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Abstract 

Multi-drug resistant (MDR) bacterial infections are gradually increasing in the global scope, causing a serious bur-
den to patients and society. The formation of bacterial biofilms, which is one of the key reasons for antibiotic resist-
ance, blocks antibiotic penetration by forming a physical barrier. Nano/micro motors (MNMs) are micro-/nanoscale 
devices capable of performing complex tasks in the bacterial microenvironment by transforming various energy 
sources (including chemical fuels or external physical fields) into mechanical motion or actuation. This autonomous 
movement provides significant advantages in breaking through biological barriers and accelerating drug diffusion. 
In recent years, MNMs with high penetrating power have been used as carriers of antibiotics to overcome bacterial 
biofilms, enabling efficient drug delivery and improving the therapeutic effectiveness of MDR bacterial infections. 
Additionally, non-antibiotic antibacterial strategies based on nanomaterials, such as photothermal therapy and pho-
todynamic therapy, are continuously being developed due to their non-invasive nature, high effectiveness, and non-
induction of resistance. Therefore, multifunctional MNMs have broad prospects in the treatment of MDR bacterial 
infections. This review discusses the performance of MNMs in the breakthrough and elimination of bacterial biofilms, 
as well as their application in the field of anti-infection. Finally, the challenges and future development directions 
of antibacterial MNMs are introduced.
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Introduction
Bacterial infections are a long-term threat to human 
health, causing millions of deaths every year, and have 
become a global public health problem [1–3]. Since the 
discovery of penicillin in 1928, antibiotics have been 
proved to be the most effective way to treat bacterial 

infections [4, 5]. However, traditional antibiotics are far 
from meeting the clinical demand due to the increase of 
multi-drug resistant (MDR) bacteria caused by antibiotic 
abuse [6–9]. Over 80% of antibiotic resistance is associ-
ated with the formation of bacterial biofilms [10], which 
are surface-associated bacterial communities surrounded 
by extracellular polymeric substances (EPS). These bio-
films serve as a barrier to hinder the penetration and dif-
fusion of antibiotics [11], allowing bacteria to be almost 
1000-fold more resistant to conventional antibiotic treat-
ments [12]. Therefore, addressing the challenge posed by 
biofilm formation is of great significance for the treat-
ment of bacterial infections.

In recent years, the anti-bacterial properties of nano-
materials have garnered significant attention. These 
properties arise from the interactions between nanoma-
terials and bacteria, which result in the destruction of cell 
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structures and eventual bacterial death. The physical anti-
bacterial properties of nanomaterials, such as morphol-
ogy, optics, thermology, and mechanics, play a crucial 
role in this process [13, 14]. For instance, the nanostruc-
ture on the surface of cicada wings exhibits a great bacte-
ricidal effect on Pseudomonas aeruginosa (P. aeruginosa) 
through physical cutting [15]. Furthermore, nanomate-
rials that release specific metal ions, such as  Ag+,  Cu2+, 
and  Zn2+, can disrupt microbial protein function, impair 
membrane function, and interfere with nutrient absorp-
tion, leading to bacterial death [16]. Nanoscale antibac-
terial materials also facilitate the penetration of biofilms, 
which is advantageous for the treatment of MDR bacte-
rial infections. Nevertheless, the passive penetration of 
biofilms remains slow, inefficient, and inadequate, failing 
to completely eradicate resistant bacteria. In light of the 
rapid advancements in nanotechnology and nanomateri-
als, micro/nanomotors (MNMs) offer a novel approach 
for treating MDR bacteria by autonomously reaching 
difficult-to-access sites, including deep biofilms, and 
performing specific tasks such as antibiotic action [17, 
18]. MNMs can be customized in terms of composition, 
structure, and functionality to achieve precise motion 
control and drug delivery in complex physiological envi-
ronments. Initially, MNMs were employed as drug car-
riers to deliver antibiotics and antibacterial substances 
[19–22]. Although they exhibit excellent delivery effi-
ciency in breaking through biological barriers such as 
the gastric mucosal barrier, biofilm barrier, and blood–
brain barrier, this method proved ineffective against 
antibiotic/antimicrobial peptide insensitive bacteria. 
Therefore, researchers developed non-antibiotic anti-
bacterial phototherapy, including techniques like pho-
tothermal therapy (PTT), photodynamic therapy (PDT), 
and photocatalysis therapy (PCT), all of which induce 
bacterial apoptosis through photothermal transformation 
and the generation of cytotoxic reactive oxygen species 
(ROS) [23–25]. Nevertheless, the limited action radius 
of the photothermal effect and ROS has hindered their 
antibacterial efficacy and clinical application [26, 27]. 
This limitation is overcome by MNMs, which extend the 
action radius and enhance the antibacterial effect, pro-
viding a solution to this obstacle [28, 29]. Additionally, 
antibacterial MNMs have been employed to address two 
challenges in the field of anti-infection: superficial tissue 
infections and implant infections [30].

In this review, we first introduce the effect of MNMs 
in breakthrough biofilm, focusing on its composition, 
driving mode, power source and performance. Secondly, 
we review antibacterial strategies based on MNMs, 
including drug delivery and phototherapy, and highlight 
their principles and efficacy. And then, the application 
of MNMs in superficial tissue infections and implant 

infections were introduced, and its advantages in this 
field are emphasized (Fig.  1). Finally, opportunities and 
challenges in the design and preparation of antibacterial 
MNMs are provided, in order to promote its early appli-
cation in clinical practice and benefit patients.

