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Abstract

In recent years, the environmental health issue of microplastics has aroused an increasingly significant concern. Some
studies suggested that exposure to polystyrene microplastics (PS-MPs) may lead to renal inflammation and oxida-
tive stress in animals. However, little is known about the essential effects of PS-MPs with high-fat diet (HFD) on renal
development and microenvironment. In this study, we provided the single-cell transcriptomic landscape of the kid-
ney microenvironment induced by PS-MPs and HFD in mouse models by unbiased single-cell RNA sequencing
(scRNA-seq). The kidney injury cell atlases in mice were evaluated after continued PS-MPs exposure, or HFD treated
for 35 days. Results showed that PS-MPs plus HFD treatment aggravated the kidney injury and profibrotic micro-
environment, reshaping mouse kidney cellular components. First, we found that PS-MPs plus HFD treatment acted
on extracellular matrix organization of renal epithelial cells, specifically the proximal and distal convoluted tubule
cells, to inhibit renal development and induce ROS-driven carcinogenesis. Second, PS-MPs plus HFD treatment
induced activated PI3K-Akt, MAPK, and IL-17 signaling pathways in endothelial cells. Besides, PS-MPs plus HFD treat-
ment markedly increased the proportions of CD8" effector T cells and proliferating T cells. Notably, mononuclear
phagocytes exhibited substantial remodeling and enriched in oxidative phosphorylation and chemical carcinogen-
esis pathways after PS-MPs plus HFD treatment, typified by alterations tissue-resident M2-like PF4* macrophages.
Multispectral immunofluorescence and immunohistochemistry identified PF4™ macrophages in clear cell renal cell
carcinoma (ccRCC) and adjacent normal tissues, indicating that activate PF4* macrophages might regulate the profi-
brotic and pro-tumorigenic microenvironment after renal injury. In conclusion, this study first systematically revealed
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molecular variation of renal cells and immune cells in mice kidney microenvironment induced by PS-MPs and HFD
with the scRNA-seq approach, which provided a molecular basis for decoding the effects of PS-MPs on genitourinary
injury and understanding their potential profibrotic and carcinogenesis in mammals.

Keywords Kidney microenvironment, Polystyrene microplastics (PS-MPs), Single-cell RNA sequencing (scRNA-seq),

High-fat diet (HFD), Renal fibrosis, PF4* macrophages
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Introduction

The production and use of plastic substances have grown
dramatically since the 1950s because of their physico-
chemical stability, degradation resistance, and low pro-
cessing cost [1, 2]. The wide application of plastics in
industrial production and daily life has brought great
benefits and convenience to people. Still, around 174
million tons of plastics produced annually are also being
released into the environment by humans [3]. Plastic
pollution has aroused extensive concern in the world,
especially microplastics. Microplastics are tiny plastic
particles measuring less than 5 mm in diameter and have
garnered considerable attention due to their potential
environmental harm [4, 5]. They can be either intention-
ally manufactured at this size (primary microplastics), or
they can result from the breakdown of larger plastic items
(secondary microplastics) [6]. The growing industrial
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development and accumulation of plastic waste have led
to the widespread distribution of microplastics across
different environmental compartments globally, and
extensive research has demonstrated pervasive micro-
plastics in various environments worldwide [7]. It has
brought a growing concern due to their potential harm to
ecosystems [6, 8].

Due to their tiny and biorefractory nature, microplas-
tics are easily absorbed by the food chain and accumulate
in the tissues and organs of organisms over time through
the bioaccumulation process [9]. Additionally, through
biomagnification, the concentration of microplastics can
increase at higher trophic levels, potentially affecting
animals at the top of the food chain, including humans
[10]. Microplastics can enter the human body via con-
sumption and inhalation, so the air and food are the main
sources of human microplastic uptake [11]. Microplastics
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can be present in fast food, takeout, beverages, and other
high-fat diets (HFD) due to contamination during pro-
duction, processing, packaging, and storage, accelerating
the disruption of systemic metabolism [3, 12, 13]. Esti-
mates of microplastic ingestion through HED range from
a few tens to hundreds of particles per day for humans
[13, 14].

Polystyrene (PS) is widely used in food and makeup
packaging, such as polyfoam, and it is easier to be mixed
into food and absorbed by the human body. The accu-
mulation of microplastic has been reported in various
aquatic organisms and mammals, leading to a series of
adverse effects. Some studies have revealed that exposure
to accumulated toxins from ingested polystyrene micro-
plastic (PS-MPs) can result in hepatic lipid disorder, renal
dysfunction, intestinal dysbacteriosis, and endocrine dis-
ruption [12, 15, 16]. Notably, recent studies suggested
that PS-MPs particle exposure through oral administra-
tion significantly increased oxidative stress, inflammation
responses, and structural injury in the kidneys [17-19].
These findings prove that exposure to microplastics
can lead to kidney injury in mice and contribute to our
understanding of the potential risks associated with
microplastic exposure on kidney health [20]. Following
the discovery of microplastic particles in human blood,
lungs, and placenta, Antonio Ragusa et al. found the
presence of microplastic particles in human breastmilk
in 2022, further confirming that ubiquitous microplastics
presence makes human exposure inevitable [6, 21-23].
Therefore, understanding the potential health risks asso-
ciated with microplastic exposure is essential for safe-
guarding human health, promoting risk assessment, and
raising awareness among the general public. Previous
studies showed that changes in diet altered metabolites,
gene expression of nutrient transporters, and inflamma-
tory cells and promoted carcinogenesis in mice [24-27].
Evaluating the kidney in studying endocrine and meta-
bolic pathophysiology through the synergistic effects of
PS-MPs and HFD is essential.

The effects of microplastics on the tissue immune
microenvironment are an emerging area of research
[28]. Prolonged exposure to PS-MPs has been shown to
interact with immune cells, promoting the release of pro-
inflammatory molecules, the generation of immunomod-
ulatory reactive oxygen species (ROS), and dysregulation
in immune cell populations [29-31]. Besides, PS-MPs
can physically obstruct immune cells or interfere with
their phagocytic activity, affecting their ability to clear
pathogens or debris [32]. This impairment in immune
cell function may compromise the tissue immune micro-
environment and increase susceptibility to infections or
other immune-related disorders [33]. Further research is
needed to fully understand the mechanisms underlying
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the effects of microplastics on the tissue immune micro-
environment and their potential implications for human
health. Here, utilizing a single-cell transcriptomic
sequencing approach, we compared the differences
among kidney samples exposed to PS-MPs or HFD com-
ponents in mice, thus further elucidating the heterogene-
ity of renal cells and unveiling the complex interactions
between microplastics and the immune system dysregu-
lation within kidney tissues.

