fig. 6). Exosomes with the
potential of diagnostic, prognostic value of bladder can-
cer are listed in Table 2. As mentioned before, exosomes
play key roles in bladder cancer, promoting the release of
exosomes or inhibiting the secretion of exosomes might
be an effective strategy for inhibiting the progression of
bladder Cancer [108]. What’s more, exosomes can be
designed to be loaded with exogenous RNAs and pro-
teins for targeted therapy [109]. Engineered exosomes
have been widely applied in bladder cancer, Liu et al.
found Exo-miR-138-5p engineered from adipose derived
mesenchymal stem cells(ADSCs) could penetrate tumor
tissues and suppress the growth of xenograft tumors,
what’s more, Mesenchymal stem cells-derived exosomal
microRNA-139-5p restrained tumorigenesis in bladder
cancer [110, 111].

Exosomes are significantly related to characteristics
of bladder cancer. Fathia et al. observed that urine and
serum exosome level is correlated with the tumor stages,
indicating it can be used as biomarker for prognosis and
diagnosis [108]. The contents wrapped in exosomes have
been found to be involved in the clinical applications of
bladder cancer. a2M (alpha-2-macroglobulin) has been
reported to be upregulated in the urine exosomes of
bladder cancer patients [112]. Moreover, a three exoso-
mal IncRNA panel (RMRP, UCA1 and MALAT1) are
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Fig. 6 Clinical applications of exosomes in bladder cancer. Exosomes and their contents can be used as biomarkers for prognosis and diagnosis
in bladder cancer. They also have the potential to become targeted therapy for bladder cancer

elevated in bladder cancer, and is correlated with the
tumor stage of bladder cancer [113]. Furthermore, the
exosomal proteins derived from bladder cancer urine
and healthy controls are significantly different, indicating
their potential as a noninvasive biomarker [114]. Simi-
larly, urine exosomal NMP22 is upregulated in bladder
cancer than normal samples [115]. Chenchen et al. dem-
onstrated that exosomal TERC is significantly upregu-
lated in the urine of bladder cancer patients, what’s more,
it has a tight correlation with tumor grade [116]. Exoso-
mal EDIL-3 has been shown to be overexpressed in urine
samples of bladder cancer patients and its levels are asso-
ciated with pathologic grade [92]. Similarly, exosomal
miR-375 is overexpressed in bladder cancer, and its levels
are correlated with high-grade tumor. In contrast, miR-
146a is downregulated in bladder cancer, and its expres-
sion levels are significantly correlated with low-grade
tumor [69]. Sophie et al. revealed that exosomal miR-
146b-5p and miR-155-5p derived from urine of bladder
cancer patients have a positive correlation with mus-
cle invasion of tumor [117]. According to Hao Lin et al.,
the expression of exosomal miR-93-5p and miR-516a-5p
is higher in bladder cancer, and the level of exosomal
miR-93-5p is associated with muscle invasion of tumor
[82]. The expression levels of exosomal KLHDC7B,
CASP14, PRSS1, MIR205HG and GAS5 have been found
increased in bladder cancer urine samples, furthermore,
the expression of these five molecules are significantly
related to tumor stage, grade and hematuria degree [118].

In addition, exosomal TUG-1 is detectable in bladder
cancer urine and serum at an early stage [119]. Exosomal
BCYRNI has been reported to be associated with lymph
node metastasis of bladder cancer, and, higher expression
of BCYRNI1 represented poorer prognosis [120]. Alex-
andru et al. indicated that exosomal miR-4508 and piR-
has-5936 have a tight association of risk class and tumor
grade, while miR-4508 has a downward trend as the risk
class increased, piR-has-5936 has a upward trend as the
risk class increased [121]. Dong hyeon Lee and Xunian
Zhou both found that the unique somatic variants of
exoDNA are positively correlated with bladder cancer
[122, 123]. In addition, label-free optic redox ratio of
exosomes can also tell bladder cancer patients from nor-
mal controls [124].