Breakthrough biofilms
There is an urgent need to develop MNMs and novel 
therapies that can effectively eradicate bacteria and 
break through biofilms [31, 32]. MNMs movement is 
driven by a key factor that not only affects their break-
through performance on biofilms but also determines 
their biological function [33–35]. Based on their driving 
mechanism, MNMs can be classified into two categories: 
chemical-fuel-driven MNMs and external physical-fields-
driven MNMs [36–47]. Chemical-fuel-driven MNMs uti-
lize biocompatible components present at the infection 
site as fuel. These MNMs modify specific enzymes on 
their surface, resulting in the production of gas or chemi-
cal gradients that facilitate biofilm penetration. In a study 
conducted by Ramon et al., a pH-responsive  H2O2-driven 
MNMs (Janus Pt-MSN) was developed (Fig.  2A) [48]. 
Platinum nanodendrites (PtNDs), the driving element, 
used the high concentration of  H2O2 at the infection site 
to catalyze the production of  O2, propelling the MNMs 
to break through bacterial biofilm (Fig.  2B). Moreover, 
the ficin enzyme modified on the MNMs hydrolyzed 
EPS, which effectively destroys the biofilm and exposes 
the bacteria. At the same time, the acidic biofilm micro-
environment triggered the release of vancomycin for 
antibiotic delivery. The experiment demonstrated that 

Fig. 1 Schematic illustration of micro/nanomotors for breakthrough 
biofilm and antibacterial therapy
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the nanomotors exhibited significant diffusion coef-
ficients (7.22 ± 2.45 μm2  S−1) compared to the control 
group (1.11 ± 0.42 μm2  S−1), and achieved 82% of biofilm 
disruption and 96% reduction in staphylococcus aureus 
(S. aureus) even at relatively low  H2O2 concentrations 
(Fig.  2C). Figure  2D illustrates the successful perfor-
mance of the nanomotors. Antibiotics are not only dif-
ficult to eliminate chronic infections caused by biofilms 
but may also promote the emergence of drug-resistant 

strains. Therefore, the development of MNMs and inno-
vative therapies is crucial in addressing these challenges.

The limited sustained effects of MNMs, due to low 
concentrations of  H2O2 and limited antibiotic loading, 
necessitate the design of a cascade catalytic and non-
drug antibacterial MNMs. For example, Liu et al. devel-
oped AG-DMSNs, a self-catalytic asymmetry nanomotor, 
to eradicate biofilm using the nitric oxide (NO) gener-
ated by the cascade reaction, thereby achieving effective 

Fig. 2 Breakthrough biofilm strategy based on MNMs. A Schematic illustration of the structure of Janus Pt − MSN. B Resistance of biofilms 
to different antimicrobial strategies. C The diffusion of Janus Pt-MSN at different  H2O2 concentrations. D Disruption of S. aureus biofilms in different 
treatment groups. E Schematic illustration of NO-driven AG-DMSNs penetrating MRSA biofilm. F Penetration of DMSNs and AG-DMSNs into MRSA 
biofilms. G Schematic illustration of  SiO2/Au nanomotors propulsion and biofilm removal under NIR irradiation. H The average velocity of  SiO2-Au 
nanomotors as a function of the NIR laser power. I Biofilm content after treatment with  SiO2-Au nanomotors under NIR irradiation. A–D Reprinted 
with permission [48].  Copyright 2023, American Chemical Society. E–F Reprinted with permission [49]. Copyright 2022, Wiley–VCH. G-I Reprinted 
with permission [55]. Copyright 2023, Wiley–VCH
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antibacterial therapy (Fig.  2E) [49]. AG-DMSNs, syn-
thesized by loading L-arginine (L-Arg) and gold nan-
oparticles (AuNPs) on dendritic mesoporous silica 
nanoparticles (DMSNs), possess properties that simu-
late glucose oxidase (GOx). Consequently, AG-DMSNs 
can consume glucose to produce  H2O2, which in turn 
oxidizes L-Arg and leads to NO production. The result-
ing NO not only induces autonomous movement to 
penetrate the biofilm deeply but also eradicates the bio-
film and kills embedded bacteria by generating oxida-
tive byproducts (nitrous oxide and peroxynitrite), which 
cause bacterial membrane destruction, DNA fragmenta-
tion, and protein dysfunction. In the methicillin-resist-
ant S. aureus (MRSA) biofilm model, AG-DMSNs were 
observed at a depth of 7.1 µm within 35 min of incuba-
tion, while DMSNs diffused only to a depth of 2.2  µm, 
indicating the excellent penetration and motion capabili-
ties of AG-DMSNs (Fig.  2F). Furthermore, AG-DMSNs 
achieved 99% anti-biofilm efficiency and reduced the 
bacterial burden by four orders of magnitude in a mouse 
wound model, highlighting the significant efficacy of 
nanomotors in combating drug-resistant bacteria.