Material and methods

In vivo models

A total of 16 six-week-old C57BL6 male mice were
obtained from Shanghai Experimental Animal Center
(Shanghai, China; ID: SCXK2007-0005). The mice were
raised in a standard environment with a 12-h light/dark
cycle and 50+ 5% humidity at 20+ 2 °C. After a week of
acclimation, the mice were randomized into the follow-
ing four groups of 4 mice each: normal diet (ND) group
(normal diet for 18 weeks), PS-MPs group (fed with
water containing 10 mg/L of 1 pm PS-MPs for 18 weeks),
HED group (fed with HED [comprising 60% kilojoules of
fat] for 18 weeks), and HFD plus PS-MPs group (fed with
HFD and water containing 10 mg/L of 1 um PS-MPs for
18 weeks). The amount of food consumed and changes in
mice’s body weight were recorded weekly throughout the
research. After 18 weeks, the mice were euthanized via
deep anesthesia, and the bilateral kidneys were resected
and weighed. All samples were then stored until further
use.

PS-MPs were purchased from the Tianjin Baseline
ChromTech Research Center (Tianjin, China). The shape
of the particles was spherical, and their diameter was
1 pm. Because the physicochemical properties of MPs
(e.g., shape, size, concentrations, surface charge, and
hydrophobicity) affect the transformation, interaction,
fate and bioavailability to organisms, the PS-MPs we
chose were in accordance with previous reports [30, 34,
35].

Photoacoustic imaging (PAI)

To acquire in vivo and ex vivo fluorescent images of
mouse kidney exposed to PS-MPs, PAI was operated in
the first near-infrared (NIR-I) region of the visible (400—
700 nm) by using a UV/Vis/NIR spectrometer (Lambda
9, Perkin Elmer, Waltham, MA, USA), according to the
previous literature with slight modifications [36, 37].
Briefly, the size and zeta potential of PS-MPs were meas-
ured by using dynamic light scattering (DLS) (Malver
Nano-ZS 90; Malvern Instruments, Malvern, UK). Mice
were exposed to PS-MPs (A Ex: 620 nm, A Em: 680 nm,
Aladdin, #M120393) or saline for 24 h, and then were
anesthetized and maintained on 1.5% isoflurane delivered
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by nose cone. Photoacoustic signals of PS-MPs localiza-
tion in mouse kidney were verified by using NIR-I (500—
700 nm) fluorescence imaging.

Single-cell preparation

The kidney samples of mice in different feeding groups
were collected for the scRNA-seq assay. Briefly, the kid-
ney tissues were preserved in sCelLiveTM tissue pres-
ervation solution (Singleron Biotechnologies, Nanjing,
China). Then, the tissues were separated into single-cell
suspensions using Singleron Python Python™ Automated
Tissue Separator (Singleron Biotechnologies) and sCel-
Live™ Tissue Isolation Mix (Singleron Biotechnologies)
following the manufacturer’s instructions. Finally, cell
viability was assessed under a microscope after staining
with Trypan Blue (Sigma).

Construction of scRNA-seq library

The single-cell suspensions described above were diluted
with PBS (HyClone) to a concentration of 1x10° cells/
mL and placed on a microfluidic device. Then, scRNA-
seq libraries were constructed with the GEXSCOPE®
Single-Cell RNA Library Kit (Singleron Biotechnologies)
and Singleron Matrix® Automated single-cell process-
ing system (Singleron Biotechnologies) according to the
Singleron GEXSCOPE® protocol. After the libraries were
constructed, they were diluted to a concentration of 4 ng/
uL and then combined and sequenced using the Illumina
HiSeq X system (Illumina, San Diego, USA) to generate
paired-end reads with a length of 150 base pairs.

Processing and analysis of scRNA-seq data

The raw reads generated from sequencing were pro-
cessed with a customized pipeline to obtain gene expres-
sion matrices. Quality control was performed using
fastQC (version 0.11.4) (https://www.bioinformatics.
babraham.ac.uk/projects/fastqc/) and fastp [38] to
remove low-quality reads, and cutadapt was utilized
for trimming poly-A tail and adapter sequences [39].
Cell barcodes and UMIs were then obtained from the
reads. Subsequently, STAR software (version 2.5.3a) was

(See figure on next page.)
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applied to align the reads to the GRCm38 (mm10) refer-
ence genome. The feature Counts software (version 1.6.2)
was used to obtain UMI counts and gene counts per cell,
which was then utilized to generate expression profiles
for further analyses. Before the assessments, cells with
UMI counts <30,000 and gene counts ranging from 200
to 5,000 were filtered, and cells with mitochondrial con-
tent>20% were removed. Following this, dimensionality
reduction and clustering were performed with the Seurat
package in R software (version 3.1.2) [40]. A resolution
of 1.2 was set for the sub-clustering of specific cell types
within a cluster. Finally, the t-SNE or the UMAP algo-
rithm was conducted to visualize cell subpopulations in a
two-dimensional space.

Functional enrichment analysis

Gene Ontology (GO) annotation and Kyoto Ency-
clopedia of Genes and Genomes (KEGG) pathway
enrichment analyses were conducted with the “cluster-
Profiler” package in R software to identify distinct bio-
logical functions and pathways [41]. Gene Set Variation
Analysis (GSVA) was performed to determine further
the underlying biological functions of significant genes
[42].

Hematoxylin and eosin (HE) and Sirius Red staining

HE and Sirius Red staining were implemented to assess
nephron morphology and collagen fibers in tissue sec-
tions. We randomly selected ten tissue slices procured
from each group for the subsequent experiments. For
HE analysis, tissues as indicated were harvested, fixed
with 4% paraformaldehyde in PBS, embedded into par-
affin blocks, sectioned (5 pm) and then stained with
HE (Sigma) following standard protocol as previously
described [43]. Sirius Red staining involves deparaffini-
zation and rehydration of tissue slices, followed by incu-
bation in Sirius Red solution for approximately an hour.
Slices are then rinsed, differentiated in acidified water,
dehydrated, and mounted with coverslips. Collagen fib-
ers are visualized under a microscope, with polarized
light revealing their characteristic birefringence, aid-
ing in tissue analysis. Measurements and evaluation of

Fig. 1 Comprehensive landscape of the impact of PS-MPs and HFD on renal tissues. A Scheme of mice exposure, kidney collection, cell suspension
treatment, single-cell isolation, and scRNA-seq analysis. B The size and zeta potential of PS-MPs detected in mice. C Detecting the PS-MPs

in mice utilizing near-infrared (NIR) window optical imaging technique. D HE and Sirius Red staining of renal tissues. E Histological activity scores

of glomerular damage, tubular damage, and tubulointerstitial fibrosis in four groups. Different lowercase letters represent statistical significance

by one-way ANOVA with Tukey'’s post hoc test. F Uniform manifold approximation and projection (UMAP) of renal cells colored by distinct cell types.
G Heatmap of the top 10 DEGs among all cell types according to log fold changes. H Violin plot of the top 3 DEGs among all cell types according

to log fold changes. I The proportion of cell subpopulations in the ND and HFD groups (left) and four treatment groups (right)
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histological activity scores including glomerular dam-
age, tubular damage, and tubulointerstitial fibrosis were
evaluated according to the previous literature with slight
modifications [44, 45].