There have been many studies focusing on exosomes
treated as diagnostic biomarker for bladder cancer. The
area under the receiver operating characteristic (ROC)
curve (AUC) of exosomal CEACAM1 is 0.907 [125]. The
AUC for exosomal miR-96-5p is 0.87, with a sensitivity of
82.4% and a specificity of 91.8% [126]. The AUC of com-
bined RMRP, UCA1 and MALAT1 is 0.875, with the sen-
sitivity of 80% and specificity of 81.4%, respectively [113].
The AUC of combined exosomal UCAI-201, UCAI-203,
MALAT1 and LINCO00355 is 0.96, with a sensitivity of
92% and a specificity of 91.7%, respectively [127]. The
AUC for exosomal CA9 is 0.837, with a sensitivity of
85.18% and a specificity of 83.15%, respectively [128]. The
AUC of exosomal TERC is 0.836, with the sensitivity of
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Table 2 Exosomes for clinical management of BCa
Country Age Molecules Sensitivity Specificity ~ AUC BCa
Iran BCa:55.84 ANRIL 46.67% 87.5% 07229  T1/T2
Healthy:57.4 PCAT-1 4333% 87.5% 07292
China / TERC 78.65% 77.8% 0.836 BCa/Healthy
Egypt BCa:59.5+3.2 miR-96-5p 80.4% 78.4% 0.85 BC patients/Healthy
miR-183-5p 91.8% 81.6% 0.83
miR-96-5p 88.2% 87.8% 0.87
&miR-183-5p
Egypt / Serum exosomes 82.4% 100% 0.97 BC patients/Healthy
Urine exosomes 92.6% 83.3% 0.82
China Training cohort Validation cohort mMRNA:KLHDC7B mMRNA:71.9% 95.2% 0.88 BC patients/Healthy
HCs: 457 140 HCs:474+113 %\5554 INCRNA67.1%  87.1% 0842
BCa:614+105 BCa:648+12.5 INCRNAMIR205HG Total:88.5% 833% 0924
GAS5
Japan / CEACAM 81.82% 97.87% 0.907 BC patients/Healthy
South Korea BCa:66.77+11.56 Alpha-2-macroglobulin 93.3% 34.8% 0.809 BC patients/Healthy
Healthy donors: 60.35+7.40
China / miR-93-5p 74.1% 90.2% 0.838 BC patients/Healthy
miR-516-5p 72.9% 89.9% 0.79
Japan BCa: 72.8+10.6 SLC2A1 0.64 0.75 0.7 BC patients/Healthy
GPRC5A 0.54 0.72 0.64
KRT17 0.58 0.58 0.64
South Korea BCa:66.77+11.56 Alpha-2-macroglobulin 93.3% 34.8% 0.64 BC patients/Healthy
Healthy donors: 60.35+7.40
Iran BCa:62.67+11.96 TUG-1 76.67% 77.78% 0.78 BC patients/Healthy
Healthy donors: 57.4+5.7
Japan / EphA2 61.1% 97.2% 0.79 BC patients/Healthy
China / H19 74.07% 78.08% 0.851 BC patients/Healthy
China / CA9 85.18% 83.15% 0.837 BC patients/Healthy
China BCa: 68.08+10.61 MYBL2,TK1,UBE2CKRT7,S100A2  88.89% 54.13% 0.8402  BC patients/Healthy
Healthy donors: 69.89+11.31
Iran BCa: 55.42+155.55 UCA1-201,UCA1- 92% 91.7% 0.73 BC patients/Healthy
Healthy donors: 68+ 13.56 203,MALATTand LINC00355
Iran BCa:61.28+13.01 MAGE-B4 71.7% 66.7% 0.67 BC patients/Healthy
Healthy donors: 64.42+15.53
China / MALAT1,PCAT-1 and SPRY4-IT1 72.1% 84.6% 0.844 BC patients/Healthy
China / UBC1,PCAT-1 and SNHG16 85% 78% 0.857 BC patients/Healthy
China BCa:67.0£9.8 PTENP1 65.4% 84.2% 0.743 BC patients/Healthy

Healthy donors: 66.2+10.7

78.65% and specificity of 77.78%, respectively The AUC
of combined exosomal KLHDC7B, CASP14, PRSSI,
MIR205HG and GASS5 is 0.924 [118]. The AUC of exo-
somal ANRIL is 0.7229, with a sensitivity of 46.67% and
specificity of 87.5%, respectively [129].

Exosomes can also be used to predict the prognostic
of bladder cancer. We found that upregulated exosomal
H19, BCYRNI, periostin and miR-10b-5p were reported
to predict poor overall survival (OS) [120, 121, 130,
131], while downregulated of exosomal TALDO1, miR-
185-5p and miR-106a-5p were reported to predict poor
OS [119, 121]. Cheng-shuo huang et al. revealed that

the expression of exosomal LINC00960 and LINC02470
can be used as prognostic surveillance [79]. In addition,
patients with high exosomal PCAT-1, UBC1, SNHG16
were reported to have a lower recurrence-free sur-
vival [132]. Similarly, two studies revealed that higher
expression of exosomal miR-451a with miR-486-5p and
MALATI1, PCAT1 are associated with poorer recur-
rence-free survival [133, 134]. In addition to these pub-
lished studies, we searched the registered clinical trials
website and found that SunYat-Sen Memorial Hospital
has been conducting a prospective, multicenter cohort
study in blaader cancer to explore the predictive value of
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exosomal ELNAT1 for lymphatic metastasis of bladder
cancer (Additional file 1: Fig S1).