On the other hand, external physical-fields-driven 
MNMs rely on energy input from external physical fields, 
such as light, magnetic, electric, and ultrasonic fields, 
to obtain kinetic driving force. This mechanism allows 
MNMs to effectively avoid the limitations of chemi-
cal fuels [50]. Among them, near-infrared (NIR) driven 
nanomotors are considered ideal candidates for external 
physical field propulsion [51]. Unlike chemical propul-
sion, which relies on chemical fuels, NIR-driven MNMs 
obtain kinetic driving force from an external field. This 
allows them to effectively avoid the limitations associated 
with chemical fuels [52]. Moreover, NIR-driven MNMs 
have high tissue penetration capacity, are easily obtain-
able, and cause minimal harm to the body [53, 54]. Boi-
sen et  al. developed a self-propelled mesoporous  SiO2/
Au nanomotor driven by NIR for the eradication of P. 
aeruginosa biofilm (Fig. 2G) [55]. This  SiO2/Au nanomo-
tor, with an asymmetrical structure, exhibits light-driven 
motion based on the thermophoresis mechanism, owing 
to the photosensitive properties of gold (Au). Interest-
ingly, the  SiO2/Au nanomotor is capable of remotely 
adjusting its speed by manipulating the power of the 
applied laser. At a laser power of 57.5 mW, the nanomo-
tors can achieve speeds of up to 86 μm  s−1, a speed that 
surpasses those attained in previous studies (Fig.  2H). 
The deep penetration of  SiO2/Au nanomotors through 
the biofilm matrix mechanically destroyed the biofilm, 
resulting in the eradication of P. aeruginosa biofilm by 
over 70% in just 3  min (Fig.  2I). This demonstrated the 
exceptional controllability and efficiency of NIR-driven 
nanomotors. These results demonstrated that both 

endogenous substrate-driven nanomotors and exogenous 
propulsion nanomotors have excellent performance in 
breaking through and eliminating bacterial biofilms.

Antibacterial strategy based on MNMs
In the last 5  years, antibacterial strategies based on 
MNMs have rapidly developed due to their excellent per-
formance in overcoming biofilms [56]. The transforma-
tion of these strategies has shifted from simply improving 
antibacterial drug delivery, which includes antibiotics, 
antibacterial ions, and antimicrobial peptides, to incor-
porating new antibacterial treatments like photother-
mal therapy, photodynamic therapy, and sonodynamic 
therapy.

Drug delivery based on MNMs
Wang et  al. developed a magnesium (Mg)-based micro-
motor loaded with the antibiotic clarithromycin (CLR) 
as a carrier for efficient delivery to treat Helicobacter 
pylori (H. pylori) infections (Fig. 3A) [57]. The micromo-
tor had a Janus core–shell structure with the Mg micro-
particles as the core, asymmetrically distributed  TiO2 as 
the inner shell, CLR-loaded poly(lactic-co-glycolic acid) 
(PLGA) layer, and an outer chitosan layer. In the stom-
ach acid environment, the Mg core reacted with gas-
tric acid to produce hydrogen  (H2), which propelled the 
micromotor, allowing it to penetrate the gastric mucus 
and increase retention in the mucosal layer (Fig. 3B). This 
active drug delivery system showed significant benefits 
compared to free drug delivery, with the micromotor 
increasing drug delivery and reducing H. pylori burden. 
To further enhance drug loading, Han et  al. designed a 
nanomotor with a large chamber and narrow opening 
(CLA/CaO2/Pt@Si NBs) (Fig.  3C) [58]. This nanomo-
tor consisted of silica nanobottles (Si NBs) loaded with 
clarithromycin (CLA), calcium dioxide nanoparticles 
 (CaO2 NPs), and platinum nanoparticles (Pt NPs). In the 
stomach cavity,  CaO2 consumed protons  (H+) and gen-
erated hydrogen peroxide  (H2O2), catalyzed by Pt NPs to 
produce  O2 (Fig.  3D). The resulting oxygen bubbles not 
only propelled the nanomotors but also facilitated drug 
release. The nanomotors demonstrated excellent drug 
loading and release rates, with a 10.52 wt% loading rate 
and 68.2% release rate for CLA (Fig. 3E). In mice experi-
ments, the H. pylori burden was significantly lower (2.6 
orders of magnitude) in the group treated with acid-pow-
ered nanomotors, demonstrating their effectiveness in 
drug delivery and killing bacteria.

In addition to delivering antibiotics, MNMs are also 
used for the delivery of antibacterial ions and antimi-
crobial peptides (AMPs), which overcomes the short-
comings of bacterial drug resistance and improves 
antibacterial performance and efficiency [59, 60]. For 
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example, silver (Ag) exhibits broad-spectrum antibac-
terial activity against bacterial species such as Escheri-
chia coli (E. coli), Bacillus subtilis (B. subtilis) and S. 
aureus [61]. Gu et  al. prepared a micromotor (PEDOT/
MnO2@Ag) by polymerizing the poly(3,4-ethylenedi-
oxythiophene)(PEDOT) layer and the cathodic co-elec-
trodeposition of  MnO2 and Ag to treat E. coli infection 
through the bactericidal action of  Ag+ (Fig.  3F, G) [62]. 