Immunohistochemistry (IHC) and multispectral fluorescent
IHC (mIHC) assays

IHC analysis was performed to assess the expression level
of PF4 (ab303494; Abcam) in clear cell renal cell carci-
noma (ccRCC) samples from Fudan University Shanghai
Cancer Center (FUSCC) following manufacturers’ pro-
tocols as previously described [46]. The mIHC staining
assay was conducted to investigate the abundance and
distribution of PF4 (ab303494; Abcam), CD68 (ab125212;
Abcam), and CD163 (25121; CST) in ccRCC adjacent
normal kidney tissues following manufacturers’ proto-
cols. Tissue slides that were bound with primary and sec-
ondary antibodies but not fluorophores were included as
negative controls to assess autofluorescence. Multiplex
stained slides were scanned using a Vectra Polaris Quan-
titative Pathology Imaging System (Akoya Biosciences)
at 20 nm wavelength intervals from 440 to 780 nm with
a fixed exposure time and an absolute magnification of
200x%. All scans for each slide were then superimposed to
obtain a single image. Multilayer images were imported
to inForm v.2.4.8 (Akoya Biosciences) for quantitative
image analysis.

Statistical analysis

Data are represented as the mean +standard deviation.
To compare the two groups, the Student’s t-test (two-
tailed) was used for normally distributed data, and the
nonparametric Mann—Whitney test was used for non-
normally distributed data. To compare three or more
groups of normally distributed data, one-way analysis of
variance (ANOVA) with post hoc Tukey’s multiple com-
parison test and two-way ANOVA with Sidak’s multiple
comparisons test were used. The Kruskal-Wallis one-way
ANOVA with Dunn’s multiple comparison test was used
to compare non-normally distributed data. Different low-
ercase letters represent statistical significance by one-way
ANOVA with Tukey’s post hoc test. The statistical signifi-
cance was considered when p-values less than 0.05.

Results

Single-cell transcriptome landscape of mouse kidney
altered by PS-MPs plus HFD feeding

In this study, we performed comprehensive research
methods involving mouse exposure, kidney collection,
cell suspension preparation, single-cell isolation, scRNA-
seq analysis, and further downstream analysis to gain
deep insight into the complicated effects of PS-MPs and
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HED on the kidney. The study scheme was depicted in
Fig. 1A. Figure 1B, C demonstrated that PS-MPs ingested
by mice could be detected and measured. We conducted
HE and Sirius Red staining for the four groups to explore
the effects of PS-MPs and HFD on the mouse kidney.
The results revealed that the treatment of PS-MPs plus
HFD exacerbated glomerular damage, tubular damage,
and tubulointerstitial fibrosis, which stimulated our curi-
osity to elucidate further the mechanism (Fig. 1D, E and
Additional file 1; Table S1). After sample preparation and
quality control, a total of 38,676 cells (13,369 cells from
the ND group, 10,178 cells from the PS-MPs group, 7136
cells from the HFD group, and 7993 cells from the HFD
plus PS-MPS group) were isolated and used for further
scRNA-seq analysis (Fig. 1F). We distinguished and
characterized nine cell types by unsupervised clustering
analysis, including epithelial cells (25,605 cells, 66.20%),
endothelial cells (3831 cells, 9.91%), mononuclear phago-
cytes (2661 cells, 6.88%), B cells (2381 cells, 6.16%), T
cells (2101 cells, 5.43%), mesangial cells (976 cells, 2.52%),
neutrophils (440 cells, 1.14%), and fibroblasts (102 cells,
0.26%) (Fig. 1F). The top 10 and top 3 differentially
expressed genes (DEGs) in all cell types were displayed in
Fig. 1G, H, respectively, which showed distinct transcrip-
tome features of the nine cell types. Furthermore, we
analyzed the proportion changes of each cell subpopula-
tion in the mouse kidney after different treatments. The
results demonstrated that the proportions of B, T, and
endothelial cells were reduced. In contrast, proportions
of epithelial cells and mononuclear phagocytes increased
in both PS-MPs and HFD groups, and the above effects
were amplified in the PS-MPs plus HFD group (Fig. 11
and Additional file 1; Table S2).

Changes of subsets and biological features in renal
epithelial cells after PS-MPs plus HFD treatment
Considering the predominance of epithelial cells within
the mouse kidney and their reduction following treat-
ment with PS-MPs plus HED, we first focused on inves-
tigating the impact of this treatment on epithelial cells.
Unsupervised clustering analysis of 25,605 epithelial cells
identified seven distinct subsets, including distal con-
voluted tubule (DCT) cells, collecting duct intercalated
cells (ICs), kidney loop of Henle epithelial cells (LOH),
Collecting duct principal cells (PCs), proximal tubule
(PT) cells, kidney pelvis urothelial cells (PelvisUrothe-
lial), and podocytes (Fig. 2A). Upon PS-MPs treatment,
mouse kidneys, whether on ND or HFD group, exhib-
ited increased proportions of DCT cells, ICs, and PCs,
while the proportion of PT cells decreased (Fig. 2B and
Additional file 1; Table S2). Subsequent analysis of DEGs
unveiled significant variations in transcription levels
among the epithelial cell subpopulations (Fig. 2C, D).
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Fig. 2 The development of renal epithelial cells was suppressed by PS-MPs plus HFD treatment. A UMAP of epithelial cells colored by four
treatment groups (left) and epithelial cell subsets (right). B The proportion of epithelial cell subsets in the ND and HFD groups (left) and four
treatment groups (right). C Heatmap of the top 10 DEGs among epithelial cell subsets according to log fold changes. D Violin plot of the top 3
DEGs among epithelial cell subsets according to log fold changes. E Pseudotime trajectory analysis colored by epithelial cell subsets at varying
pseudotime stages (left) and by individual epithelial cell subsets (right). F GO enrichment analysis of down-regulation pathways of epithelial cells
in PS-MPs group vs. ND group. G GO enrichment analysis of up-regulation pathways of epithelial cells in HFD group vs. ND group (left) and PS-MPs
plus HFD group vs. ND group (right). H KEGG enrichment analysis of upregulation pathways of epithelial cells in HFD group vs. ND group (up)

and PS-MPs plus HFD group vs. ND group (down)