Discussion

Bladder cancer is a worldwide disease with high morbid-
ity and recurrence, however, there are not many studies
explored on bladder cancer for the lack of funding, so it
is also called “Cinderella” [7]. The mechanism and pro-
gression of bladder cancer still remain vague. What’s
more, a noninvasive and accurate diagnosis or prognosis
biomarker and engineered exosomes for drug delivery of
bladder cancer is urgently needed. As we outlined above,
exosomes and their contents are deeply involved in the
formation and metastasis of bladder cancer, they can also
be used as the liquid biomarker for bladder cancer. Does
that mean exosome is the glass slipper of Cinderella? This
question still needs further explorations.

Exosomes are spherical lipid bilayer vesicles with a
diameter of 40-100 nm, they can be secreted from most
cells through a period of processes [135], the contents
wrapped into exosomes are sorted through ESCRT-
dependent pathway or ESCRT-independent pathway
[136]. The exosomes can protect their contents from
degradation by RNase. The isolation and purification
methods for exosomes have improved a lot over the past
decades, In addition to the methods described above,
combined application of those methods, such as com-
bined ultracentrifugation and ultrafiltration can lead to
the higher purity and quality of exosomes [137]. Further-
more, more and more Isolation Kits have been invented.

The cargoes wrapped in exosomes include almost all
kinds of RNA, proteins, lipids and so on, they play crucial
roles in the progression and metastasis of bladder can-
cer, they can also be used for diagnosis or prognosis in
bladder cancer. The studies over the past 10 years share
some common exosomal contents including MALAT],
PCAT-1 and PTENP1. Many studies have demonstrated
that these three molecules play key roles in bladder can-
cer and can be used as accurate biomarker for bladder
cancer [113, 127, 129, 132, 133]. The phosphatase and
tensin homologue (PTEN) is an essential tumor sup-
pressor [138]. It is reported to be pivotal to regulate the
receptor tyrosine kinase (RTK) PI-3 kinase (PI3K)/Akt
pathway [139]. PTENPI, the pseudogene of PTEN, is a
novel modulator of PTEN expression [140]. The rela-
tive expression of PTEN and PTENP1 change according
to the variable stages and histological grades of different
tumors [141-143]. Prostate cancer associated transcript-
1(PCAT-1) is an oncogenic IncRNA, high expression of
PCAT-1 is associated with poor overall survival of cancer.
It is also involved in Wmnt/f-catenin-signaling pathway
and participates in the cancer cell proliferation, apopto-
sis, invasion and metastasis [144].
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Metastasis associated lung adenocarcinoma transcript
1(MALAT1) is a ubiquitous IncRNA in mammals, it is
widely explored in cancer and crucial for the regulation
of cancer-related pathways. MALAT1 can modulate
many chief tumourigenesis pathways including MAPK/
ERK, PI3K/AKT, B-catenin/Wnt, Hippo, VEGE, YAP
signaling pathways, etc. [145]. What’s more, MALAT1
is reported to correlate with poor OS, RFS, DFS in vari-
ous cancers [146]. However, MALAT1 also plays a key
role in many other diseases like diabetes and neurologic
disorders, which make MALATI1 not an ideal tumor
biomarker [147, 148]. Combined some other molecules
might make the detection more accurate.

In addition to the contents wrapped in exosomes, the
properties of the exosomes themselves are also worth
exploring. The exosomes level derived from urine sam-
ples are significantly correlated with the tumor grade and
stage [108]. Jaena Park et al. found the label-free optical
redox ratio of exosomes can be used for diagnosis for
bladder cancer [124]. What’s more, engineered exosomes
have been widely used for targeted delivery of drugs in
bladder cancer, the approaches of engineered exosomes
include parental cell-based exosome engineering and
direct exosome engineering, Exo-miR-138-5p engineered
from adipose derived mesenchymal stem cells(ADSCs)
and Mesenchymal stem cells-derived exosomal micro-
RNA-139-5p have been found restrain the growth of
bladder cancer.

Conclusion

Exosomes are spherical lipid bilayer vesicles with a diam-
eter of 40-100 nm, the contents wrapped into exosomes
are sorted through ESCRT-dependent pathway or
ESCRT-independent pathway. Engineered exosomes
have been used for targeted delivery of drugs in many
diseases. They have been found to play crucial roles in
bladder cancer progression and immigration, they can
also be noninvasive biomarkers for prognosis or diag-
nosis of bladder cancer. Exosomal MALAT1, PCAT-1
and PTENP1 have been found in many studies focused
on the link between exosomes and bladder cancer, indi-
cating these three molecules participate in the progres-
sion of bladder cancer in depth. What’s more, engineered
exosomes have been widely found to play important roles
in bladder cancer. Exosomes seem to be the glass slippers
of Cinderella, although it still needs further exploration
whether the shoes fit well.
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