Due to the synergistic catalytic reaction of  MnO2 and Ag 
to  H2O2, the PEDOT/MnO2@Ag micromotor fueled by 
only 0.2%  H2O2 achieved efficient motion with a veloc-
ity of up to 122  μm   s−1 (Fig.  3H) and maintained 92% 
antibacterial performance from the on-the-fly release of 
 Ag+ ions (Fig. 3I). This provides a good reference for the 
application of antibacterial materials in treating drug-
resistant bacteria. In addition to bactericidal metal ions, 

Fig. 3 Drug delivery based on MNMs. A Schematic illustration of propulsion and drug delivery of the Mg-based micromotors. B Bright-field 
and fluorescence images of the stomach wall in control group and treatment group. C TEM images of CLA/CaO2/Pt@Si NBs. D Schematic 
illustration of propulsion and drug delivery of CLA/CaO2/Pt@Si NBs. E Release of CLA from the nanomotors in acidic and neutral pH. F SEM images 
of PEDOT/MnO2@Ag micromotors. G Schematic illustration of drive and antibacterial mechanism of PEDOT/MnO2@Ag micromotors. H Simulation 
of the velocity field. I Concentration distribution of  Ag+. J MNMs coated with AMPs for the treatment of bacterial infections. K The depolarization 
efficiency of functionalized and nonfunctionalized MNMs. L Bacterial counts in different treatment groups. A, B Reprinted with permission [57].  
Copyright 2017, Springer Nature. C–E Reprinted with permission [58]. Copyright 2021, Wiley–VCH. F–I Reprinted with permission [62]. Copyright 
2020, The Royal Society of Chemistry. J–L Reprinted with permission [68]. Copyright 2022, American Chemical Society
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AMPs have emerged as promising antibacterial agents 
due to their amphipathic character, which enables their 
interaction with and subsequent disruption of bacte-
rial membranes [63–65]. However, the clinical transla-
tion of AMPs was limited by their limited bioavailability, 
susceptibility to enzymatic degradation, and low pen-
etrability toward the target infections [66, 67]. Thus, 
efficient delivery methods are required to help these 
molecules reach their target area. Nunez et al. prepared 
a urea-fueled enzymatic nanomotor by loading ure-
ase and cationic AMPs (LL-37 and K7-Pol) onto silica-
based NPs to actively navigate toward the infection site 
(Fig. 3J) [68]. The movement of the nanomotors is driven 
by the electric field force generated by the release of ion 
products through the decomposition of urea. When 
the urease-nanomotors reach the infection site, the ini-
tial electrostatic interactions between the negatively 
charged bacterial membranes and the positively charged 
AMPs prompt them to target bacteria and trigger the 
depolarization of bacterial membranes (Fig.  3K), result-
ing in bacteria death. In a murine infection model, the 
AMPs-modified nanomotors demonstrated autonomous 
propulsion, reducing Acinetobacter baumannii (A. bau-
mannii) infections by up to 3 orders of magnitude, while 
free peptides were unable to exert antimicrobial activity 
at a distance from the initial administration site (Fig. 3L). 
These results demonstrated MNMs as drug carriers 
can not only reach otherwise inaccessible area, but also 
expand the distribution range of drugs to achieve better 
antibacterial effects.

Phototherapy based on MNMs
Due to the existence of biofilms, antibiotics and other 
contact-type bactericidal materials unable effectively 
act on bacteria in the infected area, making the anti-
bacterial efficiency significantly reduced. This has led 
researchers to make efforts in developing efficient, non-
toxic and non-antibiotic new antibacterial agents and 
advanced treatment technologies [69, 70]. Phototherapy 
is a promising approach to treat bacterial infections due 
to its spatiotemporal selectivity, non-invasiveness, and 
minimal side effects [71]. In the 1920s, ultraviolet (UV) 
light with DNA damaging properties was used to steri-
lize the air and it has been effective against bacteria [72]. 
However, UV light is cytotoxic and poorly suited for tis-
sue penetration, which hinders its application in  vivo. 
In recent years, based on biosafe NIR, researchers have 
explored other forms of phototherapy such as photother-
mal therapy (PTT), photodynamic therapy (PDT), and 
photocatalytic therapy (PCT) for the treatment of bacte-
rial infections [73–75]. Because NIR (700–1400  nm) is 
an electromagnetic wave with low frequency and weak 
energy, which does not cause direct harm to the human 

body. These therapies have shown promising application 
prospects as they convert light into heat energy or induce 
the production of ROS to cause bacterial apoptosis [76, 
77].