Moreover, we employed pseudotime analysis to eluci-
date the differentiation trajectory from PT cells to podo-
cytes (Fig. 2E). Intriguingly, the differentiation trend was
regressed after PS-MPs plus HFD treatment, suggesting

a potential inhibitory effect on the development of
renal epithelial cells (Fig. 2E). We performed functional
enrichment analysis within the specific groups to further
explore the underlying impact of PS-MPs plus HFD on
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epithelial cells. GO analysis revealed that kidney develop-
ment-related pathways were significantly down-regulated
after PS-MPs treatment, including nephron develop-
ment, glomerulus development, renal system develop-
ment, and kidney epithelium development (Fig. 2F).
Remarkably, these pathways were also enriched in the
HFD group and PS-MPs plus HFD group, further sug-
gesting an inhibitory role of PS-MPs plus HFD in the
developing of renal epithelial cells (Fig. 2G). Addition-
ally, KEGG analysis unveiled up-regulation of the MAPK
signaling pathway, glycolysis pathway, apoptosis pathway,
and PPAR signaling pathway after treatment with PS-
MPs plus HED (Fig. 2H). These findings may have impli-
cations for understanding the molecular mechanisms
underlying epithelial cell responses to PS-MPs plus HFD
treatment, thereby warranting further investigations to
unravel the detailed regulatory networks involved.

Cellular dynamics and functional changes in PT and DCT
cells under PS-MPs plus HFD treatment

Next, we investigated the effects of PS-MPs plus HFD
on PT and DCT cells within the epithelial cells. Sub-
clustering of 2474 PT cells revealed five distinct clusters,
including PT_1, PT_2, PT_3, PT_4, and glomerular epi-
thelial cells (GlomerularEpi) (Fig. 3A). Following treat-
ment with PS-MPs, we observed significant changes in
the composition of PT cell subsets. Specifically, there was
a notable increase in the abundance of PT_1 and PT_3,
which initially exhibited low content. Conversely, Glo-
merularEpi, the major cell subset, significantly reduced
after PS-MPs treatment (Fig. 3B and Additional file 1;
Table S2). The most significant DEGs among PT cell sub-
sets were visually depicted in Fig. 3C, D. Considering the
most pronounced changes in the abundance of PT_1 and
glomerular epithelial cells following PS-MPs treatment,
we performed functional enrichment analysis to explore
their distinctive functional characteristics. KEGG path-
way analysis revealed activation of chemical carcinogen-
esis-reactive oxygen species and glutathione metabolism
pathways in PT_1. In contrast, after PS-MPs treatment,
mineral absorption, and protein processing pathways

(See figure on next page.)
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were up-regulated in glomerular epithelial cells (Fig. 3E,
F). Pseudotime analysis revealed that PT cell differen-
tiation predominantly followed a trajectory originating
from GlomerularEpi and sequentially transitioning into
the other four clusters. Upon intervention with PS-MPs
plus HED, there was a marked amplification in the pro-
portion of GlomerularEpi cells transitioning to the other
four clusters (Fig. 3G). Moreover, we performed sub-
clustering analysis on 4594 DCT cells, which revealed
the existence of five distinct clusters, denoted as DCT_1,
DCT_2, DCT_3, DCT_4, and DCT_5 (with scarce con-
tent) (Fig. 3H). Upon treatment with PS-MPs, there was
a reduction in the proportions of DCT_1 and DCT_2,
while the compositions of DCT_3 and DCT_4 increased
(Fig. 31 and Additional file 1; Table S2). The identified
DEGs among DCT cell subsets are illustrated in Fig. 3],
K. Remarkably, after PS-MPs treatment, DCT_1, DCT_3,
and DCT_4 subgroups exhibited significant activation
of pathways associated with chemical carcinogenesis-
reactive oxygen species, oxidative phosphorylation, and
neurodegenerative diseases. This observation suggests
that PS-MPs may play an essential role in the patho-
genesis of these disease-related pathways (Fig. 3L). The
results of pseudotime analysis revealed that DCT_3
represented the early differentiation stage of DCT cells.
Treatment with PS-MPs plus HFD appeared to impede
the normal differentiation trajectory of DCT cells, indi-
cating a potential inhibitory effect on their development
(Fig. 3M).

Impact of PS-MPs plus HFD on the biological
characteristics and differentiation trajectories of ECs

To further elucidate the effects of PS-MPs plus HFD
on stromal compositions within the renal microenvi-
ronment, we conducted a comprehensive investigation
focusing on ECs. Sub-clustering of 3683 ECs using unsu-
pervised clustering analysis revealed three distinct clus-
ters, namely arterial endothelial cells (AECs), capillary
endothelial cells (CapECs), and glomerular endothelial
cells (GlomerularECs) (Fig. 4A). Upon treatment with

Fig. 3 Changes of cell subsets proportions and biological features in PT and DCT cells upon PS-MPs plus HFD treatment. A UMAP of PT cells
colored by four treatment groups (left) and PT cell subsets (right). B The proportion of PT cell subsets in the ND and HFD groups (left) and four
treatment groups (right). C Heatmap of the top 10 DEGs among PT cell subsets according to log fold changes. D Violin plot of the top 3 DEGs
among PT cell subsets according to log fold changes. E KEGG enrichment analysis of upregulation pathways of PT1_1 cells in PS-MPs group vs.