Despite these advantages, the action radius of ROS/
heat energy in phototherapy is often limited and the bac-
terial membrane can naturally block foreign substances, 
impeding the effectiveness of treatment. Consequently, 
researchers have turned to MNMs as a means to address 
this challenge and have achieved remarkable therapeu-
tic effects in the field of antibacterial phototherapy [78, 
79]. Ma et  al. prepared a urease-driven micromotor 
(MHSTU) for highly efficient antibacterial PDT [80]. 
The micromotor was based on hollow mesoporous  SiO2 
 (mSiO2) microspheres loaded with 5,10,15,20-tetrakis(4-
aminophenyl)porphyrin (TAPP, a photosensitizer), ure-
ase and magnetic  Fe3O4 NPs (Fig. 4A). MHSTU achieved 
phoretic motion driven by enzymatic reaction and direc-
tion of motion was directed by applying an external mag-
netic field, which significantly expanded the coverage 
area approximately 10 times (Fig.  4B). Under 450  nm 
light irradiation (14.2 mW  cm−2), MHSTU generated 
cytotoxic singlet oxygen (1O2), resulting in a 72.5% E. coli 
kill rate. Importantly, compared with the non-fuel group, 
the MHSTU group exhibited a 20% increase in 1O2 yield 
and a 32.9% increase in bactericidal rate, attributed to the 
self-propelled motor’s ability to capture a wider range of 
 O2 and expand ROS distribution (Fig. 4C). However, PDT 
alone was insufficient for achieving the desired bacteri-
cidal effect. Hence, Mao et al. developed multifunctional 
Janus nanomotors (Au@ZnO@SiO2-ICG) to achieve syn-
ergistic bacteria killing through the combination of PTT/
PDT (Fig. 4D) [81]. The nanomotors were prepared by Au 
seed mediated nucleation and ZnO growth, following by 
coating with a  SiO2 thin layer on the ZnO part and load-
ing with the photosensitizer indo cyanine green (ICG). 
Under the irradiation of NIR light (808 nm), the nanomo-
tors, primarily consisting of NPs and ICG, produced an 
asymmetric PTT and photothermal effect, leading to a 
self-heating force-driven speed of up to 5.6887  μm   s−1 
(Fig.  4E). Simultaneously, NIR light triggered cytotoxic 
ROS production of ICG, enhancing PDT produced 
by UV irradiation of ZnO. When E. coli bacteria were 
incubated with Au@ZnO@SiO2-ICG for two hours and 
exposed to NIR light and UV light, the nanomotors suc-
cessfully penetrated the bacterial membrane, resulting in 
irreparable cracking and complete destruction of the bac-
terial morphology (Fig. 4F). Consequently, the treatment 
achieved an almost 100% bactericidal rate.

The limited in vivo application of nanomotors that rely 
on NIR-I and UV to kill bacteria is due to the adverse 
effects of UV on normal cells and poor tissue penetration 
of NIR-I [82, 83]. However, NIR-II light-mediated PTT 
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and PCT offer promising in vivo antibacterial effects due 
to the preferred synergistic antimicrobial efficiency and 
the advantages of NIR-II light, such as deep penetration, 
low optical absorption, minimal scattering from tissue, 
and maximum permissible exposure [84–87]. A study 
by Song et  al. reported the development of multifunc-
tional nanomotors (AuNR-SiO2-Cu7S4) driven by NIR-II 
light (1064  nm) [88]. These nanomotors exhibited pho-
tocatalytic and photothermal synergistic antibacterial 

activities, rapid motion properties, and controllable, safe, 
highly efficient, and thorough bacteria-killing capabili-
ties (Fig.  4G). When exposed to NIR-II light, a distinct 
thermal gradient was formed across the nanomotors, 
resulting in an enhanced local photothermal field close 
to the AuNR-Cu7S4 interface (Fig.  4H). This enabled 
the nanomotors to be actively driven via the self-ther-
mophoresis effect at a speed of approximately 9.8 μm/s. 
Additionally, photocatalytic reactions produced a large 

Fig. 4 Phototherapy based on MNMs. A Schematic illustration of the urease-driven MHSTU for photodynamic antibacterial therapy. B Flow field 
of MHSTU powered by urea. C The death rates of E. coli after different treatments. D The mechanism of Au@ZnO@SiO2-ICG collaboratively enhanced 
the PTT/PDT antibacterial treatment. E The propulsion mechanism of Au@ZnO@SiO2-ICG under NIR irradiation. F TEM images of E. coli under NIR 
irradiation at different times. G Design and application of AuNR-SiO2-Cu7S4 nanomotors. H Thermal images undergoing different treatments. 
I Photoacoustic images and ultrasonic images of the abscess site in different treatments. J live/dead stained images of MRSA and bacterial 
morphology observed by SEM after different treatments. A–C Reprinted with permission [80].  Copyright 2019, WILEY–VCH. D–F Reprinted 
with permission [81]. Copyright 2022, The Royal Society of Chemistry. G–J Reprinted with permission [88]. Copyright 2023, American Chemical 
Society
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number of ROS. The strong NIR-II photoacoustic (PA) 
imaging signal of the nanomotors, due to their strong 
optical absorption in the NIR-II window, can be used to 
observe penetration effects and guide the real-time treat-
ment of bacterial infections (Fig.  4I). The experimental 
results demonstrated that the nanomotors exhibited an 
antibacterial efficiency of 98.3% in vitro and 97.8% in vivo 
(Fig. 4J). Importantly, irradiation of NIR-II light did not 
have adverse effects on normal cells and tissues. In con-
clusion, the development of nanotechnology has made 
it possible to combine MNMs with new therapeutics as 
antibacterial agents, overcoming the shortcomings of 
antibiotic resistance and limited drug loading. In par-
ticular, the mechanism of PTT is that NIR interacts with 
MNMs to produce thermal effects, thus causing bacte-
rial pyrolysis, which depends on the photothermal con-
version efficiency of MNMs and its enrichment at the 
infected site [84]. On the other hand, PCT and PDT rely 
on ROS production, which puts higher demands on local 
oxygen content. Therefore, the future development of 
antibacterial phototherapy MNMs should focus on these 
aspects.

Sonodynamic therapy (SDT) is a new technology that 
utilizes the interaction between ultrasound (US) and son-
osensitizers to produce cytotoxic reactive oxygen species 
(ROS) and kill bacteria. Compared to light triggering, US 
has superior tissue penetrability, making it a promising 
approach for deep-sited infections. For instance, Wu et al. 
developed multifunctional US-responsive MNMs (RBC-
HNTM-Pt@Au) for the treatment of MRSA-infected 
osteomyelitis [89]. RBC-HNTM-Pt@Au consists of a gold 
nanorod (AuNRs)-actuated single-atom-doped porphy-
rin metal–organic framework (HNTM-Pt@Au) and red 
cell membrane (RBC). Under US irradiation (1.5 W  cm−2, 
continuous, 1 MHz), RBC-HNTM-Pt@Au can be direc-
tionally propelled at speeds of 0.77 mm/s, mainly attrib-
utable to the asymmetric structure and steady streaming 
stress generated by US. With its strong electron-trapping 
and oxygen adsorption capacity, RBC-HNTM-Pt@Au 
displayed excellent ultrasonic sensitization activity and 
antibacterial performance. It achieved an antibacterial 
efficiency of 99.9% against MRSA after just 15 min of US 
irradiation. In an MRSA-infected osteomyelitis model, 
the US + RBC-HNTM-Pt@Au group successfully eradi-
cated the bacteria through 30 min of effective SDT after 
4 weeks of treatment, proving the potential of US-driven 
MNMs for anti-infection therapy in deep tissue.

Preclinical application
Superficial tissue infections and implant infections are 
the two major challenges in the field of antibacterial 
therapy [90]. The former involves topical application to 
increase drug concentration in the lesion, but it often 

results in the development of drug resistance [91]. Con-
versely, the latter necessitates prolonged antibacterial 
therapy duration and dose due to difficulties in removing 
bacteria colonizing the graft, resulting in increased side 
effects and recurrence [92]. However, local use of MNMs 
effectively eliminates colonizing bacteria without induc-
ing drug-resistant strains, which addresses a crucial gap 
in antibacterial treatment. Fortunately, the topical appli-
cation of nanomedicines may be approved for clinical 
use earlier than systemic administration (usually oral or 
intravenous), primarily due to concerns about potential 
systemic biological toxicity [93].

Superficial tissue infections
Skin tissue is mammals’ first line of defense against 
bacterial invasion. When skin tissue is damaged, bacte-
ria may attach and proliferate on its surface, leading to 
wound infections [94]. Bacteria create membranes at the 
site of infection and resist penetration by small molecules 
of antibiotics [95]. Therefore, breakthroughs in biological 
barriers are of great importance for anti-bacterial infec-
tion treatment [96, 97].

Recently, novel anti-bacterial strategies based on 
MNMs have achieved outstanding effectiveness in the 
treatment of superficial tissue infections. For example, Li 
et  al. prepared a pH-responsive self-propelled nanomo-
tor (Ca@PDAFe-CNO) by grafting cysteine-NO (CNO) 
onto Janus  CaO2 NPs partially coated with polydopamine 
(PDA) layers [98]. This was done in order to enhance 
biofilm infiltration and promote antibiofilm destruction. 
The nanomotors generated reactive nitrogen species 
(RNS) through a series of cascade reactions in the acidic 
biofilm microenvironment (BME). These RNS were 
able to destroy bacterial walls, bacterial membranes, 
and DNA. The acid-labile decomposition of  CaO2 gen-
erated  O2 from one side of the Janus NPs to propel the 
nanomotors diffusion in biofilms (Fig.  5A). In contrast, 
non-propelling nanoparticles (Ca#PDAFe-CNO) showed 
significantly lower diffusion efficiency throughout the 
S. aureus biofilm matrix, as observed by confocal laser 
scanning microscope (CLSM) (Fig.  5B). Self-propelled 
Ca@PDAFe-CNO diffused with a 12.1-fold increase in 
efficiency compared to non-propelling nanoparticles. 
Additionally, the efficiency of the antibacterial membrane 
was increased by 11.1 times, leading to the death of more 
than 99% of the bacteria. Interestingly, low levels of NO 
(intermediate products) released by nanomotors were 
found to enhance endothelial cell migration and collagen 
deposition. These effects accelerated wound healing and 
facilitated the repair of skin defects (Fig. 5C).

In addition, wound exposure can lead to persistent 
bacterial infestation, hindering wound recovery [99]. 
To address this issue, Mao et al. designed a microneedle 
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patch loaded with nanomotor for the effective removal 
of biofilms and prevention of bacterial reinfections 
(Fig.  5D) [100]. The microneedle (MN) patches, 
referred to as MN + Le + PMV/ICG/L-Arg, consist 
of three components: sodium hyaluronate (HA) as a 
physical barrier, luteolin (Le) as a biofilms inhibitor and 
surface antibacterial agent, and nanomotors containing 
photosensitizer ICG and NO donor L-arginine (L-Arg) 
as deep antibacterial agents. When the microneedle 
patches are applied to an infected wound and irradiated 
with NIR light, the thermal gradient generated by ICG 
and the NO generated by L-Arg enable the nanomo-
tors to form channels within the bacterial biofilms. 
As a result, the microneedle patches exhibited the tri-
ple effect (NO/PDT/PTT), which facilitates to achieve 

biofilm removal, antibacterial activity, and repair of 
infected wounds (Fig. 5E).