ND group. F KEGG enrichment analysis of upregulation pathways of GlomerularEpi cells in PS-MPs group vs. ND group. G Pseudotime trajectory
analysis colored by PT cell subsets at varying pseudotime stages (up) and by individual PT cell subsets (down). H UMAP of DCT cells colored by four
treatment groups (left) and PT cell subsets (right). I The proportion of DCT cell subsets in the ND and HFD groups (left) and four treatment groups
(right). J Heatmap of the top 10 DEGs among DCT cell subsets according to log fold changes. K Violin plot of the top 3 DEGs among DCT cell
subsets according to log fold changes. L KEGG enrichment analysis of upregulation pathways of DCT_1, DCT_3, and DCT_4 in PS-MPs group vs. ND
group. M Pseudotime trajectory analysis colored by DCT cell subsets at varying pseudotime stages (up) and individual DCT cell subsets (down)
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Fig. 4 Changes in the biological features and differentiation trajectories of ECs upon PS-MPs plus HFD treatment. A UMAP of endothelial cells
colored by four treatment groups (left) and PT cell subsets (right). B The proportion of endothelial cell subsets in the four treatment groups. C
Heatmap of the top 10 DEGs among endothelial cell subsets according to log fold changes. D Violin plot of the top 3 DEGs among endothelial
cell subsets according to log fold changes. E KEGG enrichment analysis of upregulation pathways of CapECs in PS-MPs group vs. ND group. F
KEGG enrichment analysis of upregulation pathways of CapECs in PS-MPs plus HFD group vs. HFD group. G Pseudotime trajectory analysis colored
by endothelial cell subsets at varying pseudotime stages (left) and by individual endothelial cell subsets (right). H The top 8 differential expression
genes with pseudotime progression

PS-MPs, the proportion of GlomerularECs increased,
while the proportion of AECs decreased. Remarkably, PS-
MPs plus HFD displayed a synergistic effect, increasing
the abundance of CapECs (Fig. 4B and Additional file 1;

Table S2). The top DEGs among EC subsets were visu-
ally displayed in Fig. 4C, D. Furthermore, we performed
an enrichment analysis to explore the functional charac-
teristics of CapECs. Notably, in the PS-MPs treated ND
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group, the PI3K-Akt signaling pathway, IL-17 signaling
pathway, and MAPK signaling pathway were up-regu-
lated (Fig. 4E). Meanwhile, after PS-MPs treatment, the
HED group showed an activation trend in the IL-17 sign-
aling pathway, MAPK signaling pathway, and estrogen
signaling pathway (Fig. 4F). Pseudotime analysis provided
insights into the differentiation trajectory of ECs. The
trajectory was observed to initiate from GlomerularECs,
and PS-MPs plus HFD treatment induced the differentia-
tion of other cell subsets (Fig. 4G). Additionally, the top 8
genes exhibiting differential expression with pseudotime
progression were depicted in Fig. 4H.

Profiling the impact of PS-MPs and HFD on T cell and B cell
subsets in the renal microenvironment

In this section, we investigated the impact of PS-MPs and
HFD on immune cell components, specifically T cells and
B cells, within the renal microenvironment. Sub-cluster-
ing of 1867 T cells revealed five subsets, including CD8"
effector T cells (CD8Teff), T helper cells (HelperT), natu-
ral killer cells (NK), naive T cells (NaiveT), and prolifer-
ating T cells (ProliferatingT) (Fig. 5A). Notably, in both
ND and HFD groups, there was a reduction in the pro-
portion of NaiveT, while an increase in the abundance
of CD8Teff and ProliferatingT following PS-MPs treat-
ment (Fig. 5B and Additional file 1; Table S2). The top
DEGs among T cell subsets were visually displayed in
Fig. 5C, D. GO analysis of CD8Teff with PS-MPs treat-
ment revealed up-regulation of pathways related to oxi-
dative phosphorylation, inner mitochondrial membrane
protein complex, and proton transmembrane transporter
activity (Fig. 5E). The pseudotime analysis suggested that
PS-MPs plus HFD treatment appeared to impede the
maturation of NaiveT cells (Fig. 5F). Sub-clustering of
2147 B cells revealed seven subsets, including BCells_1,
BCells_2, BCells_3, BCells 4, BCells 5, BCells_6, and
plasma cells (PlasmaCells) (Fig. 5G). Notably, in both
ND and HFD groups, the proportions of BCells_4 and
plasma cells increased, while the proportion of BCells_6
decreased after PS-MPs treatment (Fig. 5H and Addi-
tional file 1; Table S2). Figure 51, J displayed the signifi-
cant DEGs among B cell subsets. Considering the rarity

(See figure on next page.)
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of plasma cells, we next focused on performing enrich-
ment analysis for BCells_4 and BCells_6. For BCells_4,
KEGG analysis revealed oxidative phosphorylation,
thermogenesis, and neurodegenerative disease-related
pathways were activated in the ND group after PS-MPs
treatment. In BCells_6, treatment with PS-MPs acti-
vated oxidative phosphorylation, chemical carcinogen-
esis-reactive oxygen species, and thermogenesis-related
pathways in the ND group (Fig. 5K). Pseudotime analy-
sis provided insights into the progressive differentiation
pattern within B cell subclusters, transitioning predomi-
nantly from BCells_1 and BCells_4 to the BCells_5 and
PlasmacCells (Fig. 5L).

Unraveling MPs’ diverse characteristics and functional
dynamics within the renal microenvironment upon PS-MPs
and HFD treatment

Through unsupervised clustering analysis, we identified
six distinct cell subsets among 2451 MPs, including baso-
phils, macrophages, monocytes, proliferating mononu-
clear phagocytes (ProliferatingMPs), conventional type 1
dendritic cells (cDC1), and conventional type 2 dendritic
cells (cDC2) (Fig. 6A). Following PS-MPs treatment, we
observed an elevation in the abundance of macrophages,
accompanied by a reduction in the proportions of baso-
phils and ProliferatingMPs. Importantly, PS-MPs plus
HFD exhibited a synergistic effect, leading to decreased
monocytes and cDC2 (Fig. 6B and Additional file 1;
Table S2). Figure 6C, D visually depicts the most signifi-
cant DEGs among MPs subsets. The results of pseudo-
time analysis revealed that macrophages represented the
early differentiation stage of MPs (Fig. 6E). Additionally,
we performed an enrichment analysis of MPs in specific
groups. After PS-MPs treatment, pathways related to
staphylococcus aureus infection, coronavirus disease, B
cell receptor signaling, and complement and coagulation
cascades were activated in the ND group (Fig. 6F). The
HFD group demonstrated an activation trend in oxida-
tive phosphorylation, chemical carcinogenesis-reactive
oxygen species, and neurodegenerative disease-related
pathways following PS-MPs treatment (Fig. 6G).

Fig. 5 PS-MPs plus HFD treatment reshaped the proportions and activation states of T and B cells. A UMAP of T cells colored by four treatment
groups (left) and T cell subsets (right). B The proportion of T cell subsets in the four treatment groups. C Heatmap of the top 10 DEGs among T cell
subsets according to log fold changes. D Violin plot of the top 3 DEGs among T cell subsets according to log fold changes. E KEGG enrichment
analysis of upregulation pathways of CD8* effector T cells in PS-MPs group vs. ND group. F Pseudotime trajectory analysis colored by T cell subsets
at varying pseudotime stages (left) and by individual T cell subsets (right). G UMAP of B cells colored by four treatment groups (left) and B cell
subsets (right). H The proportion of B cell subsets in the four treatment groups. I Violin plot of the top 3 DEGs among B cell subsets according to log
fold changes. J Heatmap of the top 10 DEGs among B cell subsets according to log fold changes. K KEGG enrichment analysis of upregulation
pathways of BCells_4 and BCells_6 in PS-MPs group vs. ND group. L Pseudotime trajectory analysis colored by B cell subsets at varying pseudotime

stages (up) and by individual B cell subsets (down)
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of upregulation pathways of mononuclear phagocytes in PS-MPs plus HFD group vs. HFD group
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Heterogeneity and functional dynamics of macrophages

in response to PS-MPs plus HFD treatment in the kidney
microenvironment

As the largest subsets within the MPs, we next aimed
to investigate the alterations in macrophages within the
kidney microenvironment upon treatment with PS-MPs
plus HED. Sub-clustering of 1437 macrophages revealed
five distinct subsets, namely Macrophages_Lpl, Mac-
rophages_Ccr2, Macrophages_Cxcl2, Macrophages_Pf4,
and Macrophages_Ccl5 (Fig. 7A). Following PS-MPs
treatment, NC and HFD groups displayed an increased
abundance of Macrophages_Cxcl2, along with reduced
proportions of Macrophages_Lpl and Macrophages_Pf4
(Fig. 7B and Additional file 1; Table S2). The most sig-
nificant DEGs among macrophage subsets were visu-
ally illustrated in Fig. 7C, D. Next, we calculated the
M1l-macrophage and M2-macrophage polarization
scores for each distinct subpopulation, revealing that
Macrophages_Ccl5 exhibited characteristics similar to
M1-macrophages, while Macrophages_Pf4 displayed
similarities to M2-macrophages (Fig. 7E). Figure 7F
depicts the expression levels of classical macrophage
marker genes (Ml-macrophage: IL1B, TNF; M2-mac-
rophage: MRC1, CD163) across different subsets. Mac-
rophages_Pf4 notably showed high expression of MRC1,
indicative of M2-macrophage-like characteristics. To
further explore macrophage heterogeneity, we evalu-
ated the gene set scores of each subset. Remarkably,
Macrophages_Pf4 exhibited the highest immune regula-
tory score, suggesting its role akin to M2-macrophages.
In contrast, Macrophages_Ccl5 demonstrated elevated
interferon-stimulated and pro-inflammatory scores, con-
sistent with MI-macrophage functions. Additionally,
Macrophages_Cxcl2 presented the highest pro-angio-
genic score, while Macrophages_Lpl displayed the high-
est extracellular matrix (ECM) remodeling score (Fig. 7G,
H). Furthermore, we conducted functional enrichment
analyses to explore the impact of PS-MPs plus HFD
treatment on Macrophages_Ccl5 and Macrophages_Pf4.

(See figure on next page.)
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GO analysis revealed activation of pathways related
to MAPK cascade, PI3K cascade, and JNK cascade in
Macrophages_Ccl5 after PS-MPs treatment (Fig. 7I).
Similarly, KEGG analysis revealed up-regulation of neu-
rodegenerative diseases, oxidative phosphorylation,
and chemical carcinogenesis-reactive oxygen species
pathways in Macrophages_Pf4 after PS-MPs treatment
(Fig. 7I). Pseudotime analysis provided insights into the
differentiation trajectory of macrophages, primarily initi-
ating from Macrophages_Cxcl2, with PS-MPs plus HFD
treatment inducing the differentiation of other mac-
rophage subsets (Fig. 7J). Additionally, the top 8 genes
exhibiting differential expression with pseudotime pro-
gression were visually depicted in Fig. 7K. Moreover,
Fig. 7L demonstrated the division of macrophages into
nine clusters based on genes expressed differentially over
pseudotime.

PF4* macrophages enhanced renal fibrosis

following PS-MPs plus HFD treatment

Considering the striking resemblance of Macrophages_
Pf4 to M2-macrophages, we investigated their functional
characteristics in the context of ccRCC and adjacent
normal tissues. Utilizing mIHC, we observed a substan-
tial overlap between PF4" macrophages and M2-mac-
rophages (CD68" CD163") in adjacent normal tissues
(Fig. 8A). Furthermore, the pronounced upregulation of
a-SMA with the increase of PF4T macrophage content
provided compelling evidence of the potential involve-
ment of PF4" macrophages in renal fibrosis induction,
consistent with previous reports [47] (Fig. 8A and Addi-
tional file 1; Table S3). IHC staining of human ccRCC
tissues further confirmed the expression of PF4 in the
tumor microenvironment (Fig. 8B). We analyzed the
DEGs in Macrophages Pf4 among the four groups to
explore the underlying molecular mechanisms, revealing
distinct gene expression patterns (Fig. 8C). Subsequently,
we investigated the intercellular communications
between MPs and fibroblasts after PS-MPs plus HFD

Fig. 7 Macrophage subset alterations and polarization effects in kidney microenvironment under PS-MPs plus HFD treatment. A UMAP

of macrophages colored by four treatment groups (left) and macrophage subsets (right). B The proportion of macrophage subsets in the ND
and HFD groups (left) and four treatment groups (right). € Heatmap of the top 10 DEGs among macrophage subsets according to log fold
changes. D Violin plot of the top 3 DEGs among macrophage subsets according to log fold changes. E The M1 and M2 polarization scores

in distinct macrophage subsets. F Relative expression level of macrophage markers in distinct macrophage subsets. G The immune regulatory
score and interferon-stimulated score in distinct macrophage subsets. H The lipid metabolic, pro-inflammatory, and tissue resident-like scores

in distinct macrophage subsets. | GO enrichment analysis of upregulation pathways of Macrophages_CCL5 in PS-MPs plus HFD group vs. HFD
group (left) and KEGG enrichment analysis of upregulation pathways of Macrophages_Pf4 in PS-MPs plus HFD group vs. HFD group (right). J
Pseudotime trajectory analysis colored by macrophage subsets at varying pseudotime stages (right) and by individual macrophage subsets (left).
K The top 8 differential expression genes with pseudotime progression among macrophage subsets. L Heatmap of differential expression genes

with pseudotime progression
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A Human Tumor-adjacent Normal Kidney Tissue
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Fig. 8 PF4" macrophages enhanced renal fibrosis following PS-MPs plus HFD treatment. A mIHC staining of PF4, CD68, CD163, and a-SMA in ccRCC
adjacent normal tissue (left) and IHC score of a-SMA between low and high expression of PF4* macrophage groups. B IHC staining of PF4 in ccRCC
tissue. C Heatmap of DEGs of Macrophages_Pf4 in four groups. D Interaction networks of intercellular communications between ND and PS-MPs

plus HFD groups

treatment. Interestingly, the results indicated PS-MPs
plus HED treatment enhanced cell-to-cell communica-
tion between MPs and fibroblasts, suggesting that PF4™
macrophages may contribute to renal fibrosis by directly
interacting with fibroblasts (Fig. 8D).