In addition to bacterial infections, persistent inflam-
mation can also delay wound healing and lead to sec-
ondary infections [101, 102]. Lipopolysaccharide (LPS) 
endotoxins secreted by bacteria play a crucial role 
in chronic inflammation by interacting with toll-like 
receptors and activating an inflammatory response 
[103]. Thus, it is essential to consider effective endo-
toxin removal when attempting to kill bacteria. Li 
et  al. developed IO@PMB-SNO, a GSH-responsive 
and magnetic recyclable nanomotor, as a solution to 
enhance biofilm infiltration, bacterial destruction, and 
endotoxin clearance, thereby accelerating wound heal-
ing (Fig.  5F) [104]. The nanomotors were created by 

Fig. 5 MNMs for the treatment of superficial tissue infections. A The driving and therapeutic mechanism of Ca@PDAFe-CNO NPs. B Penetration 
biofilm performance of propelling and non-propelling nanomotors. C Visual images of S. aureus-infected wounds after treatment for 21 days. D 
The mechanism of microneedle patches used in wound antibiofilm therapy. E H&E staining and Masson staining of wound tissues in different 
treatment groups. F Schematic illustration of IO@PMB-SNO for antibacterial and anti-inflammatory therapy. G H&E staining images of wound tissues 
after different treatments for 12 days. A–C Reprinted with permission [98].  Copyright 2022, WILEY–VCH. D, E Reprinted with permission [100]. 
Copyright 2023, Elsevier. F, G Reprinted with permission [104]. Copyright 2022, The Royal Society of Chemistry
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grafting polymyxin B (PMB) and thiolated nitric oxide 
(SNO) donors onto partially coating  Fe3O4 NPs with 
PDA layers. During the initial stages of treatment, the 
IO@PMB-SNO nanomotors respond to elevated GSH 
levels in the biofilms, releasing NO, resulting in self-
propelled motion and non-antibiotic destruction of the 
biofilms and bacteria. The experimental results showed 
that the antibacterial rate of IO@PMB-SNO reached 
93.6% and the biofilm dispersion efficacy was as high 
as 88.1%, respectively. Subsequently, PMB adsorbs LPS 
present on the surface of Gram-negative bacteria and 
released during bacterial division. Finally, the magnetic 
IO@PMB-SNO nanomotors, with adsorbed LPS, are 
removed from the infected wounds under a magnetic 
field. This resulted in an 89.5% reduction in endotox-
ins levels at the infected site. Thus, in burn wounds 
infected with P. aeruginosa, the IO@PMB-SNO treat-
ment group displayed significant improvements in bio-
film infiltration, bacterial killing, and skin tissue repair 
(Fig. 5G).

Antibacterial MNMs fill the gap in the treatment of 
superficial tissue infections, offering diversity and ver-
satility in antibacterial treatment. This significantly 
enhances the efficiency of drug-resistant bacteria treat-
ment. Clinical practice no longer recommends the local 
application of antibiotics due to the potential for inducing 

drug resistance. Therefore, antibacterial MNMs have 
emerged as a viable alternative for treating superficial tis-
sue infections, exhibiting promising market prospects.

Implants infections
Implantable devices, such as stainless-steel/titanium nail, 
heart valves, cardiac pacemaker, and artificial lenses, 
have been used for the past half-century to treat various 
illnesses and improve the quality of life for many patients 
[105–107]. However, their introduction into the body 
creates a potential risk of microbial colonization and 
infection [108, 109]. In fact, the mortality rate of implant 
infections is significantly higher than that of organ infec-
tions due to the ease of bacterial biofilm colonization and 
the challenges in clearing them with antibiotics [110]. 
Fortunately, antibacterial MNMs provide a promising 
solution to implant infections. Pumera et  al. have pro-
posed a novel approach using light-driven self-propelled 
tubular nanomotors (Ag/B-TiO2), which are based on 
Black-TiO2 decorated with Ag NPs by physical deposi-
tion, to degrade bacterial biofilm growth on commercial 
facial titanium miniplate implants (Fig. 6A) [111]. When 
exposed to visible lights/UV, the B-TiO2 side catalyzes 
 H2O and  H2O2 to produce ROS (OH· and  O2

·−), while the 
Ag side reduces  H+ and  H2O2 to  H2O. This process cre-
ates a gradient and a local electric field, which allows the 

Fig. 6 MNMs for the treatment of implants infections. A Schematic illustration of B-TiO2/Ag nanomotors for removing biofilm from facial titanium 
miniplates. B Trajectories images, time-frame images and  H+ gradient spatial distribution images of B-TiO2/Ag nanomotors after exposure 
to UV-light irradiation in 0.1% of  H2O2. C Live/dead cell fluorescent images of biofilm onto titanium facial implants after treatment with static 
and moving B-TiO2/Ag nanomotors. D Percentage of dead bacteria cells after different treatment. A–D Reprinted with permission [111].  Copyright 
2022, WILEY–VCH
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nanomotors to propel themselves via the self-electropho-
retic mechanism (Fig. 6B). The ROS generated by photo-
catalysis and  Ag+ produced by oxidation then act to kill 
bacteria and remove biofilms. In experiments conducted 
on titanium fixation plates colonized by MRSA, Ag/B-
TiO2 was able to remove approximately 40% of the bio-
film and eradicate 36% of the bacteria after being exposed 
to UV light for 30  min (Fig.  6C, D). This breakthrough 
offers a promising new avenue for implant bacteria colo-
nization therapy.

In conclusion, there is still a long way to go before 
antibacterial MNMs can be successfully translated into 
in  vivo application, despite their promising results in 
preclinical studies. Researchers have acknowledged the 
importance of safety design in the movement of MNMs 
within the human body. When MNMs are introduced 
into the human environment, several factors need to 
be taken into consideration, such as the biosafety of 
their components (including biocompatibility, potential 
immune response, and their ability to be eliminated from 
the body), as well as the biosafety of the driving system. 
Therefore, significant efforts have been made in four 
main directions. Firstly, researchers have developed bio-
mimetic MNMs by combining natural biological materi-
als, like red blood cell membranes or platelet membranes, 
with synthetic materials, resulting in good biocompatibil-
ity and no immune response [112, 113]. Secondly, MNMs 
have been designed to be biodegradable or self-destruc-
tive, such as biodegradable polymer nanomotors or acid-
powered Mg-based micromotors, thus avoiding potential 
biological toxicity caused by their accumulation [114, 
115]. Thirdly, ideal MNMs for in vivo applications should 
utilize harmful components present in the infected 
microenvironment as a driving substrate, with the reac-
tion products being beneficial or harmless to the human 
body. For instance, a bifunctional nanozyme has been 
developed with peroxidase-like and catalase-like activity, 
which can decompose toxic  H2O2 into strongly oxidizing 
hydroxyl radicals (·OH) to prevent bacterial infection and 
generate abundant  O2 as potential driving power [116]. 
It is our opinion that the most suitable initial application 
of MNMs in human clinical settings would be in superfi-
cial tissue infections, as this could minimize the potential 
risks associated with systemic applications.

Summary and outlook
In this review, we introduce and summarize the driving 
mechanism and antibacterial principle of MNMs in detail 
(Table 1). Antibacterial MNMs effectively break through 
bacterial biofilms and can be combined with new anti-
bacterial strategies to treat multi-drug resistant bacte-
ria. Two difficult problems in the field of anti-infection, 

superficial tissue infections and implant infections, are 
then discussed in the application of MNMs.

Despite the excellent therapeutic effects of antibacte-
rial MNMs, there are several areas of concern. Firstly, 
the direction of motion of MNMs is difficult to control, 
resulting in low utilization efficiency. Secondly, the driv-
ing force of the MNMs is not long-lasting due to the 
biological substrate content in  vivo and the attenuation 
of light in the tissue. Thirdly, while antibacterial strate-
gies based on MNMs do not induce antibiotic resistance, 
it is worth noting that smart and formidable bacteria 
may develop adaptive mechanisms over time. For exam-
ple, bacterial resistance to silver nanoparticles has been 
reported [117]. Fourthly, while most materials are con-
sidered biocompatible, they may still be severely immu-
nogenic and have maximum tolerance. Finally, MNMs 
will still face the challenge of medical ethics in the pro-
cess of clinical transformation.

Future efforts should focus on several aspects. Firstly, 
directional control of MNMs is a primary focus of 
research, and there are various methods to achieve this. 
Magnetic MNMs have the advantage of being able to 
guide motion through an external magnetic field. On 
the other hand, glucose oxidase-based MNMs use the 
concentration difference between the two sides of the 
biological barrier, such as the blood–brain barrier, to 
achieve directional driving [118]. Secondly, synthetic 
MNMs could use adenosine triphosphate (ATP) as a 
power source, inspired by intracellular kinesin, to reduce 
the production of harmful gases and maintain a sta-
ble internal environment. Thirdly, it is crucial to study 
the resistance mechanisms of bacteria to nanomateri-
als, particularly in efflux pump, redox, and heat resist-
ance [119]. Fourthly, the selection of nanomaterials may 
be particularly important for future applications in vivo. 
Notably, the application of biodegradable materials will 
be a trend in the future development of medical MNMs 
to avoid biotoxicity caused by the accumulation of met-
als in the body. Fifthly, designing MNMs with imaging 
function has significant advantages in guiding treatment, 
detecting treatment effects, and tracking biological 
metabolism, which will promote the visualization of anti-
infection therapy. MNMs-based optical microscopy 
imaging, fluorescence imaging (FI), magnetic resonance 
imaging (MRI), radionuclide imaging (RI) and photoa-
coustic computed tomography (PACT) will provide more 
information from different perspectives to guide antibac-
terial therapy [56, 120].

Finally, research on the biosafety of MNMs will be the 
collaborative research challenge for experts in micro/
nanoscience, materials science, physics, chemistry, 
engineering science, life science, and medical fields. 
Biosafety is considered one of the most crucial factors in 
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transformative medicine [121]. In this regard, artificial 
intelligence (AL) and machine learning (ML) have made 
significant breakthroughs in toxicology studies of nano-
materials [122, 123]. In the process of clinical transfor-
mation, MNMs will face the challenge of medical ethics. 
This is a main concern addressed by “nanoethics”, which 
primarily focuses on ethical issues related to nanosci-
ence and technology. Specifically, it deals with biohybrids 
and medical applications of advanced nanomaterials 
[124–126]. To effectively manage the potential health and 
environmental risks associated with nanomaterials, early 
development of policies and regulations is necessary. This 
proactive approach will also contribute to the achieve-
ment of clinical conversion [127, 128].

In conclusion, while progress has been made, there 
is still a long way to go from in vitro research to in vivo 
application. This review aims to stimulate further devel-
opment of MNMs in the field of antibiotic therapy for the 
benefit of patients.
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