Interaction landscape of cell subpopulations in kidney
microenvironment after PS-MPs plus HFD treatment

To investigate the impact of PS-MPs plus HFD on the
intercellular interactions within the kidney microenvi-
ronment, we employed interaction networks and heat
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maps to visualize the intensity of these interactions.
Our findings demonstrated that fibroblasts were piv-
otal in mediating intercellular communications follow-
ing the treatment with MPs plus HED (Fig. 9A). Notably,
when fibroblasts acted as ligand cells, they exhibited
significant interaction gene pairs with other cell types,
including APP-CD74, COPA-CD74, RPS19-C5AR1, and
C3-C3AR1. Conversely, in the role of recipient cells,
fibroblasts displayed notable interaction gene pairs,
such as PTN-PLXNB2, EGF-EFGR, COPA-EGFR, and
PDGEFB-LRP1 (Fig. 9B). Epithelial cells, the most abun-
dant subpopulation in the kidney microenvironment,
demonstrated robust intercellular interactions with other
cell types. As ligand cells, epithelial cells exhibited strong
interaction gene pairs, including COPA-CD74, RPS19-
C5AR1, and SPP1-CD44. In the role of recipient cells,
epithelial cells displayed significant interaction gene
pairs, such as PTN-PLXNB2, FAM3C-LAMP1, CXCL12-
DPP4, and CCL11-DPP4 (Fig. 9C).

Characterization of distinct mural cell subsets and their
responses to PS-MPs plus HFD treatment

Through unsupervised clustering analysis of 579 mural
cells, we identified four distinct clusters, denoted as
MuralCells_1, MuralCells_2, MuralCells_3, and Mural-
Cells_4 (Additional file 1: Fig. S1A). Upon PS-MPs treat-
ment, the proportion of MuralCells_3 decreased, while
the proportion of MuralCells_4 increased in both ND
and HED groups (Additional file 1: Fig. S1B and Addi-
tional file 1; Table S2). To elucidate the molecular differ-
ences of these mural cell subsets, we visually presented
the top DEGs for each subset (Additional file 1: Fig. S1C,
D). Furthermore, we performed an enrichment analysis
to explore the functional characteristics of MuralCells_3
and MuralCells_4. Remarkably, PS-MPs treatment in the
ND group resulted in an up-regulation of oxidative phos-
phorylation, neurodegenerative diseases pathway, and
chemical carcinogenesis-reactive oxygen species path-
way in MuralCells_3. At the same time, MuralCells_4
exhibited activation of pathways related to cell migra-
tion, regulation of chemotaxis, and enzyme inhibitor
activity (Additional file 1: Fig. S1E). Pseudotime analysis
was employed to discern the differentiation trajectory of
mural cells. The trajectory was observed to initiate from
MuralCells_3, and PS-MPs plus HFD treatment induced
the differentiation of other cell types (Additional file 1:
Fig. S1F). Additionally, the top 8 genes exhibiting dif-
ferential expression with pseudotime progression were
depicted in Additional file 1: Fig. S1G.
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Unraveling the heterogeneity and dynamic responses

of mesangial cells to PS-MPs plus HFD treatment
Sub-clustering of 896 mesangial cells using unsuper-
vised clustering analysis revealed four distinct clusters,
including MesangialCells_1, MesangialCells 2, Mesan-
gialCells_3, and MesangialCells_4 (Additional file 1: Fig.
S2A). Subsequent investigation revealed that PS-MPs
treatment led to an increased proportion of Mesangial-
Cells_1, MesangialCells_2, and MesangialCells_4 while
decreasing the proportion of MesangialCells_3 in the ND
group (Additional file 1: Fig. S2B and Additional file 1;
Table S2). The top DEGs among mesangial cell subsets
were visually displayed in Additional file 1: Fig. S2C, D.
Additionally, we performed functional enrichment analy-
sis to explore the functional characteristics of Mesangi-
alCells_1 and MesangialCells 2. Remarkably, following
PS-MPs treatment in the ND group, MesangialCells_1
showed up-regulated various protein-binding-related
pathways, whereas MesangialCells_2 exhibited activation
of pathways associated with oxidative phosphorylation,
neurodegenerative diseases, and thermogenesis (Addi-
tional file 1: Fig. S2E). We further employed pseudo-
time analysis to discern the differentiation trajectory of
mesangial cells. The trajectory originated from Mesangi-
alCells_1 and PS-MPs plus HED treatment regressed the
differentiation of other cell types (Additional file 1: Fig.
S2F). Additionally, the top 8 genes exhibiting differential
expression with pseudotime progression were displayed
in Additional file 1: Fig. S2G.

Discussion

Recent evidence indicates that humans constantly inhale
and ingest MPs (plastic particles less than 5 mm in size),
which raises increasing concerns about their implications
for human health [48]. The physicochemical properties of
MPs (e.g., shape, size, concentrations, surface charge, and
hydrophobicity) affect the transformation, interaction,
fate and bioavailability to organisms [49]. The 1 um-sized
PS-MPs have been used in many high-quality studies of
the effects of PS-MPs on human health [30, 34, 35]. Fur-
thermore, the presented study provides a comprehensive
exploration of the impact of PS-MPs and HFD on the
kidney microenvironment using scRNA-seq. The results
demonstrate significant changes in cell composition, dif-
ferentiation trajectories, and functional characteristics
of the kidney microenvironment following PS-MPs and
HEFD exposure. These findings contribute to understand-
ing the complex interactions between microplastics, diet,
and the renal microenvironment.



Xu et al. Journal of Nanobiotechnology (2024) 22:13

The study’s results indicate that combining PS-MPs
and HFD exacerbates kidney damage, including glo-
merular and tubular damage and tubulointerstitial
fibrosis. These observations are consistent with previ-
ous research highlighting the potential renal toxicity
of PS-MPs. Chen et al. first demonstrated that expo-
sure to realistic environmental concentrations of PS-
MPs could cause oxidative nephrotoxicity through
antioxidant inhibition, impair kidney barrier integrity,
and increase the risk of acute kidney injury (AKI) [17].
Meng et al. reported that the kidney weight of the mice
decreased and the level of BUN and CRE increased
significantly after PS-MPs treatment. Besides, the his-
tological observations exhibited slight tubular damage
and varying degrees of inflammatory cell infiltration
after PS-MPs exposure [18]. Xiong et al. conducted
transcriptome analysis and reported that PS-MPs can
induce renal dysfunction and histological changes by
promoting oxidative stress, inflammation, renal fibro-
sis, and eventually kidney damage [19]. Our study first
used scRNA-seq to elaborate the harmful effects of
PS-MPs exposure on kidney health issue, particularly
when combined with an unhealthy diet. These findings
underscore the importance of regulating plastic pollu-
tion and promoting healthier dietary choices to miti-
gate potential health risks.

The scRNA-seq analysis revealed significant alterations
in epithelial cells’ composition and differentiation trajec-
tories following PS-MPs and HFD exposure. Notably, the
differentiation trajectory of renal epithelial cells appeared
to be regressed after PS-MPs plus HFD treatment, poten-
tially inhibiting their normal development. The activation
of kidney development-related pathways suggests that the
treatment may disrupt the natural maturation process of
renal epithelial cells. These insights could inform future
research on renal development and highlight potential
mechanisms underlying the observed kidney damage.

Besides, the study provides valuable insights into the
immune cells’ responses to PS-MPs and HFD expo-
sure. The altered proportions of T and B cells, as well
as changes in polarization scores of macrophages, indi-
cate significant immune dysregulation within the kidney
microenvironment following PS-MPs and HED exposure.
The activation of pro-inflammatory and oxidative stress-
related pathways in specific immune cell subsets suggests

(See figure on next page.)
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a potential link between microplastic exposure, diet,
and immune dysfunction. Understanding these immune
responses is crucial for comprehending the broader
implications of microplastic exposure on overall health
(32, 50].

Finally, this research employs scRNA-seq technology to
identify a PF4* macrophage subset and provide insights
into its potential role in promoting renal fibrosis after PS-
MPs plus HFD exposure, in accordance with a previous
study linking PF4" macrophages to renal fibrosis [47].
The results of intercellular interactions between mac-
rophages and fibroblasts suggest a direct involvement
of PF4" macrophages in renal fibrosis. These findings
highlight a possible mechanism through which PS-MPs
plus HED treatment may contribute to adverse renal
outcomes. Understanding the crosstalk between mac-
rophages and other cell types, particularly fibroblasts,
expands our knowledge of renal fibrotic processes and
could guide the development of targeted interventions
[51].

While the study provides valuable insights, it is essen-
tial to acknowledge its limitations. The experimen-
tal design and results are based on animal models, and
translating these findings to humans requires careful
consideration. Additionally, the study primarily focuses
on cellular responses at the transcriptomic level; fur-
ther investigations, such as proteomic and metabolomic
analyses, are necessary to understand the underlying
mechanisms fully. An important matter to address per-
tains to the distribution and fate of PS-MPs within mice,
an aspect which will be subject to further exploration in
subsequent research endeavors. Furthermore, forthcom-
ing investigations should encompass an examination of
the long-term effects of PS-MPs and HFD exposure, and
potential interventions to mitigate the observed adverse
outcomes.

In conclusion, the presented study significantly
advances our understanding of the intricate interactions
between microplastics, diet, and the renal microenviron-
ment. The findings underscore the need for comprehen-
sive strategies to address plastic pollution and promote
healthier lifestyles. The study’s emphasis on immune
responses, renal fibrosis, and cellular interactions also
provides a foundation for further research in toxicology,
environmental health, and clinical medicine.

Fig. 9 Interaction landscape of cell subpopulations in kidney microenvironment following PS-MPs plus HFD treatment. A Interaction

networks of all cell subpopulations (left and middle), and heatmap of the amount of interaction gene pairs between two cell types (right),

under the treatments of ND, PS-MPs, HFD, and PS-MPs plus HFD, respectively. B Bubble plot of interacting gene pairs between fibroblasts, acting
as ligands (left) and receptors (right), with other cell types. C Bubble chart of interacting gene pairs between epithelial cells, acting as ligands (left)

and receptors (right), with other cell types
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Conclusion

In summary, this study first elucidates PS-MPs’ effects
in conjunction with HFD treatment on the kidney by
scRNA-seq approach. The findings unveil that the com-
bined intervention of PS-MPs and HFD aggravated kid-
ney damage and fibrosis and profoundly reshaped cellular
compositions in mouse kidneys. This contributes signifi-
cantly to understanding the intricate interactions between
microplastic pollution, dietary factors, and kidney health.
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Additional file 1: Figure S1. Mural cells heterogeneity and responses to
PS-MPs plus HFD Treatment. (A) UMAP of mural cells colored by four treat-
ment groups (left) and macrophage subsets (right). (B) The proportion of
mural cell subsets in the four treatment groups. (C) Heatmap of the top 10
DEGs among mural cell subsets according to log fold changes. (D) Violin
plot of the top 3 DEGs among mural cell subsets according to log fold
changes. (E) KEGG enrichment analysis of upregulation pathways of Mural-
Cells_3in PS-MPs group vs. ND group (up), and GO enrichment analysis
of upregulation pathways of MuralCells_4 in PS-MPs group vs. ND group
(down). (F) Pseudotime trajectory analysis colored by mural cell subsets

at varying pseudotime stages (left) and by individual mural cell subsets
(right). (G) The top 8 differential expression genes with pseudotime
progression among mural cell subsets. Figure S2. Unveiling mesangial
cells diversity and functional responses to PS-MPs plus HFD. (A) UMAP of
mesangial cells colored by four treatment groups (left) and macrophage
subsets (right). (B) The proportion of mesangial cell subsets in the four
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treatment groups. (C) Heatmap of the top 10 DEGs among mesangial cell
subsets according to log fold changes. (D) Violin plot of the top 3 DEGs
among mesangial cell subsets according to log fold changes. (E) GO
enrichment analysis of upregulation pathways of MesangialCells_1 in PS-
MPs group vs. ND group (up), and KEGG enrichment analysis of upregula-
tion pathways of MesangialCells_2 in PS-MPs group vs. ND group (down).
(F) Pseudotime trajectory analysis colored by mesangial cell subsets at
varying pseudotime stages (left) and by individual mesangial cell subsets
(right). (G) The top 8 differential expression genes with pseudotime pro-
gression among mesangial cell subsets. Table S1. The histological activity
scores of HE and Sirius Red staining for kidneys of mice. Table S2. The pro-
portions of distinct cell subpopulations in the four groups. Table S3.The
IHC score of a-SMA in PF4+ macrophages.
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